JPH02238376A - Probe for measuring electric field - Google Patents

Probe for measuring electric field

Info

Publication number
JPH02238376A
JPH02238376A JP1057790A JP5779089A JPH02238376A JP H02238376 A JPH02238376 A JP H02238376A JP 1057790 A JP1057790 A JP 1057790A JP 5779089 A JP5779089 A JP 5779089A JP H02238376 A JPH02238376 A JP H02238376A
Authority
JP
Japan
Prior art keywords
probe
electro
film
electric field
optic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1057790A
Other languages
Japanese (ja)
Other versions
JP2588965B2 (en
Inventor
Tadao Nagatsuma
忠夫 永妻
Eiichi Sano
栄一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1057790A priority Critical patent/JP2588965B2/en
Publication of JPH02238376A publication Critical patent/JPH02238376A/en
Application granted granted Critical
Publication of JP2588965B2 publication Critical patent/JP2588965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To measure an object operating at a high speed, with high sensitivity, high spatial resolution and excellent reproducibility, by a construction wherein a probe is shaped in a thin disk having a small projecting part and a thin-film electrooptic crystal on a part of which a dielectric reflecting film is formed by coating is fixed on the fore-end face of the projecting part. CONSTITUTION:A probe 5 is formed in the shape of a thin disk which has a small projecting part and is provided with a reflection preventing film 4 on the surface, and an electrooptic crystal 2 on the central part of which a dielectric reflecting film 3 is formed by coating is fixed on the fore-end face of the projecting part located on the other surface parallel to said surface. The probe is supported by a probe supporting jig 7 when high precision in the degree of parallelism and can be brought near sufficiently to a circuit 8 to be measured, while an objective lens for a trigger light is dispensed with. Accordingly, it is possible to bring the film 3 near remarkably to the circuit 8, such as LSI, operating at an ultra-high speed and thereby to measure an electric field with high sensitivity, high spatial resolution and excellent reproducibility.

Description

【発明の詳細な説明】 [従来の技術] 集積回路やデバイスの評価および試験を非接触で行なう
手段として、電気光学結晶を電界測定プローブに用いる
方法が知られている。すなわち、該電気光学結晶を被測
定回路の近傍に配置し、被測定回路からの電気信号や電
界を電気光学結晶に結合させ、該結晶にパルスレーザ光
をサンプリング光として照射すると、電気信号あるいは
電界の大きさに応じて照射した光の偏光状態が変化する
という原理を利用するものである。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] A method of using an electro-optic crystal as an electric field measurement probe is known as a means for non-contact evaluation and testing of integrated circuits and devices. That is, when the electro-optic crystal is placed near the circuit under test, an electric signal or electric field from the circuit under test is coupled to the electro-optic crystal, and the crystal is irradiated with pulsed laser light as sampling light, the electric signal or electric field is This method utilizes the principle that the polarization state of the irradiated light changes depending on the size of the irradiated light.

このためのプローブとして、従来、第4図に示すように
、長さ約10ミリメートル、直径数ミリメートルの細い
円柱状の透明支持捧(例えば石英捧)の一端に、表面全
面に誘電体反射膜を蒸着した電気光学結晶を貼り付け、
先端を数十マイクロメートル角のピラミッド状に研磨加
工した構造のものを用いている。
Conventionally, as a probe for this purpose, as shown in Fig. 4, a dielectric reflective film is coated on one end of a thin cylindrical transparent support pole (for example, a quartz pole) with a length of about 10 mm and a diameter of several millimeters. Paste the vapor-deposited electro-optic crystal,
It uses a structure whose tip is polished into a pyramid shape several tens of micrometers square.

しかしながら、従来の構造のものでは次に述べるような
問題があり、その解決を要する課題があった・ [発明が解決しようとする課題] 第4図(.)の構造のプローブは、主として以下に述べ
るような4つの大きな問題点を有している。
However, the conventional structure has the following problems, which need to be solved. [Problems to be solved by the invention] The probe with the structure shown in Figure 4 (.) mainly has the following problems. It has four major problems as described below.

