JPH02238917A - Analyzing method of molding condition in injection molding machine having visualized heat cylinder - Google Patents

Analyzing method of molding condition in injection molding machine having visualized heat cylinder

Info

Publication number
JPH02238917A
JPH02238917A JP5793789A JP5793789A JPH02238917A JP H02238917 A JPH02238917 A JP H02238917A JP 5793789 A JP5793789 A JP 5793789A JP 5793789 A JP5793789 A JP 5793789A JP H02238917 A JPH02238917 A JP H02238917A
Authority
JP
Japan
Prior art keywords
resin
heating cylinder
screw
injection molding
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5793789A
Other languages
Japanese (ja)
Other versions
JPH0647266B2 (en
Inventor
Yoshiya Taniguchi
吉哉 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP1057937A priority Critical patent/JPH0647266B2/en
Publication of JPH02238917A publication Critical patent/JPH02238917A/en
Publication of JPH0647266B2 publication Critical patent/JPH0647266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make it possible to set a theoretical molding condition by collecting a temp. distribution data of a resin in a heating cylinder or a printed image data of a resin behavior through an observation window and analyzing a condition of a plasticization and measuring process or an injection process based on the data. CONSTITUTION:An analytical and arithmetic unit 43 consisting of a microcomputer operates temp. data and printed image data input through an observation window 15 by using an arithmetic program prepd. in advance. E.g. calculation of temp. gradient and detection of an abnormal temp. part are performed by operating a temp. distribution of each part. In addition, a printed image concn. distribution, flow speed of a marker and behavior of a check ring are operated and analyzed and rate of distribution of solid phase-flow phase, rate of occurrence of voids in a molten resin, rate of flow of the marker in a plasticized and melted resin material, rate of discoloration of the resin material and a movement of the check ring are also operated and analyzed. These operational results are stored with each set condition of charge and injection processes, the kind of the resin material used and a screw design and the optimum molding condition for each resin is found by changing variously each molding condition.

Description

【発明の詳細な説明】 〔産業上の利用分野】 本発明は,可視化加熱シリンダをもつインラインスクリ
ュータイプの射出成形機における成形条件解析方法に係
り、特に,スクリューを収納した加熱シリンダ内の樹脂
挙動などを、加熱シリンダに設けた観察窓を通しa察・
分析して成形条件を解析する,射出成形機における成形
条件解析方法に関する. [従来の技術] インラインスクリュータイプの射出成形機において、良
品質の成形品を安定して継続的に得るには、樹脂材料の
可塑化計量(チャージ)及び射出に関する条件が肝要で
ある. 勿論、その前提としてスクリューの形状設計も重要で、 (a)スクリューの供給部(フイードゾーン)、圧縮部
(コンブレツションゾーン)、計量部(メータリングゾ
ーン)の構成比. (b)L/D L:スクリューの全長 D=スクリューの直径 (c)圧縮比(CR=h 1/h2) h1:供給部のスクリュー溝深さ h2:計量部のスクリュー溝深さ (M料供給部のスクリュー溝に溜っている樹脂の分量と
,計量部のスクリュー溝に溜っている樹脂の分量との比
.) (d)P/D P:スクリューのネジピッチ D:スクリューの直径 などを充分考慮してスクリューデザインが決定され、こ
れによって可塑化計量の良否が先ず決まる.厳密に言う
と,成形する樹脂ごとに最適のスクユー形状が決まるが
,一般にはなるべく多くの樹脂材料に共通して使用でき
るような汎用スクリューデザインが選定される.すなわ
ち、前記(a)では,通常供給部の長さを50〜60%
と大きくしてチャージスピードの安定化と、昇温溶融点
に達するまでは樹脂が出来るだけ加圧されないような考
慮が払われると共に.圧縮部の長さの大小でせん断発熱
を制御する.また,前記(b)では,L/Dを長くする
とチャージスピード、樹脂温,a!練の安定性が良くな
ることから,装置全体との兼合いもあるが、L/Dは通
常20〜22とされる.また、前記(c)では、低温成
形が必要な場合はCRを小さくして前記混線部でのせん
断発熱を抑え、その反対に混線性を高めるためにはCR
が大きくされる.さらにまた,前記(d)のP/Dは移
送量と溶融状態での効率を考慮して通常は1.0程度の
値が選択される. この他に、加熱シリンダの肉厚/外程も,ヒ〜タからの
加熱を安定に伝達するという点で重要である. 上述したスクリューの設計は、過去の経験値に基づき、
コンピュータでシュミレーション計算を行ないなされる
が,前記したようにスクリューは多品種の樹脂材料に適
用可能な汎用スクリューとされるのが一般的で,このよ
うなスクリューをもつインラインタイプの射出成形機で
は、樹脂材料に応じてどのような成形条件で装置を作動
させるかが極めて重要な事柄となる. この成形条件を挙げると,可塑化計量(チャージ)時に
おいては、 ■各ゾーンのヒータ温度. ■計量ストローク. ■スクリュー回転数を計量ストロークに対してどのよう
に可変させるが. ■背圧を計量ストロークに対してどのように可変させる
か. ■サックパック量とその速度. などのファクターがあり、また,射出時には、■射出圧
力. ■射出速度を射出ストロークに対してどのように可変さ
せるか. ■保圧切替位置. ■保圧時の保圧力をどのように可変させるが6などのフ
ァクターがある. C発明が解決しようとする課題】 ところで,従来の射出成形機では、加熱シリンダの内部
を直接見ることが出来なかったので、上述したチャージ
行程及び射出行程時の条件設定は,経験値に基づく試行
錯誤の手法で,試ショットによって成形品を観察し,成
形条件を摸索設定するものであった. すなわち,従来は加熱シリンダの内部が観察できないた
め, (イ)可塑化計量(チャージ)時に,スクリューで移送
されながら,加熱された樹脂材料がヒータによる加熱,
スクリュー回転によるせん断力などによって,どのよう
に溶融し,固和から流動相になっていくかの溶融可塑化
の進み方.(口)流動相になった後の均一可塑化の様子
.(ハ)加熱シリンダ内部における樹脂温度の上昇の様
子,すなわち樹脂温分布や異常温度部位の有無. (二)樹脂が溶融可塑化される・時に発生するガス分が
うまく脱気されているかどうか. (ホ)流動相となった樹脂がスクリューの谷の間を流動
前進している時に滞留したりしていないかどうかや、或
いは流動速度. (へ)射出開始時のチェックリングの動き.(ト)着色
剤混入時の樹脂のカラーリングの均一性. などの重要なチェックポイントは、全くブラックボック
スの中にあって,それを観察したり測定したりして,成
形条件の設定に結びつ1tることは不可能であった. 一方,コンピュータによるシュミレーション計算によっ
て成形条件設定に結びつける試みもなされているが,プ
ラスチックのレオロジー的な特性のため.その流動解析
は容易ではなく,結局上述したようなチェックポイント
に対するアクセスは、殆どカンと経験に頼っているのが
現状で,最適成形条件の設定は熟練と豊かな経験を必要
とし、時間と手間がかかるものであった.しかしながら
.近時のプラスチック産業は、樹脂材料の種類、配合が
より複雑に且つ高度化しつつあり,従来のようなカンと
試行錯誤による成形条件設定に代替して,より理論的な
成〜形条件の設定手法を求める機運が高まってきている
. 本発明は上記した事情に鑑みなされたもので,その目的
とするところは,加熱シリンダ内部の樹脂挙動などをダ
イレクトに観察・解析した結果に基づく,より理論的な
成形条件の設定などを可能とする射出成形機における成
形条件解析方法を提供することにある. [課題を解決するための手段] 本発明は上記した目的を達成するため,加熱シリンダ内
にスクリューを回転並びに進退可能に配設し、加熱シリ
ンダの周壁の一部に,透光体を配した内部観察用の観察
窓を設けてなる可視化加熱シリンダをもつ射出成形機に
おける成形条件解析方法において、例えば,サーモビジ
1ンなどの非接触型の温度トレーサによって、前記II
察窓を通して前記加熱シリンダ内部の樹脂の表面温度分
布データを取込み,また,例えばビデオカメラなどの撮
像手段によって,前記観察窓を通して樹脂挙動などの画
像データを取込み、取込まれたデータをマイクロコンピ
ュータよりなる解析演算装置で処理して,例えば、所定
領域内の樹脂温度差,固相一粒度相の分布度合,溶融樹
脂内の気泡の発生度合,可塑化溶融される樹脂材料中の
マーカーの流れ具合,樹脂材料の着色度合,チェックリ
ングの動きなどを,計測・演算し,これに基づき可塑化
計量(チャージ)行程時及び射出行程時の条件を解析す
るようにされる. 【作用] マイクロコンビ二一タよりなる解析演算装置は、観aS
を通して取込まれた温度データ,画像データを予め作成
された演算プログラムによって演算処理する.すなわち
,例えば各部位の温度分布を演算して温度勾配の算出や
異常温度部位の有無を検出を行い,また,画像濃度分布
(輝度,色分布),マーカーの流動速度(樹脂流動速度
),チェックリング挙動などの演算解析を行い、固相一
流動相の分布度合,溶融樹脂内の気泡の発生度合、可履
化溶融される樹脂材料中のマーカーの流れ具合,樹脂材
料の着色度合、チェックリングの動きなどを演算解析す
る.これ等の演算結果は,前記したチャージ及び射出行
程時の各設定条件、用いた樹脂材料種別,スクリューデ
ザインなどと共に格納され、成形条件を種々変更するこ
とによって樹脂毎に定まる最も好適な成形条件が見出さ
れる.[実施例コ 以下、本発明を第1図〜第9図に示した1実施例によっ
て説明する.第1図は成形条件を解析するための構成要
素を示すブロック図,第2図は射出成形機の射出装置を
示す一部切断した正面図,第3図は射出装置の要部を示
す一部切断した要部正面図、第4図は加熱シリンダを軸
方向と直交する方向で切断した要部断側面図である.ま
ず、第2図を用いて射出成形機の射出装置の概略構成を
説明する.第2図において、1はベース、2は該ベース
1上に設置された支台で,加熱シリンダ3の後端を保持
したヘッドストックが取付けられている.4はスクリュ
ーで、加熱シリンダ3内に回転及び進退可能に配設され
ており,スクリュ一回転用駆動源5によって回転駆動さ
れると共に,射出用駆動源6によって前後動を制御され
るようになっている.なお、7は,スクリュー4の後端
と上記両駆動源5,6との間に配設された駆動伝達機構
,8は樹脂材料を加熱シリンダ3に供給するためのホツ
パー、9は加熱シリンダ3を加熱するためのバンドヒー
タ、lOは加熱シリンダ3の先端に取付けられたノズル
である.上記ホッパ−8から加熱シリンダ3内のスクリ
ュー4の後部に供給された樹脂材料は、スクリュー4の
回転によって混練・可塑化されつつ前方へ移送され、ス
クリュー4の先端側に溶融樹脂が貯えられるに従ってス
クリュー4が背圧を制御されつつ後退し、スクリュー4
の先端側に1ショット分の溶融樹脂が貯えられた時点(
計量終了時点)で,スクリュー4の回転が停止される.
そして,所定秒時を経た射出開始タイミングで、スクリ
ュー4が前進され、ノズル10から溶融樹脂が図示せぬ
金型のキャビテイ内へ射出・充填されるようになってい
る. なお該実施例においては、チャージ行程時に前記スクリ
ュー4を正逆回転(例えば正転期間3に対し逆転期間1
というように)させたり,或いはチャージ行程時にスク
リューを振動させつつ回転させることも可能となってお
り,これによってチャージ条件設定項目を多くしてチャ
ージ条件のバリエーションを増し,また、きめ細がな制
御が可能となっている.(前者の正逆転転チャージにつ
いては、本願出願人が先に提案した特願昭63−177
128号を,また、後者の振動を伴う回転チャージにつ
いては,同じく本願出願人が先に提案した特願昭63−
177129号を,必要ならば、それぞれ参照されたい
.) 次に,加熱シリンダ3近辺の構造を第3図及び第4図に
よって説明する. 第3図に示すように,加熱シリンダ3の後端は、前記支
台2に固着されたヘッドストック11に,取付板12を
介して固定されている.この加熱シリンダ3の周壁には
,その前端側(図示左@)がら後端側に向って断面円形
の円形穴13が軸方向に沿って連続して穿設されている
.該実施例においては、円形穴13は後端側までは完全
に貫通されないように形成されているが.円形穴13は
加熱シリンダ3の周壁を軸方向に完全に貫通するもので
あってもよい. 第4図に示すように、上記円形穴13と連通して図示上
下に2つのスリット14.14が穿設されている.該2
つのスリット14.14は円形穴l3の直径の延長線上
に位置し,円形穴l3と同様に加熱シリンダ3の前端側
から後端側に向って軸方向に沿って連続して穿設されて
いる.なお、円形穴13並びにスリット14は、例えば
ワイヤカットで形成される. 第3,4図に示すように、前記加熱シリンダ3の周壁の
外面側には、該周壁の外面から前記円形穴l3に達する
軸方向に沿った細長いtR察窓15が,例えばエンドミ
ル加工によって複数個穿設されている.該実施例におい
ては,前記スクリュー4のフイードゾーン、コンブレッ
ションゾーン,メータリングゾーンに各々対応して、l
II察窓15が3つ設けられているが,観察窓15の数
は任意である.(なお、このlI!察窓l5は前記バン
ドヒータ9の非巻装部位に形成されている.)また,加
熱シリンダ3の周壁の内面側には、該周壁の内面から前
記円形穴l3に達する軸方向に沿った細長い切欠きl6
が,複数個穿設されている.この切欠きl6は,観察窓
l5と対応する位置に、観察窓15の軸方向長さと略同
一長さとなるように、例えば8m窓15と同時にエンド
ミル加工によって穿設される. l7は、前記加熱シリンダ3の円形穴l3に挿入された
円柱状のガラス体で,例えば,透明な耐熱・高強度の高
純度石英ガラスよりなり,その断面は前記円形穴13の
断面形状と一致するように設定されている.該実施例に
おいては,3本のガラス体17を,加熱シリンダ3の前
端側解放部から円形穴13内に,ガラス体17間にスペ
ーサ18を介して順次挿入し,前端側のガラス体17の
端面を必要に応じスベーサ18を介して図示せぬ圧接手
段(例えば締付けナット)で押圧するようになっている
.この結果,各ガラス体l7は軸方向に緩みなく位置付
け・固定されることになる.なお、該実施例においては
、上記スペーサl8は,石綿系の適度の弾性ある材料が
用いられているが、この他に,耐熱性と適度の弾性を備
えた材料(例えば、銅,黄銅など)から任意のものを選
択可能である. 19は,前記観察窓15の上下に穿設された複数個のネ
ジ穴で.該ネジ穴19は第3図に示すように,前記スリ
ットl4と直交し且つ該スリット部分を貫通して形成さ
れている.このネジ穴l9は、スリット部分を貫通した
奥方部位に雌ネジが刻設されており,該雌ネジに締付け
ネジ(ボルト)20が螺合・締結さ九、それによって、
スリット14を狭める方向の力を作用させるようになっ
ている.この結果、円形穴13の内面がガラス体17の
外周面を包持・締結し,シールを完全なものにするよう
になっている. 上記した構成を採る該実施例においては,各観察窓15
からガラス体l7を介して,加熱シリンダ3内の前記し
たフイードゾーン,コンブレツションゾーン、メータリ
ングゾーンの樹脂挙動が観察可能となるばかりか,ガラ
ス体17が円柱状であるので,ガラス体17が凸レンズ
として機能して,樹脂挙動を拡大して観察可能となって
視認性が向上する.また,ガラス体17が円柱状である
ので、加熱シリンダ3内部の樹脂圧によって、ガラス体
17が,前記円形穴13の外方側の内面への押付け力を
受けても、円形穴13とガラス体l7とは円弧面同士が
圧接されるので,抑圧力は分散されてガラス体17に局
部的な応力がかからず,ガラス体17の破損は可及的に
防止される.これは,熱的応力、前記締付けネジ20に
よる応力についても同様で,応力は略均一に拡散されて
ガラス体17は破損の虞れなく長寿命が保証される.さ
らにはまた,前記締付けネジ20によるシール効果で、
樹脂漏れの虞がないものとなっている.なお,該実施例
では、円柱状のガラス体l7を用いているが,角柱状の
ものであっても良く,また,場合によってはガラス体1
7に代替してサフイアなどを用いても良く,この場合は
サフイアが高価であるので,観察窓15は小さく設定さ
れる.さらにはまた、該実施例においては観察窓15を
3つ設けているが、その数、形成個所などは任意である
. 第1図は前記観察窓l5から加熱シリンダ3内の各ゾー
ンにおける樹脂挙動,樹脂温度などを撮影して解析する
ための構成を主に示すブロック図である. 同図において、30は前記観察窓l5に対向して設置さ
れた固体撮像素子、撮像管などを備えたビデオカメラ.
31は同じく観察窓l5に対向して設置されたストロボ
発光部で,ビデオカメラ30からの同期信号を受けるス
トロボコントローラ32によって発光制御される.上記
ビデオカメラ30で撮影された画像は,一旦ビデオテー
ブレコーダ(以下VTRと称す)34に記録され,この
画像データは,データバッファ35に取込まれた後、A
/D変換器36によって適当なサンプリングレートでデ
ジタル信号に変換されて、後述する解析演算装置に送出
される.なお、37はVTR34に接続されたカラーC
RTディスプレイよりなるモニタで,必要に応じビデオ
カメラ30で撮影された画像がオペレータによって確認
されるようになっている. 38は,前記Ill察窓15に対向して設置されたサー
モビジJンで.HgCdTe、InShなどの温度検出
器を備え、前記観察窓l5に接した樹脂温度を画像デー
タとして取込み,一旦VTR39に記録するようになっ
ている.そして.VTR39に記録された画像データは
,データバツファ40に取込まれた後,A/D変換器4
lによって適当なサンプリングレートでデジタル信号に
変換されて、後述する解析演算装置に送出される.なお
,42はVTR394:接続されたカラー C R T
ディスプレイよりなるモニタで、必要に応じサーモビジ
ョン38で取込まれた温度分布画像がオペレータによっ
て直接視認されるようになっている.なお,前記ビデオ
カメラ30、サーモビジョン38は共に、ズーム機能を
もち,また図示していないが必要に応じ旋回回転台など
が付設される.また,該実施例においては,前記したよ
うに観察窓15が3つ設けられているので、3つのII
Q窓l5を同時に観察する場合には,ビデオカメラ30
,サーモビジョン38などはこれに応じて複数台が配設
され、各観察窓15を個別に時間的にずらせて観察する
場合には、ビデオカメラ30,サーモビジョン38など
は観察を必要とする観察窓l5に対向する位置にその都
度移動される.43は,ビデオカメラ30、サーモビジ
ョン38から得られたデータを解析するための解析演算
装置で,フレームバツファ44、温度分布演算手段45
、画像濃度分布演算手段46,流動速度演算手段47、
チェックリング挙動演算手段48,データ格納部49、
テーブル50、成形条件演算部51などを具備している
. 前記サーモビジョン38から、VTR39、データバツ
ファ40、A/D変換器4lを介して解析演算装置43
に送出されてきた画像データは,フレームバツファ44
に一旦格納された後,前記温度分布演算手段45に供給
され,温度分布演算手段45はこのデータに基づき加熱
シリンダ3内の各ゾーンの樹脂温度分布を演算する.ま
た,該温度分布演算手段45は,予めケーススタデイさ
れた温度分布情報が格納された前記テーブル50の内容
を参照して,各部の温度が設定範囲内にあるかどうかや
,温度勾配が許容範囲内にあるかどうかや,或いは異常
温度発生部位があるかどうか等々の判別処理を実行する
. 前記ビデオカメラ30から,VTR34.データバツフ
ァ35、A/D変換器36を介して解析演算装置43に
送出されてきた画像データは,同様にフレームバツファ
44に一旦格納された後、前記画像濃度分布演算手段4
6,流動速度演算手段47,チェックリング挙動演算手
段48に所定のタイミングでそれぞれ供給される.画像
濃度分布演算手段46は、輝度分布,色分布を演算し、
固相(樹脂ペレット)と流動相との輝度などの相違によ
る同相一流動相の分布度合、樹脂が溶融される時に生じ
るガスによる気泡の発生度合,樹脂中に混入されたマー
カーの分布度合、樹脂中に混入された着色剤の混り度合
等々を,前記テーブル50に予め格納された固相一流動
相識別情報、気泡識別情報,マーカー識別情報、着色濃
度識別情報、などを参照して算出する.また,画像濃度
分布演算手段46は,前記テーブル50に予めケースス
タデイして格納された許容範囲情報などを参照して,上
記した演算結果が許容範囲にあるかどうか等の判別処理
も実行する. 前i流動速度演算手段47は、供給された複数フレーム
の画像データを処理し、前記テーブル50に予め格納さ
れたマーカー識別情報を参照して、樹脂中に混入された
マーカーの流動速度から樹脂の流動速度を各部位ごとに
算出する.また,これによって樹脂の滞留箇所の有無、
滞留位置、滞留個所の大きさなどを演算・判別する.そ
してまた,流動速度演算手段47は、前記テーブル50
に予めケシススタデイして格納された許容範囲情報など
を参照して、上記した演算結果が許容範囲にあるかどう
か等の判別処理も実行する. 前記チェックリング挙動演算手段48は,前記スクリュ
ー4の先端頚部に装着された公知のチェックリング(逆
止弁部材)の動きを、供給された複数フレームの画像デ
ータから,前記テーブル50に予め格納されたチェック
リング識別情報を参照して演算する.また、チェックリ
ング挙動演算手段48は、チェックリングが所定のタイ
ミング時点で所定の作動位置にあるかどうかを,前記テ
ーブル50に予めケーススタデイして格納されたチェッ
クリング挙動許容範囲情報などを参照して、上記した演
算結果が許容範囲にあるかどうか等の判別処理も実行す
る. 上述した温度分布演算手段45,画像濃度分布演算手段
46、流動速度演算手段47,チェックリング挙動演算
手段48での演算処理結果は、前記データ格納部49に
取込まれる.また,該データ格納部49には、使用され
たスクリュー4に関する前記したスクリューデザインの
詳細,使用された樹脂材料種別,並びに,前記したチャ
ージ,射出行程時の設定条件(成形設定条件),すなわ
ち, ■各ゾーン(ノズル部,シリンダの前,中,後、ホツパ
ー下)のヒータ温度. ■計量ストローク. ■スクリュー回転数や背圧を計量ストロークに対してど
のように可変させたか. ■スクリューの正転/逆転の時間比率.■スクリュー回
転に重畳させる振動の強さ並びに振動数. ■サックバック量とその速度. ■射出圧力の大きさ並びに立上り時間.■射出ストロー
ク,並びに射出速度を射出ストロークに対してどのよう
に可変させたか.■保圧切替位置. [相]保圧時の保圧力をどのように可変させたか.とい
う情報も合わせて格納される.なお,これ等の情報は図
示せぬキー人力装置による入力操作,もしくは射出成形
機全体の制御を司どるマイクロコンビータからなる制御
装置52からの情報供給によって達成される. データ格納部49には、成形設定条件を可変して試ショ
ットを繰返した際の,前述した各演算手段45〜48の
演算結果が順次記憶される.そして、各演算手段45〜
48の演算結果が最も好ましい状態を示した時の上記し
た成形条件■〜[相]が、最適成形条件として所定の記
憶エリアに格納される. 例えば、スクリューと加熱シリンダの形状設計毎に,順
次樹脂材料を,例えばポリカーボネイト,アクリル,ス
チロール等と変化させ、この各樹脂材料毎にチャージ量
を、10〜100%の間で10%づつ変化させ、この上
で前記した成形条件■〜[相]を各々ケーススタデイし
た結果が,最適成形条件として所定の記憶エリアに格納
される.前記成形条件演算部5lは,データ格納部49
に格納された樹脂ごとの最適成形条件データを参照して
,未解析の新しい樹脂の成形に際し、近似する樹脂材料
における既知の成形条件に基づき成形条件を算出設定し
,また、未解析の樹脂を試ショットすることで得られた
画像データからの前記した処理結果を参照して,未解析
の樹脂における成形条件を最適値に近づけるように成形
条件を算出する.この成形条件演算部51による演算結
果は,前記した射出成形機の制御装W152に送出され
,これによって,成形条件が可変設定されるようになっ
ている. なお,ここで上述してきた機能部をもつ前記解析演算装
!!43は.実際にはマイクロコンピュータよりなって
おり,各種I/Oインターフェス、主プログラム並びに
固定データなどを格納したROM,各種フラグ並びに計
測データ、変換処理データなどを読み書きするRAM.
全体の制御を司どるμCPU(マイクロセントラルプロ
セッサユニット)等を具備しており、上述した各機能は
予め作成されたプログラムによって実呪されることは当
業者には自明であろう.また,解析演算装置43の演算
処理結果は,必要に応じカラーCRTディスプレイより
なる表示装I!53、プリンタ54゜などの出力装置に
送出され,オペレータに解析結果などを視認させるよう
にされる.また,解析演算装置43は、磁気ディスク装
置などの外部メモリ55とも接続され,必要に応じ所定
データの授受が行われるようになっている. 次に第5図〜第9図によって成形条件の解析手法の数例
を説明する. 第5図(a),(b),(c)は、加熱シリンダ3の観
察窓l5から前記ビデオカメラで得られた画像を示す説
明図である.同各図は,樹脂の同相一流動相の分布状態
を示しており,図示白抜で示した部位56が固相を、図
示ドット付与の部位57が流動相を各々示している.ま
た,同図は総べてコンブレツションゾーンが示されてお
り、(a),(b),(c)の順に樹脂送り方向の下流
側の適宜部位がピックアップされている.良好な溶融可
塑化を達成するためには,コンブレツションゾーンの終
端で、同図(e)のように100%溶融が完了して且つ
この溶融完了位置が安定し、また,溶融開始位置も安定
していることが望ましい.また,溶融開始位置から溶融
完了位置の間において,溶融化が早過ぎも遅過ぎもせず
、且つ溶融化率が一定して漸次進行することが望ましい
. そこで,前記画像濃度分布演算手段46は、コンブレツ
ションゾーンを細分化して、各部位の固相と流動相との
比を参照し,また,前記成形条件演算部5lは計測デー
タが適正でない場合は、溶融開始位置と溶融完了位置と
が安定し,且つ両位置間で溶融化が早過ぎも遅過ぎもせ
ず、且つ溶融化率が一定して漸次進行するように、前記
した成形条件■〜[相]のうちの必要なファクターを変
更調整する. 第6図は、前記加熱シリンダ3の先端部分の断面図であ
る.同図において、4aは前記スクリュー4の先端頭部
、4bは頚部、4Cはネジ山で、58は上記頚部4b部
分に装着されたチェックリング、57は貯えられた溶融
樹脂(流動相)を示しており,図示2点鎖線で示した前
記観察窓15から加熱シリンダ3内が観測・観察できる
.第7図は,第6図に図示した観察窓15から前記サー
モビジョン38で得られる画像を示す説明図である.同
図において、領域Z1の温度をTI、領域z2の温度を
T2、領域Z3の温度をT3とすると,TI>T2>T
3の関係にあり,貯えられた溶融樹脂57の温度分布が
一様でないことが判る.この貯えられた溶融樹脂57の
温度分布は一様であることが望ましく,前記温度分布演
算手段45は、例えば貯えられた溶融樹脂領域全体の平
均温度T aweと、温度差範囲R=Tmax−T自i
nを算出し、また前記成形条件演算部5lは、R/Ta
veが最小となるように,前記した成形条件■〜[相]
のうちの必要なファクターを変更調整する.なお、他の
観察窓15においても同様にして温度分布が観察され,
異常高温、異常低温発生部位があった場合には,これに
対処する成形条件の変更がなされる. ゛第8図は,第6図に図示した観祭窓l5から前記ビデ
オカメラ30で得られる画像を示す説明図である.同図
は、溶融樹脂57が前記ノズル10から漏れるドルーリ
ング現象を防止するために,計量完了後に前記スクリュ
ー4を強制的に微小量だけ後退させて溶融樹脂57の圧
力を一時低減させる公知のサックバック制御を行なった
場合の画像を示している.(なお,サックバック制御の
詳細については、必要ならば本願出願人が先に提案した
特願昭63−248958号を参照されたい.)同図に
おいて、59は樹脂圧の減圧によって生じた気泡を示し
ており,前記画像濃度分布演算手段46はこの気泡の発
生度合を演算する.サックバックによって生じる気泡5
9は出来るだけ少いことが望ましく,例えば前記成形条
件演算部51は気泡59が僅かでも発生した時点でスク
リュー4の強制後退をストツブさせるように、サックバ
ック量を算出する. なお、他の観察窓l5においても同様に気泡59の発生
度合を示す画像が得られ,例えば、樹脂が溶融可塑化さ
れる時に発生するガスがうまく脱気されているか否かが
所定部位における気泡59の発生個数で判別され,脱気
不良と判断されると、成形条件演算部5lによってこれ
に対処するチャージ条件の変更がなされる. なおまた,図示していないが第6図に示した観察窓l5
から,前記チェックリング58の動きを示す画像データ
が得られ,前記チェック挙動演算手段48でチェックリ
ング58の挙動が判別されるのは自明であろう. 第9図は,樹脂材料(樹脂ペレット)中にマーカーを所
定量混入した場合に、前記ビデオカメラ30によって例
えば加熱シリンダ3の中央の観察窓15から得られる画
像データを示す説明図である.マーカーとしては、測定
・解析する成形用の樹脂よりも溶融温度の高い着色樹脂
ペレット、或いは、成形用の樹脂と略同程度の比重をも
つ着色無機物のチップを用い,これを前記ホッパ−8か
ら例えば少量だけ間欠的に投入してマーカーの挙動を捉
えるようにされる. ゛第9図において、60は樹脂中に混入されたマーカー
、矢印Aは樹脂送り方向を示しており,マーカー60が
ほぼ均一に分布している状態が示されている.しかしな
がら,溶融樹脂の流動挙動は複雑で、経験的にスクリュ
ー4のネジ山4Cの後側に樹脂のこびり付きが生じ易い
ことが知られている.すなわち,図中点線で示した領域
Sで樹脂の滞留が生じることがままあり,この場合には
、マーカー60の一部が前方へ移送されずに滞留してい
ることが,前記画像濃度分布演算手段46による経時的
な分析で樹脂滞留の有無と場所とが識別される.また,
マーカー60の流速(平均流速,或いは鋼別流速)を前
記流動速度演算手段47で算出することによって、樹脂
の平均流速や,流速が遅くなっている滞留個所が演算・
判別される.勿論、この滞留は少ければ少い方が望まし
いので,成形条件演算部51によってこれに対処するチ
ャージ条件の変更がなされる. また図示していないが,測定・解析用の樹脂に、これと
同材料の着色樹脂よりなるマスターバッチを数%程度混
入し、これを前記ビデオカメラ30で撮影した画像デー
タを,前記画像濃度分布演算手段46において着色の濃
淡として計数処理すれば,可塑化の均一性などが判別で
きる.そして,例えば,所定領域内の最大濃淡差/濃度
平均値が所定範囲以下に抑まるように,前記成形条件演
算部51がこれに対処するチャージ条件の変更・設定を
行う.なお、着色剤を混入した場合は,バージング(樹
脂替,色替)時の樹脂挙動の解析にも大いに役立つこと
は言う京でもない. 以上本発明を図示した実施例によって詳述したが,当業
者には本発明の精神を逸脱しない範囲で種々の変形が可
能であり、解析演算装置43内の処理は作成されるプロ
グラムによって種々の形態をとり得る. [発明の効果] 叙上のように本発明によれば,加熱シリンダ内部の樹脂
挙動などをダイレクトに観察・解析した結果に基づく,
より理論的な成形条件の設定を可能とし,また,スクリ
ューの設計,評価にも大きぐ寄与する射出成形機におけ
る成形条件解析方法を提供でき,その産業的価値は多大
である.
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for analyzing molding conditions in an in-line screw type injection molding machine having a visualization heating cylinder, and particularly relates to a method for analyzing molding conditions in an in-line screw type injection molding machine having a visualization heating cylinder. etc. through the observation window installed in the heating cylinder.
This article relates to a molding condition analysis method for injection molding machines that analyzes molding conditions. [Prior Art] In order to consistently and consistently produce high-quality molded products in an in-line screw type injection molding machine, conditions regarding plasticization metering (charging) and injection of resin materials are essential. Of course, as a premise, the design of the screw shape is also important. (a) The composition ratio of the screw's feed zone, compression zone, and metering zone. (b) L/D L: Total length of screw D = Diameter of screw (c) Compression ratio (CR = h 1/h2) h1: Depth of screw groove in supply section h2: Depth of screw groove in metering section (M material Ratio of the amount of resin accumulated in the screw groove of the supply section and the amount of resin accumulated in the screw groove of the metering section.) (d) P/D P: Screw thread pitch D: Make sure that the screw diameter etc. The screw design is determined based on this consideration, and the quality of plasticization measurement is first determined by this. Strictly speaking, the optimal screw shape is determined for each resin to be molded, but in general, a general-purpose screw design that can be used with as many resin materials as possible is selected. That is, in (a) above, the length of the normal supply section is reduced by 50 to 60%.
Consideration was taken to stabilize the charging speed by increasing the size and to prevent the resin from being pressurized as much as possible until the temperature reaches the melting point. Shear heat generation is controlled by the length of the compression section. Also, in (b) above, when L/D is lengthened, the charge speed, resin temperature, a! L/D is usually set at 20 to 22, although this improves the stability of the kneading process and is compatible with the overall equipment. In addition, in (c) above, if low-temperature molding is required, CR is made small to suppress shear heat generation at the crosstalk section, and conversely, to increase crosstalk, CR is
is increased. Furthermore, P/D in (d) above is usually selected to a value of about 1.0 in consideration of the transfer amount and the efficiency in the molten state. In addition to this, the wall thickness and outer diameter of the heating cylinder are also important in ensuring stable transmission of heat from the heater. The screw design mentioned above is based on past experience.
Simulation calculations are performed on a computer, but as mentioned above, the screw is generally a general-purpose screw that can be applied to a wide variety of resin materials.In an in-line injection molding machine equipped with such a screw, It is extremely important to determine the molding conditions under which the equipment should be operated depending on the resin material. The molding conditions include: - Heater temperature in each zone during plasticization metering (charging). ■Measuring stroke. ■How do you vary the screw rotation speed with respect to the metering stroke? ■How to vary the back pressure with respect to the metering stroke. ■Amount of sack pack and its speed. There are factors such as ■Injection pressure during injection. ■How to vary the injection speed with respect to the injection stroke. ■ Holding pressure switching position. ■There are 6 factors to determine how to vary the holding pressure during holding pressure. [Problem to be solved by the invention] By the way, in conventional injection molding machines, it was not possible to directly see the inside of the heating cylinder. Using a method of error and error, the molded product was observed through trial shots and the molding conditions were set. In other words, since conventionally the inside of the heating cylinder cannot be observed, (a) during plasticization metering (charging), the heated resin material is heated by the heater while being transferred by the screw.
How melt plasticization progresses: how it melts and changes from a solid state to a fluid phase due to the shear force caused by screw rotation. (mouth) Uniform plasticization after becoming a fluid phase. (c) The state of the rise in resin temperature inside the heating cylinder, that is, the resin temperature distribution and the presence or absence of abnormal temperature areas. (2) Whether the gas generated when the resin is melted and plasticized is properly degassed. (e) Check whether the resin that has become a fluid phase is stagnation while flowing forward between the valleys of the screw, or the flow rate. (f) Movement of the check ring at the start of injection. (g) Uniformity of resin coloring when coloring agent is mixed. Important checkpoints such as these were completely hidden in a black box, and it was impossible to observe or measure them to determine the molding conditions. On the other hand, attempts have been made to use computer simulation calculations to determine molding conditions, but this is due to the rheological properties of plastic. Flow analysis is not easy, and access to the checkpoints mentioned above relies mostly on skill and experience. Setting the optimal molding conditions requires skill and extensive experience, and requires time and effort. It cost a lot of money. however. In the recent plastic industry, the types and formulations of resin materials are becoming more complex and sophisticated, and instead of the traditional method of setting molding conditions by trial and error, more theoretical molding conditions are being set. There is a growing momentum to seek new methods. The present invention was developed in view of the above circumstances, and its purpose is to enable more theoretical setting of molding conditions based on the results of direct observation and analysis of the resin behavior inside the heating cylinder. The purpose of this research is to provide a method for analyzing molding conditions in injection molding machines. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention includes a heating cylinder in which a screw is arranged to be rotatable and movable back and forth, and a transparent body is arranged in a part of the peripheral wall of the heating cylinder. In a method for analyzing molding conditions in an injection molding machine having a visualization heating cylinder provided with an observation window for internal observation, for example, the above II.
The surface temperature distribution data of the resin inside the heating cylinder is captured through the observation window, and image data such as resin behavior is captured through the observation window using an imaging means such as a video camera, and the captured data is transmitted to the microcomputer. For example, the temperature difference of the resin within a predetermined area, the distribution degree of the solid phase, the degree of bubble generation in the molten resin, the flow condition of the marker in the plasticized and melted resin material, etc. , the degree of coloration of the resin material, the movement of the check ring, etc. are measured and calculated, and based on this, the conditions during the plasticizing metering (charging) process and the injection process are analyzed. [Operation] The analysis calculation device consisting of a microcombiner is
The temperature data and image data captured through the system are processed using a pre-written calculation program. In other words, for example, the temperature distribution of each area is calculated to calculate the temperature gradient, detect the presence or absence of abnormal temperature areas, and also check the image density distribution (brightness, color distribution), marker flow rate (resin flow rate), etc. We perform calculation analysis of ring behavior, etc., and determine the degree of distribution of the solid phase and fluid phase, the degree of bubble generation in the molten resin, the flow condition of the marker in the resin material to be melted, the degree of coloring of the resin material, and the check ring. Compute and analyze the movement of. These calculation results are stored together with the above-mentioned setting conditions during the charging and injection strokes, the type of resin material used, the screw design, etc., and by changing the molding conditions variously, the most suitable molding conditions determined for each resin can be determined. Found out. [Example 1] The present invention will be explained below using an example shown in FIGS. 1 to 9. Figure 1 is a block diagram showing the components for analyzing molding conditions, Figure 2 is a partially cutaway front view showing the injection device of the injection molding machine, and Figure 3 is a partial view showing the main parts of the injection device. Fig. 4 is a front view of the main part cut away, and Fig. 4 is a cross-sectional side view of the main part taken in the direction perpendicular to the axial direction of the heating cylinder. First, the schematic configuration of the injection device of the injection molding machine will be explained using Fig. 2. In FIG. 2, 1 is a base, 2 is a support set on the base 1, and a headstock holding the rear end of the heating cylinder 3 is attached. Reference numeral 4 denotes a screw, which is disposed in the heating cylinder 3 so as to be able to rotate and move back and forth, and is rotationally driven by a drive source 5 for one rotation of the screw, and its forward and backward movement is controlled by a drive source 6 for injection. ing. In addition, 7 is a drive transmission mechanism disposed between the rear end of the screw 4 and both of the drive sources 5 and 6, 8 is a hopper for supplying resin material to the heating cylinder 3, and 9 is a heating cylinder 3. The band heater 10 is a nozzle attached to the tip of the heating cylinder 3. The resin material supplied from the hopper 8 to the rear part of the screw 4 in the heating cylinder 3 is kneaded and plasticized by the rotation of the screw 4 and transferred forward, and as the molten resin is stored at the tip side of the screw 4, The screw 4 retreats while the back pressure is controlled, and the screw 4
When one shot worth of molten resin is stored on the tip side of (
At the end of measurement), the rotation of screw 4 is stopped.
Then, at the injection start timing after a predetermined time, the screw 4 is advanced, and the molten resin is injected and filled from the nozzle 10 into the cavity of the mold (not shown). In this embodiment, the screw 4 is rotated in forward and reverse directions during the charging stroke (for example, the forward rotation period is 3 and the reverse rotation period is 1).
), or it is also possible to rotate the screw while vibrating during the charging process.This allows for more charging condition setting items, increasing the variety of charging conditions, and also allows fine-grained control. is possible. (For the former forward/reverse rotation charge, the applicant of the present application previously proposed the
No. 128, and regarding the latter rotating charge accompanied by vibration, Japanese Patent Application No. 1983-1, which was also proposed earlier by the applicant.
Please refer to No. 177129, respectively, if necessary. ) Next, the structure around the heating cylinder 3 will be explained with reference to FIGS. 3 and 4. As shown in FIG. 3, the rear end of the heating cylinder 3 is fixed to a headstock 11 fixed to the support base 2 via a mounting plate 12. A circular hole 13 having a circular cross section is continuously bored in the peripheral wall of the heating cylinder 3 along the axial direction from the front end side (left side in the drawing) toward the rear end side. In this embodiment, the circular hole 13 is formed so as not to be completely penetrated to the rear end side. The circular hole 13 may completely penetrate the peripheral wall of the heating cylinder 3 in the axial direction. As shown in FIG. 4, two slits 14 and 14 are formed in communication with the circular hole 13 at the top and bottom of the figure. Part 2
The two slits 14.14 are located on the extension line of the diameter of the circular hole l3, and are continuously bored along the axial direction from the front end side to the rear end side of the heating cylinder 3, like the circular hole l3. .. Note that the circular hole 13 and the slit 14 are formed by wire cutting, for example. As shown in FIGS. 3 and 4, on the outer surface side of the peripheral wall of the heating cylinder 3, a plurality of elongated tR observation windows 15 are formed along the axial direction from the outer surface of the peripheral wall to the circular hole l3 by, for example, end milling. Each hole is perforated. In this embodiment, l is provided corresponding to the feed zone, compression zone, and metering zone of the screw 4, respectively.
Three II observation windows 15 are provided, but the number of observation windows 15 is arbitrary. (This lI! inspection window l5 is formed in the non-wrapped portion of the band heater 9.) Also, on the inner surface side of the peripheral wall of the heating cylinder 3, the circular hole l3 is reached from the inner surface of the peripheral wall. Elongated notch l6 along the axial direction
However, multiple holes have been drilled. This notch 16 is bored by end milling at the same time as the 8 m window 15, for example, at a position corresponding to the observation window 15 so as to have approximately the same length in the axial direction as the observation window 15. 17 is a cylindrical glass body inserted into the circular hole 13 of the heating cylinder 3, and is made of, for example, transparent heat-resistant, high-strength, high-purity quartz glass, and its cross section matches the cross-sectional shape of the circular hole 13. It is set to do so. In this embodiment, three glass bodies 17 are sequentially inserted into the circular hole 13 from the open part on the front end side of the heating cylinder 3 with a spacer 18 interposed between the glass bodies 17, and the glass bodies 17 on the front end side are inserted in order. The end face is pressed by pressure contact means (for example, a tightening nut), not shown, via the spacer 18 as necessary. As a result, each glass body l7 is positioned and fixed without loosening in the axial direction. In this embodiment, the spacer l8 is made of an asbestos-based material with appropriate elasticity, but may also be made of a material with heat resistance and appropriate elasticity (for example, copper, brass, etc.). You can select any one from. Reference numeral 19 denotes a plurality of screw holes drilled above and below the observation window 15. As shown in FIG. 3, the screw hole 19 is formed to be perpendicular to the slit l4 and to pass through the slit portion. This screw hole l9 has a female thread carved in the inner part that penetrates the slit part, and a tightening screw (bolt) 20 is screwed and fastened into the female thread.
A force is applied in the direction of narrowing the slit 14. As a result, the inner surface of the circular hole 13 wraps around and fastens the outer circumferential surface of the glass body 17, creating a perfect seal. In this embodiment adopting the above configuration, each observation window 15
Not only can the behavior of the resin in the feed zone, combination zone, and metering zone in the heating cylinder 3 be observed through the glass body 17, but since the glass body 17 is cylindrical, the glass body 17 It functions as a convex lens, making it possible to magnify and observe the behavior of the resin, improving visibility. Furthermore, since the glass body 17 is cylindrical, even if the glass body 17 receives a pressing force against the inner surface of the outer side of the circular hole 13 due to the resin pressure inside the heating cylinder 3, the circular hole 13 Since the arcuate surfaces of the body 17 are pressed against each other, the suppressing force is dispersed, no local stress is applied to the glass body 17, and breakage of the glass body 17 is prevented as much as possible. The same applies to thermal stress and stress caused by the tightening screw 20, and the stress is almost uniformly diffused, so that the glass body 17 is guaranteed to have a long life without the risk of breakage. Furthermore, due to the sealing effect of the tightening screw 20,
There is no risk of resin leakage. In this embodiment, the cylindrical glass body 17 is used, but it may also be prismatic.
7 may be replaced with sapphire or the like. In this case, since sapphire is expensive, the observation window 15 is set small. Furthermore, although three observation windows 15 are provided in this embodiment, the number and location of the observation windows 15 are arbitrary. FIG. 1 is a block diagram mainly showing the configuration for photographing and analyzing resin behavior, resin temperature, etc. in each zone in the heating cylinder 3 through the observation window 15. In the figure, reference numeral 30 denotes a video camera equipped with a solid-state image pickup device, an image pickup tube, etc., installed opposite the observation window 15.
Reference numeral 31 designates a strobe light emitting unit which is also installed opposite the observation window 15, and is controlled to emit light by a strobe controller 32 which receives a synchronization signal from the video camera 30. The image taken by the video camera 30 is once recorded on a video table recorder (hereinafter referred to as VTR) 34, and this image data is taken into a data buffer 35 and then
The digital signal is converted into a digital signal by the /D converter 36 at an appropriate sampling rate, and sent to an analysis/arithmetic unit to be described later. In addition, 37 is the color C connected to the VTR 34.
Images taken by the video camera 30 can be checked by the operator on a monitor consisting of an RT display, if necessary. 38 is a thermovising machine installed opposite to the above-mentioned Ill inspection window 15. Equipped with a temperature detector such as HgCdTe or InSh, the temperature of the resin in contact with the observation window 15 is captured as image data and temporarily recorded on the VTR 39. and. The image data recorded on the VTR 39 is taken into the data buffer 40 and then transferred to the A/D converter 4.
The digital signal is converted into a digital signal at an appropriate sampling rate by 1, and is sent to an analysis/arithmetic unit, which will be described later. In addition, 42 is VTR394: connected color CRT
A monitor consisting of a display allows the operator to directly view the temperature distribution image captured by the thermovision 38 as necessary. Note that both the video camera 30 and the thermovision 38 have a zoom function, and may be provided with a rotating table or the like, if necessary, although not shown. Further, in this embodiment, since three observation windows 15 are provided as described above, three II
When observing the Q window 15 at the same time, the video camera 30
, thermovision 38, etc. are arranged according to this, and when observing each observation window 15 individually with a time shift, the video camera 30, thermovision 38, etc. are used for observation that requires observation. It is moved each time to a position facing window l5. 43 is an analysis calculation device for analyzing data obtained from the video camera 30 and the thermovision 38, which includes a frame buffer 44 and a temperature distribution calculation means 45.
, image density distribution calculation means 46, flow velocity calculation means 47,
Check ring behavior calculation means 48, data storage section 49,
It is equipped with a table 50, a molding condition calculating section 51, etc. From the thermovision 38, an analysis calculation device 43 is sent via a VTR 39, a data buffer 40, and an A/D converter 4l.
The image data sent to the frame buffer 44
After being stored once, the data is supplied to the temperature distribution calculation means 45, and the temperature distribution calculation means 45 calculates the resin temperature distribution in each zone within the heating cylinder 3 based on this data. Further, the temperature distribution calculating means 45 refers to the contents of the table 50 in which case study temperature distribution information is stored in advance, and determines whether the temperature of each part is within a set range and whether the temperature gradient is within an allowable range. It performs determination processing such as whether or not there is an abnormal temperature within the temperature range, or whether there is an area where abnormal temperature occurs. From the video camera 30, the VTR 34. The image data sent to the analysis calculation unit 43 via the data buffer 35 and the A/D converter 36 is similarly once stored in the frame buffer 44, and then stored in the image density distribution calculation unit 43.
6. It is supplied to the flow rate calculation means 47 and the check ring behavior calculation means 48 at predetermined timings, respectively. Image density distribution calculation means 46 calculates brightness distribution and color distribution,
The distribution degree of the same phase and fluid phase due to the difference in brightness between the solid phase (resin pellets) and the fluid phase, the degree of bubble generation due to the gas generated when the resin is melted, the distribution degree of markers mixed in the resin, the resin The degree of mixing of the colorant mixed therein is calculated by referring to the solid phase-liquid phase identification information, bubble identification information, marker identification information, coloring concentration identification information, etc. stored in advance in the table 50. .. The image density distribution calculating means 46 also refers to the permissible range information stored in the table 50 as a case study in advance, and performs a process of determining whether or not the above calculation result is within the permissible range. The flow velocity calculation means 47 processes the supplied image data of a plurality of frames, refers to the marker identification information stored in advance in the table 50, and calculates the flow velocity of the resin from the flow velocity of the marker mixed in the resin. Calculate the flow velocity for each part. This also allows you to check whether or not there are resin retention points.
Calculates and determines the retention position, size of retention area, etc. Furthermore, the flow velocity calculation means 47 uses the table 50.
It also performs determination processing such as whether the above calculation result is within the tolerance range by referring to tolerance range information stored in advance as a kesis study. The check ring behavior calculation means 48 calculates the movement of a known check ring (check valve member) attached to the distal end neck of the screw 4 from the supplied image data of a plurality of frames stored in the table 50 in advance. The calculation is performed by referring to the check ring identification information obtained. Further, the check ring behavior calculating means 48 refers to check ring behavior tolerance range information stored in advance as a case study in the table 50 to determine whether the check ring is in a predetermined operating position at a predetermined timing. Then, it also performs judgment processing such as whether the above calculation result is within the allowable range. The results of the calculations performed by the temperature distribution calculation means 45, image density distribution calculation means 46, flow rate calculation means 47, and check ring behavior calculation means 48 are taken into the data storage section 49. The data storage unit 49 also contains the details of the screw design described above regarding the used screw 4, the type of resin material used, the charge described above, and the setting conditions during the injection stroke (molding setting conditions), that is, ■Heater temperature of each zone (nozzle section, front, middle, back of cylinder, bottom of hopper). ■Measuring stroke. ■How did you vary the screw rotation speed and back pressure with respect to the metering stroke? ■Time ratio of forward/reverse rotation of the screw. ■Intensity and frequency of vibration superimposed on screw rotation. ■Amount of suckback and its speed. ■Injection pressure size and rise time. ■How the injection stroke and injection speed were varied with respect to the injection stroke. ■ Holding pressure switching position. [Phase] How was the holding pressure varied during holding pressure? This information is also stored. It should be noted that this information is achieved by input operations using a manual key device (not shown) or by supplying information from a control device 52 consisting of a microcombeater that controls the entire injection molding machine. The data storage section 49 sequentially stores the calculation results of each of the calculation means 45 to 48 described above when test shots are repeated with varying molding setting conditions. And each calculation means 45~
The above-mentioned molding conditions (1) to [phase] when the calculation results of No. 48 indicate the most preferable state are stored in a predetermined storage area as the optimum molding conditions. For example, for each shape design of the screw and heating cylinder, the resin material is sequentially changed to polycarbonate, acrylic, styrene, etc., and the charge amount for each resin material is changed by 10% between 10 and 100%. Then, the results of case studies of the above-mentioned molding conditions (1) to [phase] are stored in a predetermined storage area as the optimum molding conditions. The molding condition calculation section 5l includes a data storage section 49.
When molding a new unanalyzed resin, it calculates and sets molding conditions based on the known molding conditions of a similar resin material by referring to the optimal molding condition data for each resin stored in . Referring to the above-mentioned processing results from the image data obtained from the trial shots, the molding conditions are calculated so that the molding conditions for the unanalyzed resin approach the optimal values. The calculation results from the molding condition calculation section 51 are sent to the control device W152 of the injection molding machine described above, whereby the molding conditions can be variably set. In addition, the above-mentioned analysis calculation unit having the functional units described above! ! 43 is. It actually consists of a microcomputer, which includes various I/O interfaces, a ROM that stores the main program and fixed data, and a RAM that reads and writes various flags, measurement data, conversion processing data, etc.
It is self-evident to those skilled in the art that it is equipped with a μCPU (micro central processor unit) that controls the entire system, and that each of the above-mentioned functions is performed by a program created in advance. Further, the calculation results of the analysis calculation unit 43 can be displayed on a display device I! consisting of a color CRT display, if necessary. 53, and is sent to an output device such as a printer 54°, so that the operator can visually check the analysis results. The analysis calculation unit 43 is also connected to an external memory 55 such as a magnetic disk device, so that predetermined data can be exchanged as needed. Next, several examples of analysis methods for forming conditions will be explained with reference to Figs. 5 to 9. 5(a), (b), and (c) are explanatory diagrams showing images obtained by the video camera from the observation window 15 of the heating cylinder 3. FIG. Each of the figures shows the distribution state of the same phase and fluid phase of the resin, with a region 56 shown as a white outline representing the solid phase, and a region 57 marked with dots representing the fluid phase. In addition, all of the figures show the combination zone, and appropriate parts on the downstream side in the resin feeding direction are picked up in the order of (a), (b), and (c). In order to achieve good melting and plasticization, 100% melting must be completed at the end of the combination zone as shown in Figure (e), and the melting completion position must be stable, and the melting start position must also be stable. It is desirable that it be stable. Furthermore, it is desirable that melting progresses gradually between the melting start position and the melting completion position, without being too fast or too slow, and with a constant melting rate. Therefore, the image density distribution calculation means 46 subdivides the combination zone and refers to the ratio of the solid phase to the fluid phase in each part, and the molding condition calculation section 5l also divides the combination zone into parts and refers to the ratio of the solid phase to the fluid phase in each part. The above-mentioned molding conditions (1) to (1) are applied so that the melting start position and the melting completion position are stable, the melting is neither too early nor too slow between the two positions, and the melting rate is constant and gradually progresses. Change and adjust the necessary factors in [Phase]. FIG. 6 is a sectional view of the tip of the heating cylinder 3. In the figure, 4a is the tip head of the screw 4, 4b is the neck, 4C is a screw thread, 58 is a check ring attached to the neck 4b, and 57 is the stored molten resin (fluid phase). The inside of the heating cylinder 3 can be observed through the observation window 15 indicated by the two-dot chain line in the figure. FIG. 7 is an explanatory diagram showing an image obtained by the thermovision 38 from the observation window 15 shown in FIG. 6. In the figure, if the temperature of region Z1 is TI, the temperature of region z2 is T2, and the temperature of region Z3 is T3, then TI>T2>T
It can be seen that the temperature distribution of the stored molten resin 57 is not uniform. It is desirable that the temperature distribution of the stored molten resin 57 is uniform, and the temperature distribution calculating means 45 calculates, for example, the average temperature T awe of the entire stored molten resin region and the temperature difference range R=Tmax−T self i
n, and the molding condition calculation section 5l also calculates R/Ta.
The above-mentioned molding conditions ■ ~ [phase]
Change and adjust the necessary factors. Note that the temperature distribution is similarly observed in other observation windows 15,
If abnormally high or abnormally low temperatures occur in any part, the molding conditions will be changed to deal with this. 8 is an explanatory diagram showing an image obtained by the video camera 30 from the festival viewing window l5 shown in FIG. 6. The figure shows a known sack in which the pressure of the molten resin 57 is temporarily reduced by forcibly retracting the screw 4 by a minute amount after completion of metering in order to prevent the drooling phenomenon in which the molten resin 57 leaks from the nozzle 10. This shows an image when back control is performed. (For details on suckback control, if necessary, please refer to Japanese Patent Application No. 63-248958, which was previously proposed by the applicant.) In the figure, 59 indicates air bubbles generated by reducing the resin pressure. The image density distribution calculation means 46 calculates the degree of bubble generation. Air bubbles caused by suckback 5
9 is desirably as small as possible. For example, the molding condition calculating section 51 calculates the amount of suckback so as to stop the forced retraction of the screw 4 when even the slightest bubble 59 is generated. Note that an image indicating the degree of generation of bubbles 59 is obtained in the other observation window 15 as well. 59, and if it is determined that the deaeration is defective, the charging conditions are changed by the molding condition calculation unit 5l to deal with this. Furthermore, although not shown, the observation window l5 shown in FIG.
It is obvious that image data showing the movement of the check ring 58 can be obtained from the above, and the behavior of the check ring 58 can be determined by the check behavior calculating means 48. FIG. 9 is an explanatory diagram showing image data obtained from the observation window 15 at the center of the heating cylinder 3 by the video camera 30 when a predetermined amount of markers are mixed into the resin material (resin pellets). As a marker, a colored resin pellet having a higher melting temperature than the molding resin to be measured and analyzed, or a colored inorganic chip having approximately the same specific gravity as the molding resin is used, and this is transported from the hopper 8. For example, a small amount may be injected intermittently to capture the behavior of the marker. 9. In FIG. 9, reference numeral 60 indicates a marker mixed into the resin, and arrow A indicates the resin feeding direction, indicating that the markers 60 are almost uniformly distributed. However, the flow behavior of molten resin is complicated, and it is known from experience that resin tends to stick to the rear side of the thread 4C of the screw 4. That is, resin may sometimes remain in the region S shown by the dotted line in the figure, and in this case, the image density distribution calculation indicates that a part of the marker 60 remains without being transferred forward. The presence/absence and location of resin retention is identified by the analysis over time by the means 46. Also,
By calculating the flow velocity (average flow velocity or steel-specific flow velocity) of the marker 60 by the flow velocity calculation means 47, the average flow velocity of the resin and the retention points where the flow velocity is slow can be calculated and calculated.
It is determined. Of course, it is desirable that this retention be as small as possible, so the charging conditions are changed by the molding condition calculation unit 51 to deal with this. Although not shown, a masterbatch made of a colored resin of the same material as the resin used for measurement and analysis is mixed in a few percent, and the image data obtained by photographing this with the video camera 30 is used to obtain the image density distribution. If the calculation means 46 calculates the density of the coloring, it is possible to determine the uniformity of plasticization. Then, for example, the molding condition calculation section 51 changes and sets the charging conditions to deal with this so that the maximum density difference/density average value within a predetermined area is suppressed to a predetermined range or less. It goes without saying that if a colorant is mixed in, it will be of great help in analyzing resin behavior during barging (resin change, color change). Although the present invention has been described in detail with reference to the illustrated embodiments, those skilled in the art will be able to make various modifications without departing from the spirit of the present invention, and the processing within the analysis calculation device 43 may be modified in various ways depending on the program created. It can take any form. [Effects of the Invention] As described above, according to the present invention, based on the results of directly observing and analyzing the behavior of the resin inside the heating cylinder,
It is possible to provide a method for analyzing molding conditions in injection molding machines, which enables more theoretical setting of molding conditions and also greatly contributes to the design and evaluation of screws, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

図面は何れも本発明の1実施例に係り、第1図は成形条
件を解析するための構成を示すブロック図、第2図は射
出成形機の射出装置を示す一部切断した正面図,第3図
は射出装置の要部を示す一部切断した要部正面図,第4
図は加熱シリンダを軸方向と直交する方向で切断した要
部断側面図,第5図はビデオカメラで得られる固相一流
動相の分布状態の様子を示す説明図、第6図は加熱シリ
ンダの先端部分の断正面図,第7図はサーモビジョンで
得られる画像を示す説明図,第8図はビデオカメラで得
られる気泡の発生の様子を示す説明図、第9図はビデオ
カメラで得られるマーカーの流動・分布の様子を示す説
明図である.1・・・・・・ペース、2・・・・・・支
台,3・・・・・・加熱シリンダ,4・・・・・・スク
リュー.4a・・・・・・先端頭部.4b・・・・・・
頚部.4c・・・・・・ネジ山、5・・・・・・スクリ
ュー回転用駆動源,6・・・・・・射出用駆動源,7・
・・・・・駆動伝達機構,8・・・・・・ホッパ− 9
・・・・・・バンドヒータ,10・・・・・・ノズル.
11・・・・・・ヘッドストック.12・・・・・・取
付板.13・・・・・・円形穴.14・・・・・・スリ
ット,l5・・・・・・観察窓.16・・・・・・切欠
き.17・・・・・・ガラス体.18・・・・・・スペ
ーサ,19・・・・・・ネジ穴、20・・・・・・締付
けネジ,30・・・・・・ビデオカメラ,31・・・・
・・ストロボ発光部,32・・・・・・ストロボコント
ローラ,34・・・・・・ビデオテーブレコーダ,35
・・・・・・データバッファ、36・・・・・・A/D
変換器、37・・・・・・モニタ,38・・・・・・サ
ーモビジョン,39・.....ビデオテープレコーダ
,40・・・・・・データバツファ、4l・・・・・・
A/D変換器,42・・・・・・モニタ,43・・・・
・・解析演算装置、44・・・・・・フレームバツファ
、45・・・・・・温度分布演算手段,46・・・・・
・画像濃度分布演算手段、47・・・・・・流動速度演
算手段,48・・・・・・チェックリング挙動演算装置
、49・・・・・・データ格納部、50・・・・・・テ
ーブル、51・・・・・・成形条件演算部、52・・・
・・・射出成形機の制御装置、53・・・・・・表示装
置、54・・・・・・プリンタ、55・・・・・・外部
メモリ、56・・・・・・固相,57・・・・・・流動
相(溶融樹脂)、58・・・・・・チェックリング,5
9・・・・・・気泡、60・・・・・・マーカー 第4!! 第5図 第7図 Z2 Z3 z2
The drawings all relate to one embodiment of the present invention; FIG. 1 is a block diagram showing a configuration for analyzing molding conditions, FIG. 2 is a partially cutaway front view showing an injection device of an injection molding machine, and FIG. Figure 3 is a partially cutaway front view of the main part of the injection device, and Figure 4 is a front view of the main part showing the main part of the injection device.
The figure is a cross-sectional side view of the main part of the heating cylinder taken in a direction perpendicular to the axial direction, Figure 5 is an explanatory diagram showing the state of distribution of solid phase and fluid phase obtained with a video camera, and Figure 6 is the heating cylinder. Fig. 7 is an explanatory diagram showing the image obtained by thermovision, Fig. 8 is an explanatory diagram showing the appearance of bubbles obtained by a video camera, and Fig. 9 is an explanatory diagram showing the appearance of bubbles obtained by a video camera. This is an explanatory diagram showing the flow and distribution of markers. 1... Pace, 2... Abutment, 3... Heating cylinder, 4... Screw. 4a...Tip head. 4b...
neck. 4c... Screw thread, 5... Drive source for screw rotation, 6... Drive source for injection, 7.
...Drive transmission mechanism, 8...Hopper 9
...Band heater, 10...Nozzle.
11...Headstock. 12...Mounting plate. 13...Circular hole. 14...Slit, l5...Observation window. 16...Notch. 17... Glass body. 18... Spacer, 19... Screw hole, 20... Tightening screw, 30... Video camera, 31...
... Strobe light emitting unit, 32 ... Strobe controller, 34 ... Video table recorder, 35
...Data buffer, 36...A/D
Converter, 37...Monitor, 38...Thermovision, 39... .. .. .. .. Video tape recorder, 40...Data buffer, 4l...
A/D converter, 42...Monitor, 43...
... Analysis calculation device, 44 ... Frame buffer, 45 ... Temperature distribution calculation means, 46 ...
- Image density distribution calculation means, 47...Flow velocity calculation means, 48...Check ring behavior calculation device, 49...Data storage unit, 50... Table, 51... Molding condition calculation section, 52...
... Injection molding machine control device, 53 ... Display device, 54 ... Printer, 55 ... External memory, 56 ... Solid phase, 57 ...Fluid phase (molten resin), 58...Check ring, 5
9...Bubble, 60...Marker 4th! ! Figure 5 Figure 7 Z2 Z3 z2

Claims (6)

【特許請求の範囲】[Claims] (1)加熱シリンダ内にスクリューを回転並びに進退可
能に配設し、加熱シリンダの周壁の一部に、透光体を配
した内部観察用の観察窓を設けてなる可視化加熱シリン
ダをもつ射出成形機において、前記観察窓を通して前記
加熱シリンダ内部の樹脂の温度分布データもしくは樹脂
挙動などの画像データの少くとも一方を収集し、収集さ
れたデータに基づき可塑化計量行程時(チャージ行程時
)もしくは射出行程時の条件を解析するようにしたこと
を特徴とする可視化加熱シリンダをもつ射出成形機にお
ける成形条件解析方法。
(1) Injection molding with a visualization heating cylinder in which a screw is arranged in the heating cylinder so that it can rotate and move back and forth, and a part of the peripheral wall of the heating cylinder is provided with an observation window for internal observation with a transparent material. In the machine, at least one of the temperature distribution data of the resin inside the heating cylinder or image data such as resin behavior is collected through the observation window, and based on the collected data, the data is measured during the plasticizing metering process (during the charging process) or during the injection process. A method for analyzing molding conditions in an injection molding machine having a visualized heating cylinder, characterized in that conditions during stroke are analyzed.
(2)請求項1記載において、前記の画像データから、
溶融樹脂内の気泡の発生度合を計測・演算するようにし
たことを特徴とする可視化加熱シリンダをもつ射出成形
機における成形条件解析方法。
(2) In claim 1, from the image data,
A method for analyzing molding conditions in an injection molding machine having a visualization heating cylinder, characterized by measuring and calculating the degree of bubble generation in molten resin.
(3)請求項1記載において、可塑化溶融される樹脂材
料中にマーカーとして、該樹脂材料よりも溶融温度の高
い着色樹脂、または樹脂材料と略同程度の比重の着色無
機物からなるチップを混入し、前記マーカーの流れ具合
を前記画像データから分析して、樹脂の滞留箇所の有無
などを計測・演算するようにしたことを特徴とする可視
化加熱シリンダをもつ射出成形機における成形条件解析
方法。
(3) In claim 1, a chip made of a colored resin having a higher melting temperature than the resin material or a colored inorganic substance having approximately the same specific gravity as the resin material is mixed as a marker into the resin material to be plasticized and melted. A method for analyzing molding conditions in an injection molding machine having a visualization heating cylinder, characterized in that the flow condition of the marker is analyzed from the image data to measure and calculate the presence or absence of resin retention points.
(4)請求項1記載において、可塑化溶融される樹脂材
料中に着色剤を混入し、前記画像データから、樹脂材料
の着色度合を計測・演算するようにしたことを特徴とす
る可視化加熱シリンダをもつ射出成形機における成形条
件解析方法。
(4) The visualization heating cylinder according to claim 1, characterized in that a coloring agent is mixed into the resin material to be plasticized and melted, and the degree of coloring of the resin material is measured and calculated from the image data. Molding condition analysis method for injection molding machines with
(5)請求項1記載において、前記スクリューの先端頚
部に位置するチェックリングの動きを、前記画像データ
から計測・演算するようにしたことを特徴とする可視化
加熱シリンダをもつ射出成形機における成形条件解析方
法。
(5) Molding conditions in an injection molding machine having a visualization heating cylinder according to claim 1, wherein the movement of a check ring located at the neck of the tip of the screw is measured and calculated from the image data. analysis method.
(6)請求項1記載において、所定領域内の各部の樹脂
温度差などを計測・演算するようにしたことを特徴とす
る可視化加熱シリンダをもつ射出成形機における成形条
件解析方法。
(6) A method for analyzing molding conditions in an injection molding machine having a visualization heating cylinder according to claim 1, characterized in that resin temperature differences at various parts within a predetermined region are measured and calculated.
JP1057937A 1989-03-13 1989-03-13 Molding condition analysis method for injection molding machine with visualization heating cylinder Expired - Fee Related JPH0647266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057937A JPH0647266B2 (en) 1989-03-13 1989-03-13 Molding condition analysis method for injection molding machine with visualization heating cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057937A JPH0647266B2 (en) 1989-03-13 1989-03-13 Molding condition analysis method for injection molding machine with visualization heating cylinder

Publications (2)

Publication Number Publication Date
JPH02238917A true JPH02238917A (en) 1990-09-21
JPH0647266B2 JPH0647266B2 (en) 1994-06-22

Family

ID=13069937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057937A Expired - Fee Related JPH0647266B2 (en) 1989-03-13 1989-03-13 Molding condition analysis method for injection molding machine with visualization heating cylinder

Country Status (1)

Country Link
JP (1) JPH0647266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069143A (en) * 2004-09-06 2006-03-16 Miyoko Ichikawa Starved-state molding device and starved-state molding method
JP2008194861A (en) * 2007-02-09 2008-08-28 Japan Steel Works Ltd:The Method and device for setting temperature of cylinder of injection molding machine
JP2016083829A (en) * 2014-10-25 2016-05-19 株式会社プラスチック工学研究所 Analysis system for visualization device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910825B2 (en) * 2017-03-28 2021-07-28 住友重機械工業株式会社 Injection molding machine and evaluation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069143A (en) * 2004-09-06 2006-03-16 Miyoko Ichikawa Starved-state molding device and starved-state molding method
JP2008194861A (en) * 2007-02-09 2008-08-28 Japan Steel Works Ltd:The Method and device for setting temperature of cylinder of injection molding machine
JP2016083829A (en) * 2014-10-25 2016-05-19 株式会社プラスチック工学研究所 Analysis system for visualization device

Also Published As

Publication number Publication date
JPH0647266B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JP3423219B2 (en) Monitoring method and molding operation control device for disk substrate injection molding machine
US9724863B2 (en) Injection molding machine
JP2007160642A (en) Molding machine control system, molding machine, control apparatus, and molding machine control method
JPH02238917A (en) Analyzing method of molding condition in injection molding machine having visualized heat cylinder
JPH02255316A (en) Injection molder
KR950005721B1 (en) Method and apparatus for controlling injection molding
JPH02252519A (en) Controlling method for molding conditions in injection molding machine with visible heating cylinder
JPH0336012A (en) Method for automatically setting upper and lower limit value of molding condition of molder
US5200126A (en) Method and apparatus for monitoring the stability of the injection molding process by measurement of screw return time
Han et al. Development of stress birefringence and flow patterns during mold fillin and cooling
JPH0692103B2 (en) Molding equipment
JP2005103875A (en) Injection device, and temperature displaying method and temperature setting method thereof
JP2622925B2 (en) Injection molding method
JPH0242339B2 (en)
JP4210099B2 (en) Injection molding machine
JP2020185779A (en) Valve gate control device and injection molding machine
CN208334121U (en) A kind of novel automatic is double to survey fusion index instrument
JP6957590B2 (en) Injection molding machine and program
JP7560623B1 (en) Injection molding machine and viscosity measurement method
JPH03118132A (en) Injection molding machine
JPH10109339A (en) Molding condition setting method of injection molding machine
Han Stress birefringence patterns in molten polymers during the mold‐filling and cooling process
JPH0226724A (en) Displaying of injection characteristics of injection molding machine
WO2023228778A1 (en) Quality determination system for injection molding machine
JPH05131521A (en) Continuous measuring method for molten resin and its device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees