JPH02238682A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPH02238682A
JPH02238682A JP1057826A JP5782689A JPH02238682A JP H02238682 A JPH02238682 A JP H02238682A JP 1057826 A JP1057826 A JP 1057826A JP 5782689 A JP5782689 A JP 5782689A JP H02238682 A JPH02238682 A JP H02238682A
Authority
JP
Japan
Prior art keywords
gradient coil
coil
refrigerant container
heat
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1057826A
Other languages
Japanese (ja)
Other versions
JPH0719919B2 (en
Inventor
Michitaka Ono
通隆 小野
Tadatoshi Ota
太田 忠利
Yoshinao Sanada
真田 芳直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1057826A priority Critical patent/JPH0719919B2/en
Publication of JPH02238682A publication Critical patent/JPH02238682A/en
Publication of JPH0719919B2 publication Critical patent/JPH0719919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce intruded heat due to radiation and conduction and loss due to eddy current generated within a refrigerant container by a gradient coil by composing a part which exists between the gradient coil and a superconductive coil of two or more shielding materials consisting of materials with an improved electrical conductivity mutually coupled thermally. CONSTITUTION:A part of a thermal shield 2 which is greatly affected by a gradient coil 4, namely the part between a superconductive coil 5 and the gradient coil 4, is composed of two or more materials with improved electrical conductivity through a cylindrical electrical isolation layer. Thus, a fluctuating magnetic filed generated by the gradient coil 4 at a shielding part constituted in multiples, passing through the thermal shield 2 and reaching a refrigerant container 3, is reduced, thereby reducing loss of eddy current in the refrigerant container 3.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、MRI(磁気共鳴イメージング装置)等の超
電導マグネット用のクライオスタットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a cryostat for a superconducting magnet such as an MRI (magnetic resonance imaging apparatus).

(従来の技術) 従来、MRI等の超電導マグネットを低温に保持しかつ
、その冷媒の蒸発量を極力減らすように構成されたもの
に図3に示すようなクライオスタットがある。
(Prior Art) Conventionally, there is a cryostat as shown in FIG. 3, which is configured to maintain a superconducting magnet such as an MRI at a low temperature and reduce the amount of evaporation of its coolant as much as possible.

このクライオスタットは、冷媒への伝導及び輻射による
侵入熱を低減するために、超電導コイル5を収納する極
低温冷媒容器3と真空容器7の間に少なくとも1つの熱
ンールド2を有し、このンールドを小形冷凍機1などに
よって積極的に冷却する方法がとられている。
This cryostat has at least one thermal coil 2 between a cryogenic refrigerant container 3 housing a superconducting coil 5 and a vacuum container 7 in order to reduce heat intrusion into the refrigerant due to conduction and radiation. A method of actively cooling using a small refrigerator 1 or the like is used.

また、グラジエントコイル4は、超電導コイル5のつく
る均一磁場を傾斜磁場にし、核磁気共鳴による画像信号
を得る為にパルス的に励磁される。
Further, the gradient coil 4 turns the uniform magnetic field generated by the superconducting coil 5 into a gradient magnetic field, and is excited in a pulsed manner in order to obtain an image signal by nuclear magnetic resonance.

(発明が解決しようとする課題) しかしながら、前記の構造では、輻射及び伝導による侵
入熱は低減できるものの、グラジェントコイル4によっ
て生じる変動磁界か、冷媒容器3に渦電流を発生させ、
この損失か非常に大きいという欠点を有する。
(Problems to be Solved by the Invention) However, with the above structure, although the intrusion heat due to radiation and conduction can be reduced, the fluctuating magnetic field generated by the gradient coil 4 or eddy currents are generated in the refrigerant container 3.
This has the disadvantage that the loss is very large.

本発明は、輻射及び伝導による侵入熱を低減するだけで
はなく、グラジエントコイルによって冷媒容器に発生す
る渦電流による損失も低減できるクライオスタットを提
供することを目的とする。
An object of the present invention is to provide a cryostat that can not only reduce heat intrusion due to radiation and conduction, but also reduce loss due to eddy currents generated in a refrigerant container by a gradient coil.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明のクライオスタントは、熱ンールドのうち少なく
ともグラジエントコイルの影響を強く受ける部分、即ち
超電導コイルとグラジエントコイルの間に存在するシー
ルドを2重あるいは多重に構成する。ただし、上記多重
のシールド部は熱的には互いに結合したものとする。
(Means for Solving the Problems) The cryostunt of the present invention has a double or multiple shield that exists between the superconducting coil and the gradient coil, which is at least a part of the thermal rolling that is strongly affected by the gradient coil. . However, it is assumed that the multiple shield parts are thermally coupled to each other.

(作 用) このようにすると、多重に構成されたシールド部により
、グラジエントコイルが発生する変動磁界の内、熱シー
ルドを突き抜け冷媒容器に達する分が減少し、冷媒容器
での渦電流損が減少する。
(Function) By doing this, the multi-layered shield section reduces the amount of the fluctuating magnetic field generated by the gradient coil that penetrates the heat shield and reaches the refrigerant container, reducing eddy current loss in the refrigerant container. do.

(実施例) 以下、本発明によるクライオスタットの一実施例につい
て第1図を参照して説明する。
(Example) Hereinafter, an example of the cryostat according to the present invention will be described with reference to FIG.

第1図は、熱シールド2のうち、グラジエントコイル4
と超電導コイル5の間に存在する部分を2重とした場合
の概略構成図であって、図中1は単段式の冷凍機である
か、2段以上の冷凍機の場合も同様である。いいかえれ
ば、熱ンールド2か2段以上の場合も同様である。熱ン
ールド2は銅やアルミニウムの板でつくる。クノ〜ンー
ル1・2の前記部分を多重にすることで、従来の熱シー
ルドに比べ、冷媒容器3への洩れ磁束を少なくすること
ができる。
FIG. 1 shows the gradient coil 4 of the heat shield 2.
This is a schematic configuration diagram when the portion existing between the superconducting coil 5 and the superconducting coil 5 is doubled, and 1 in the figure is a single-stage refrigerator, or the same applies to a refrigerator with two or more stages. . In other words, the same applies to the case of two or more stages of heat rolling. Heat rolled 2 is made of copper or aluminum plate. By multiplexing the portions of the Kno-Nurs 1 and 2, leakage magnetic flux to the refrigerant container 3 can be reduced compared to conventional heat shields.

すなわち、熱シール1・2の内、グラジエン1・コイル
4側に配置された部分にグラジエン1・コイル4の発生
する磁束か抜けると、この磁束の変化を打ち消す様な渦
電流が生じる。この渦7B流により、熱シールド2にシ
ュール発熱による熱負荷か加わることになる。同時に、
この渦電流により、熱ンルド2のグラジエントコイル4
側に配置された部分を通り抜ける磁束がある程度減少す
る。熱シールド2の前記部分を通り抜けた磁束はさらに
熱シールト2の超電導コイル5側に配置された部分で渦
電流を発生させ、さらに弱められる。前記熱シールド2
の各々の部分て発生ずるジュール熱は、熱シールド2の
各部分が熱的に結合しているため、冷凍機1のコールド
ヘッドによって共通に冷却される。このことは、冷凍機
1の段数に関係なく、熱シールドの枚数を選択できるこ
とを意味し、冷媒容器3に達する磁束が許容値以下にな
るようにその枚数を選ぶことができる。
That is, when the magnetic flux generated by the gradient 1 and coil 4 passes through the portion of the heat seals 1 and 2 that is disposed on the gradient 1 and coil 4 side, an eddy current is generated that cancels the change in the magnetic flux. This vortex 7B flow causes a heat load due to surreal heat generation to be applied to the heat shield 2. at the same time,
This eddy current causes the gradient coil 4 of the heat coil 2 to
The magnetic flux passing through the side-located parts is reduced to some extent. The magnetic flux passing through the portion of the heat shield 2 further generates an eddy current in a portion of the heat shield 2 disposed on the superconducting coil 5 side, and is further weakened. The heat shield 2
The Joule heat generated in each part of the heat shield 2 is cooled in common by the cold head of the refrigerator 1 because each part of the heat shield 2 is thermally coupled. This means that the number of heat shields can be selected regardless of the number of stages of the refrigerator 1, and the number can be selected so that the magnetic flux reaching the refrigerant container 3 is below the allowable value.

(他の実施例) 図1で多エにしたシールド2を図2に示すように層間を
電気的に絶縁した多層のシールドにした場合もほぼ同様
の効果がある。
(Other Embodiments) Almost the same effect can be obtained when the shield 2 shown in FIG. 1 is made into a multilayer shield with electrical insulation between the layers as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、MR
1等のタライオスタットにおいて、伝導、輻射等の定常
的な侵入熱はもちろんのこと、グラジエントコイルを印
加した場合に冷媒容器に発生する渦電流損失を小さくお
さえることができ、その結果として、冷媒の蒸発量の少
ないタライオスタットを提供することができる。
As is clear from the above description, according to the present invention, MR
In a first-class taliostat, it is possible to suppress not only constant heat intrusion such as conduction and radiation, but also eddy current loss that occurs in the refrigerant container when a gradient coil is applied, and as a result, the refrigerant It is possible to provide thaliostat with low evaporation amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のタライオスタッ1・の断面
図、第2図は他の実施例の要部断面図、第3図は従来の
クライオスタツ1・の概略構成図である。 1・・小形冷凍機  2・・・熱シールド3・・・冷媒
容器   4・・・グラジエン1・コイル5・・超電導
コイル 9・・絶縁層 代理人 弁理士 則 近 憲 佑 同    弟子丸   健 特開乎 手 続 補 正 書 (自発) 平成 年
FIG. 1 is a sectional view of a cryostat 1 according to an embodiment of the present invention, FIG. 2 is a sectional view of a main part of another embodiment, and FIG. 3 is a schematic diagram of a conventional cryostat 1. 1...Small refrigerator 2...Heat shield 3...Refrigerant container 4...Gradien 1 Coil 5...Superconducting coil 9...Insulating layer agent Patent attorney Noriyuki Ken Yudo Ken Deshimaru Procedural amendment (voluntary) 1998

Claims (1)

【特許請求の範囲】[Claims] 超電導コイルを収納する極低温冷媒容器と、この容器を
取り囲むように配置された熱シールドと真空容器とを備
え、グラジエントコイルに対向して配置されるクライオ
スタットにおいて、熱シールドのうち少なくともグラジ
エントコイルと超電導コイルの間に存在する部分を熱的
には互いに結合された2枚以上のシールド材で構成した
ことを特徴とするクライオスタット。
In a cryostat that is equipped with a cryogenic refrigerant container that houses a superconducting coil, a heat shield and a vacuum container that are arranged so as to surround this container, and is arranged opposite to a gradient coil, at least the gradient coil and the superconductor of the heat shield are arranged. A cryostat characterized in that the portion between the coils is composed of two or more shielding materials that are thermally bonded to each other.
JP1057826A 1989-03-13 1989-03-13 Cryostat Expired - Lifetime JPH0719919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057826A JPH0719919B2 (en) 1989-03-13 1989-03-13 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057826A JPH0719919B2 (en) 1989-03-13 1989-03-13 Cryostat

Publications (2)

Publication Number Publication Date
JPH02238682A true JPH02238682A (en) 1990-09-20
JPH0719919B2 JPH0719919B2 (en) 1995-03-06

Family

ID=13066731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057826A Expired - Lifetime JPH0719919B2 (en) 1989-03-13 1989-03-13 Cryostat

Country Status (1)

Country Link
JP (1) JPH0719919B2 (en)

Also Published As

Publication number Publication date
JPH0719919B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US6995562B2 (en) Conduction cooled passively-shielded MRI magnet
US8162037B2 (en) Device for generating a pulsed magnetic field
US4968961A (en) Superconducting magnet assembly with suppressed leakage magnetic field
JPS63311707A (en) Magnetic coil device of neuclair magnetic resonance tomography equipment
JPH01169907A (en) Magnet apparatus of superconducting neuclear magnetic resonance tomographer
Rybakov et al. 1.5 T cryogen free superconducting magnet for dedicated MRI
US8171741B2 (en) Electrically conductive shield for refrigerator
US4990878A (en) Superconducting magnet device
JP3824412B2 (en) Superconducting magnet device for crystal pulling device
US20050253583A1 (en) Magnet system with shielded regenerator housing
JPH02238682A (en) Cryostat
Iwashita et al. Magnetic Field Shielding With Superconductors
JPH0582333A (en) Nuclear magnetic resonance diagnosing apparatus
JPH04237105A (en) Superconducting electromagnet
JPH11155831A (en) Passive shield type superconductive magnet
WO2013150951A1 (en) Superconductor electromagnet and magnetic resonance imaging device
JPH10116725A (en) Superconducting magnet device
Xu et al. A cryogen-free superconducting magnet with 95 cm warm bore for whole body MRI
JPS6229113A (en) Superconducting device
JPH0323840A (en) Superconductive magnet for mri apparatus
JPH0622168B2 (en) Radiant shield
JPH0510335Y2 (en)
JPH0137841B2 (en)
US5057645A (en) Low heat loss lead interface for cryogenic devices
JP2001068328A (en) Superconducting electromagnet device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 15