まず第1に,プローブ先端面が数十マイクロメートル角
になるように支持体の側面を斜めに研磨しているために
,同図(b)に示すように対物レンズを通してプローブ
上方から被測定回路を観察することが難しく、プローブ
を被測定片路に対し精度良く位置合わせすることができ
ない.第2の問題点として、上記原理に基づく光学的な
測定においては、同図(b)に示すように、被測定回路
上に形成された光電変換素子にトリガ光と呼ばれる別の
レーザ光を照射することにより電気信号を生成してデバ
イスや集積回路に与え、その応答をサンプリング光によ
って測定するという方法がしばしば用いられるが、この
構造のプローブを用いた場合、対物レンズをさらにもう
1つ用意して,斜め方向から該光電変換素子に照射しな
ければならない。また場合によっては上記トリガ光の照
射位置をwA察するための光学系も必要となるため全体
としての光学系が著しく複雑になる。
First of all, because the side surface of the support is obliquely polished so that the tip surface of the probe is several tens of micrometers square, the circuit under test is viewed from above the probe through the objective lens, as shown in Figure (b). It is difficult to observe and it is not possible to precisely align the probe with respect to the single path to be measured. The second problem is that in optical measurements based on the above principle, a separate laser beam called a trigger light is irradiated onto the photoelectric conversion element formed on the circuit under test, as shown in FIG. A method is often used in which an electrical signal is generated and applied to a device or integrated circuit, and the response is measured using sampling light. However, when using a probe with this structure, an additional objective lens is required. Therefore, the photoelectric conversion element must be irradiated from an oblique direction. Further, in some cases, an optical system for detecting the irradiation position of the trigger light wA is also required, which makes the optical system as a whole extremely complicated.

次に第3の問題点は、電気光学結晶の誘電体コーティン
グ面と被測定回路との並行度がとれにくい構造になって
いることである。十分な測定感度を得るためにはプロー
ブと被測定回路との離間距離を数マイクロメートルまで
短くする必要があるが、両者の平行度が悪いと結晶端部
を被測定回路に接触させ回路を破壊する可能性が大きい
。被測定回路の方の僅かな傾きはステージ側のあおり調
整をすれば容易に修正できる.しかしながら、ブローブ
支持にまであおり機構を設けるとサンプリング光が誘電
体コーティング面で反射して戻る方向が調整毎に変わる
ため反射光の検出が煩わしくなる。したがってプローブ
の結晶表面は常に水平な状態に固定しておくことが望ま
しいが、棒状のプローブ構造では水平に固定するための
支持が容易ではない. さらに、第4の問題点としてプローブの全体長が比較的
大きくなるため、倍率の大きな対物レンズを使用できな
いことが挙げられる。測定の空間分解能を向上させるた
めには倍率の大きな対物レンズを用いてビームを絞りこ
む必要があるが、一般に倍率が高くなると焦点距離が減
少し、レンズと被測定回路との間隙は広くできない。し
たがって棒状の構造のプローブは高空間分解能の測定に
は適していないなどの問題があった。
The third problem is that the structure makes it difficult to maintain parallelism between the dielectric coating surface of the electro-optic crystal and the circuit to be measured. In order to obtain sufficient measurement sensitivity, it is necessary to shorten the distance between the probe and the circuit under test to a few micrometers, but if the parallelism between the two is poor, the crystal end may come into contact with the circuit under test and destroy the circuit. There is a high possibility that it will. A slight tilt on the side of the circuit under test can be easily corrected by adjusting the tilt on the stage side. However, if the probe support is provided with a tilting mechanism, the direction in which the sampling light is reflected from the dielectric coating surface and returned changes with each adjustment, making detection of the reflected light cumbersome. Therefore, it is desirable to always fix the crystal surface of the probe in a horizontal state, but with a rod-shaped probe structure, it is not easy to support it to fix it horizontally. Furthermore, a fourth problem is that since the overall length of the probe is relatively large, an objective lens with a large magnification cannot be used. In order to improve the spatial resolution of measurements, it is necessary to focus the beam using an objective lens with high magnification, but generally speaking, as the magnification increases, the focal length decreases, making it impossible to widen the gap between the lens and the circuit under test. Therefore, there are problems in that the rod-shaped probe is not suitable for measurements with high spatial resolution.

本発明は以上の問題点を解決し、サンプリング光とトリ
ガ光の両者の照射を容易に行なうことができ,かつその
照射位置を容易にwA察することができ、また被測定回
路を破壊することなくプローブを近づけることが可能で
、しかも対物レンズと被測定回路との作動距離が狭くて
も使用可能なプローブ構造を有して、すなわちこれによ
り、超高速で動作する集積回路あるいはデバイスを高感
度、高空間分解能でかつ再現性良く測定し得るプローブ
構造を提供することを目的とする。
The present invention solves the above problems, makes it possible to easily irradiate both sampling light and trigger light, easily detect the irradiation position, and without destroying the circuit under test. It has a probe structure that allows the probe to be brought close and can be used even if the working distance between the objective lens and the circuit under test is narrow. The purpose of the present invention is to provide a probe structure that can perform measurements with high spatial resolution and good reproducibility.

[課題を解決するための手段] 上記の目的を達成するため、本発明では電界測定用プロ
ーブとして、薄い円盤状の透明な材料の基板と薄膜電気
光学結晶とを有し、上記基板の一方の面には反射防止膜
を施し、他方の面には中央部に微小突起を設け、該突起
の先端面と基板の面とを平行にし、かつ該突起の先端面
に同じ形状の上記薄膜電気光学結晶を固定し,その表面
の一部に誘電体反射膜をコーティングした構造を備える
こととした。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an electric field measurement probe that has a thin disc-shaped substrate made of a transparent material and a thin film electro-optic crystal, and one of the substrates is made of a transparent material. An anti-reflection film is applied to one surface, a micro protrusion is provided in the center of the other surface, the tip surface of the protrusion is made parallel to the surface of the substrate, and the thin film electro-optic film having the same shape is placed on the tip surface of the protrusion. We decided to provide a structure in which a crystal is fixed and a portion of its surface is coated with a dielectric reflective film.

[作 用] プローブ全体を小さな突起部を含む薄い円盤状にするこ
とが、作動距離の短い高倍率の対物レンズの使用を可能
にし、これにより、照射する光のビーム径が小さくでき
て空間分解能の向上をもたらす. また円盤状基板と突起部分とを同時に形成することが可
能で、これにより、突起の先端に貼り付けて固定される
電気光学結晶面と基板面との平行度を精度良く出すこと
が可能となる。その結果、本プローブが通常の円盤状の
レンズやミラーを固定するホルダと同様の治具で固定で
きる構造となっていることとあいまって、プローブ結晶
表面を極めて水平な状態に固定することができ、測定の
際プローブを被測定回路に近接させても接触して破壊す
る危険性はなくなる。
[Function] Making the entire probe into a thin disk shape with small protrusions makes it possible to use a high-magnification objective lens with a short working distance, which reduces the beam diameter of the irradiated light and improves spatial resolution. This results in an improvement in In addition, it is possible to form the disk-shaped substrate and the protrusion at the same time, which makes it possible to accurately achieve parallelism between the electro-optic crystal surface that is attached and fixed to the tip of the protrusion and the substrate surface. . As a result, this probe has a structure that allows it to be fixed with a jig similar to the holder used to fix ordinary disk-shaped lenses and mirrors, and the probe crystal surface can be fixed in an extremely horizontal state. Even if the probe is brought close to the circuit under test during measurement, there is no risk of damage due to contact.

また電気光学結晶の表面の一部に反射膜を施すことが,
1つの対物レンズのみでサンプリング光を該反射膜に、
トリガ光はその周辺を通して被測定回路上に形成された
光電変換素子に各々照射することを可能にし,合わせて
同じ対物レンズによりこれら2つの光の照射位置をil
l察することも可能にし、光学系を簡単化するものであ
る。
In addition, applying a reflective film to a part of the surface of the electro-optic crystal
Sampling light is directed to the reflective film using only one objective lens,
The trigger light makes it possible to irradiate each photoelectric conversion element formed on the circuit under test through its periphery, and the same objective lens illuminates the irradiation position of these two lights.
This also makes it possible to observe the optical system and simplify the optical system.

[実施例] 第1図は本発明の実施例を示す説明図である。[Example] FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

また第3図は本発明の使用例を示す説明図である.両図
において、1は透明支持体、2は電気光学結晶、3は誘
電体反射膜、4は反射防止膜、5はプローブ、6は対物
レンズ、7はブローブ支持用治具、8は被測定回路、9
はステージである。
Moreover, FIG. 3 is an explanatory diagram showing an example of use of the present invention. In both figures, 1 is a transparent support, 2 is an electro-optic crystal, 3 is a dielectric reflective film, 4 is an antireflection film, 5 is a probe, 6 is an objective lens, 7 is a jig for supporting the probe, and 8 is a measured object. circuit, 9
is the stage.

透明支持体1は、全体として薄い円盤状の基板の中央部
に突起部を設けた構造となっており、該支持体の材料は
例えば合成石英である.該基板の一方の面は光学研磨し
た後、使用する光の波長に対し反射を防止するための誘
電体膜4が施されている。他方の面の中央には該基板面
と先端面が平行な微小突起が設けられ、該突起の先端面
には同じ形状の薄膜電気光学結晶2(例えばLiTaO
3あるいはa aA s)が貼りあわされている。
The transparent support 1 has a structure in which a protrusion is provided in the center of a thin disk-shaped substrate as a whole, and the material of the support is, for example, synthetic quartz. One surface of the substrate is optically polished and then coated with a dielectric film 4 to prevent reflection of the wavelength of light used. At the center of the other surface, a microprotrusion whose tip surface is parallel to the substrate surface is provided, and at the tip surface of the protrusion, a thin film electro-optic crystal 2 (for example, LiTaO) of the same shape is provided.
3 or a aA s) are pasted together.

実際の測定においては、結晶の光軸や他の結晶軸方向が
被測定回路のパターンに対してどのような位置関係にな
っているかが重要である。したがって,突起部の先端面
および結晶表面の形状は電気光学結晶2の光軸あるいは
結晶軸方向を明示するために正四角形とし、特定の1辺
に対し光軸あるいは結晶軸が垂直ないし45度であるこ
とが望ましい.第2図(a)および(b)は電気光学結
晶としてL i T a○,あるいはG a A sを
用いた場合の具体的な光軸および結晶軸の方向を示した
ものである。
In actual measurements, it is important to determine the positional relationship of the optical axis of the crystal and other crystal axis directions with respect to the pattern of the circuit to be measured. Therefore, the shape of the tip surface of the protrusion and the crystal surface is a regular square in order to clearly indicate the optical axis or crystal axis direction of the electro-optic crystal 2, and the optical axis or crystal axis is perpendicular to or at an angle of 45 degrees to one specific side. It is desirable that there be one. FIGS. 2(a) and 2(b) show specific directions of optical axes and crystal axes when L i T a○ or G a As is used as an electro-optic crystal.

電気光学結晶2の表面には、使用するレーザ光を反射す
るための誘電体多層膜からなる高反射膜3が部分的に施
されている。該反射膜は照射するレーザ光のビーム径よ
り十分大きいことが望ましい.また、第2図のように、
該反射膜の形状を正四角形にして,特定の1辺に対し光
軸あるいは結晶軸が垂直ないし45度であるようにする
ことにより電気光学結晶の光軸あるいは結晶軸を表わす
こともできる。
A high reflection film 3 made of a dielectric multilayer film for reflecting the laser light used is partially applied to the surface of the electro-optic crystal 2. It is desirable that the reflective film has a diameter sufficiently larger than the beam diameter of the laser beam to be irradiated. Also, as shown in Figure 2,
The optical axis or crystal axis of the electro-optic crystal can also be expressed by making the shape of the reflective film a regular square and making the optical axis or crystal axis perpendicular to 45 degrees to one particular side.

本プローブは通常のレンズやミラーと同じ円盤構造にな
っているため、第3図の使用例に示すように,一般に広
く用いられているレンズホルダやミラーホルダと同様の
治具を用いることにより簡単に支持、固定ができ、交換
も容易である。また、同様の治具で固定すれば結晶表面
をステージ9に対して平行に設定することも容昌である
。実際の測定においては同図に示すように,サンプリン
グ光は対物レンズ6によりプローブ先端の反射膜3に集
光され、トリガ光の方は同じ対物レンズ6により反射膜
3の周辺部分を通過してブローブ下の被測定回路8に集
光される。また、レーザ光の照射位置の観察も同じ対物
レンズによって行なうことができる。
Since this probe has the same disk structure as a normal lens or mirror, it can be easily used with a jig similar to a commonly used lens holder or mirror holder, as shown in the usage example in Figure 3. It can be supported and fixed, and it is easy to replace. It is also possible to set the crystal surface parallel to the stage 9 by fixing it with a similar jig. In actual measurement, as shown in the figure, the sampling light is focused on the reflective film 3 at the tip of the probe by the objective lens 6, and the trigger light is focused through the peripheral part of the reflective film 3 by the same objective lens 6. The light is focused on the circuit under test 8 below the probe. Furthermore, the irradiation position of the laser beam can also be observed using the same objective lens.

[発明の効果] 本発明により、1つの対物レンズのみでサンプリング光
とトリガ光の照射が同時に行なえるとともに.その照射
位置のa察も同じレンズを用いて容易に行なうことが可
能となるため、光学系が極めて簡単化できる.また、プ
ローブの支持が容易な構造になっていることから被測定
回路を破壊することなくプローブを近づけることが可能
となり、測定の感度および再現性の向上が図れる。さら
に、ブローブ全体の厚さが薄いことから、焦点距離の短
い高倍率レンズが使用できるため、測定の高空間分解能
化が図れる.
[Effects of the Invention] According to the present invention, sampling light and trigger light can be irradiated simultaneously using only one objective lens. Since the irradiation position can be easily detected using the same lens, the optical system can be extremely simplified. Furthermore, since the structure allows the probe to be easily supported, it is possible to bring the probe close to the circuit under test without destroying it, thereby improving measurement sensitivity and reproducibility. Furthermore, since the overall thickness of the probe is thin, a high magnification lens with a short focal length can be used, allowing for high spatial resolution of measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す説明図,第2図は本発明
における電気光学結晶の光軸および結晶軸の方向を示す
説明図、第3図は本発明の使用例を示す説明図、第4図
は従来のプローブ構造、およびその使用例を示す説明図
である。 (符号の説明) 1・・・透明支持体    2・・・電気光学結品3・
・・誘電体反射膜   4・・・反射防止膜5・・・プ
ローブ 6・・・対物レンズ 7・・・プローブ支持用治具 8・・・被測定回路 9・・・ステージ
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the direction of the optical axis and crystal axis of an electro-optic crystal in the present invention, and FIG. 3 is an explanatory diagram showing an example of use of the present invention. , FIG. 4 is an explanatory diagram showing a conventional probe structure and an example of its use. (Explanation of symbols) 1...Transparent support 2...Electro-optical component 3.
...Dielectric reflective film 4...Anti-reflection film 5...Probe 6...Objective lens 7...Probe support jig 8...Circuit under test 9...Stage

Claims (1)

【特許請求の範囲】[Claims] 透明な材料に固定した電気光学結晶を有して、該電気光
学結晶を被測定電気回路の近傍に配置し、上記材料を介
して該電気光学結晶に光を照射し、被測定電気回路の電
界を検出する電界測定用プローブにおいて、薄い円盤状
の透明な材料の基板と薄膜電気光学結晶とを有し、上記
基板の一方の面には反射防止膜を施し、他方の面には中
央部に微小突起を設け、該突起の先端面と基板の面とを
平行にし、かつ該突起の先端面に同じ形状の上記薄膜電
気光学結晶を固定し、その表面の一部に誘電体反射膜を
コーティングした構造を備えることを特徴とする電界測
定用プローブ。
An electro-optic crystal is fixed to a transparent material, the electro-optic crystal is placed near an electrical circuit to be measured, and light is irradiated to the electro-optic crystal through the material to measure the electric field of the electrical circuit to be measured. The electric field measuring probe for detecting electric field has a thin disk-shaped substrate made of a transparent material and a thin film electro-optic crystal, and one surface of the substrate is coated with an anti-reflection coating, and the other surface is coated with an anti-reflection coating in the center. A microprotrusion is provided, the tip surface of the protrusion is made parallel to the surface of the substrate, the thin film electro-optic crystal having the same shape is fixed to the tip surface of the protrusion, and a part of the surface is coated with a dielectric reflective film. An electric field measurement probe characterized by having a structure.
JP1057790A 1989-03-13 1989-03-13 Electric field measurement probe Expired - Fee Related JP2588965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057790A JP2588965B2 (en) 1989-03-13 1989-03-13 Electric field measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057790A JP2588965B2 (en) 1989-03-13 1989-03-13 Electric field measurement probe

Publications (2)

Publication Number Publication Date
JPH02238376A true JPH02238376A (en) 1990-09-20
JP2588965B2 JP2588965B2 (en) 1997-03-12

Family

ID=13065682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057790A Expired - Fee Related JP2588965B2 (en) 1989-03-13 1989-03-13 Electric field measurement probe

Country Status (1)

Country Link
JP (1) JP2588965B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592101A (en) * 1992-07-24 1997-01-07 Hamamatsu Photonics K.K. Electro-optic apparatus for measuring an electric field of a sample
US5677635A (en) * 1993-11-22 1997-10-14 Fujitsu Limited Voltage and displacement measuring apparatus and probe
KR100826764B1 (en) * 2006-12-08 2008-04-30 동부일렉트로닉스 주식회사 Cmos image sensor test adapter within probe card
WO2017159869A1 (en) * 2016-03-17 2017-09-21 株式会社Soken Electromagnetic field imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592101A (en) * 1992-07-24 1997-01-07 Hamamatsu Photonics K.K. Electro-optic apparatus for measuring an electric field of a sample
US5677635A (en) * 1993-11-22 1997-10-14 Fujitsu Limited Voltage and displacement measuring apparatus and probe
US5999005A (en) * 1993-11-22 1999-12-07 Fujitsu Limited Voltage and displacement measuring apparatus and probe
KR100826764B1 (en) * 2006-12-08 2008-04-30 동부일렉트로닉스 주식회사 Cmos image sensor test adapter within probe card
WO2017159869A1 (en) * 2016-03-17 2017-09-21 株式会社Soken Electromagnetic field imaging device
JPWO2017159869A1 (en) * 2016-03-17 2019-02-14 株式会社Soken Electromagnetic field imaging device
US10845402B2 (en) 2016-03-17 2020-11-24 National Institute Of Information And Communications Technology Electromagnetic field imaging device

Also Published As

Publication number Publication date
JP2588965B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US5469259A (en) Inspection interferometer with scanning autofocus, and phase angle control features
US3885875A (en) Noncontact surface profilometer
US6724475B2 (en) Apparatus for rapidly measuring angle-dependent diffraction effects on finely patterned surfaces
US20120320380A1 (en) Test device for testing a bonding layer between wafer-shaped samples and test process for testing the bonding layer
JPS6149602B2 (en)
EP0396409A2 (en) High resolution ellipsometric apparatus
CN110702614B (en) Ellipsometer device and detection method thereof
JPS5862507A (en) Method of determining shape of surface in interferential form
JPH0554902B2 (en)
JP2003050185A (en) Method for absolute calibration of interferometer
KR101036455B1 (en) Ellipsometer using Half Mirror
JP2588965B2 (en) Electric field measurement probe
KR100205671B1 (en) Apparatus and method for measuring optical anisotropy
EP0128183A1 (en) Inspection apparatus and method.
JPS62212507A (en) Probe type surface shape detector requiring no calibration by laser interferometer
JPS6024401B2 (en) How to measure the physical constants of a measured object
KR0138721B1 (en) Tube inner surface measuring method and apparatus
JPH0843499A (en) Electric-field sensor for tip-type circuit test and its electric-field detection method
JP3381018B2 (en) Electric field detector
JPH04127004A (en) Ellipsometer and its using method
Talim Measurement of the refractive index of a prism by a critical angle method
JP2000205998A (en) Reflection eccentricity measuring apparatus
JPH0694760A (en) Eo probe
RU2158897C1 (en) Method testing thickness of film in process of its deposition and device for its realization
JP2742143B2 (en) Manufacturing method of electric field measurement probe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees