JPH0223813Y2 - - Google Patents

Info

Publication number
JPH0223813Y2
JPH0223813Y2 JP15023684U JP15023684U JPH0223813Y2 JP H0223813 Y2 JPH0223813 Y2 JP H0223813Y2 JP 15023684 U JP15023684 U JP 15023684U JP 15023684 U JP15023684 U JP 15023684U JP H0223813 Y2 JPH0223813 Y2 JP H0223813Y2
Authority
JP
Japan
Prior art keywords
pressure
fuel
injection
injection time
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15023684U
Other languages
Japanese (ja)
Other versions
JPS6165266U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15023684U priority Critical patent/JPH0223813Y2/ja
Publication of JPS6165266U publication Critical patent/JPS6165266U/ja
Application granted granted Critical
Publication of JPH0223813Y2 publication Critical patent/JPH0223813Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の利用分野〕 本案は液化石油ガス(以下LPGと略す。)を燃
料とする内燃機関の燃料噴射装置に係り、特に、
燃料の圧力が変化した時にも、所定の燃料量を供
給し、一定の空燃比に制御可能な電子制御燃料噴
射装置に関する。
[Detailed description of the invention] [Field of application of the invention] This invention relates to a fuel injection device for an internal combustion engine that uses liquefied petroleum gas (hereinafter abbreviated as LPG) as fuel, and in particular:
The present invention relates to an electronically controlled fuel injection device that can supply a predetermined amount of fuel and control the air-fuel ratio to a constant level even when the fuel pressure changes.

〔考案の背景〕[Background of the idea]

燃料噴射弁を備えたLPG燃料噴射装置はガソ
リン用燃料噴射装置と比べ、燃料であるLPG自
体が燃料蒸気圧を持つており、それ自身が燃料組
成と液温により大きく変動する(0〜20Kg/cm2
ため燃料噴射弁部の圧力を調圧し、一定に制御す
るか、燃料噴射弁部の圧力を感知し、圧力変動に
応じて燃料噴射弁の開弁時間を補正制御する必要
がある。しかし、前者の圧力を一定に保つのは、
20Kg/cm2以上の高圧にするか、低圧にて一定に保
つ為には冷凍機等を用いて、圧力が一定になるよ
うに圧力を感知しながら液温制御をしなければ、
気泡が発生し、液体計量が困難であり、液体噴射
の正確な制御が出来ない。前記方法を実際の自動
車エンジンに搭載する場合、高圧一定の時は、安
全上及びコスト等にて実用性に問題があり、低圧
一定の場合も、システム全体のコスト、大きさ等
により、実用性に乏しい。そして、圧力を感知
し、補正制御する方法には、実開昭59−43659に
記載されるものがある。しかし、上記での燃料圧
力に対する補正は理論式である基準圧力と実際の
圧力との平方根を乗じたに過ぎない。更に上記の
ものに一定の補正係数を乗じて補正した場合に於
ても、電磁式噴射弁の特性から、噴射時間(開弁
時間)の差により正確な補正が出来ないという事
が実験により確認され、燃料圧力による補正が噴
射時間全域において、正確に行なわれないという
問題があつた。
Compared to gasoline fuel injection devices, LPG fuel injection devices equipped with fuel injection valves have fuel vapor pressure itself, which varies greatly depending on the fuel composition and liquid temperature (0 to 20 kg/ cm2 )
Therefore, it is necessary to either regulate the pressure in the fuel injection valve and keep it constant, or to sense the pressure in the fuel injection valve and correct and control the opening time of the fuel injection valve in response to pressure fluctuations. However, keeping the former pressure constant is
Either increase the pressure to a high pressure of 20Kg/cm 2 or more, or use a refrigerator etc. to maintain a constant low pressure, and control the liquid temperature while sensing the pressure so that the pressure remains constant.
Bubbles are generated, liquid metering is difficult, and liquid jetting cannot be accurately controlled. When installing the above method in an actual automobile engine, when the pressure is constant, there are problems in terms of safety and cost, and even when the pressure is constant, it is impractical due to the cost, size, etc. of the entire system. Poor. A method of sensing pressure and controlling correction is described in Japanese Utility Model Application Laid-Open No. 59-43659. However, the above correction to the fuel pressure is merely a product of the square root of the theoretical standard pressure and the actual pressure. Furthermore, even when the above is corrected by multiplying it by a certain correction coefficient, experiments have confirmed that due to the characteristics of electromagnetic injection valves, accurate correction cannot be made due to the difference in injection time (valve opening time). However, there was a problem that correction based on fuel pressure was not performed accurately over the entire injection period.

〔考案の目的〕[Purpose of invention]

本案の目的は、電磁式噴射弁に加わるLPG燃
料の燃料圧力が変化し、かつ、吸入空気量の変化
による噴射弁の噴射時間の差があつても、的確な
圧力補正を行い、基準圧力下における空燃比と同
一の空燃比になるように各圧力下の種々の噴射時
間において、燃料量を一定にする電子制御燃料噴
射装置を提供することにある。
The purpose of this proposal is to perform accurate pressure correction even if the fuel pressure of LPG fuel applied to the electromagnetic injection valve changes and there is a difference in the injection time of the injection valve due to changes in the amount of intake air. An object of the present invention is to provide an electronically controlled fuel injection device that makes the amount of fuel constant at various injection times under each pressure so that the air-fuel ratio is the same as that in the air-fuel ratio.

〔考案の概要〕[Summary of the idea]

電磁式噴射弁に加わる燃料圧力を燃料圧力セン
サーにて計測し、その出力にて補正制御するに
は、理論的には基準圧力をAKg/cm2(本例では第
2図に示す5Kg/cm2)とし、燃料圧力をPKg/cm2
とした場合同一空気量においては、A点の基準噴
射時間tAにたいし、圧力PKg/cm2の噴射時間tP
tP=tA×√となるが、実際には、電磁式噴
射弁の吸引力に対する、燃料圧力によるバルブを
閉じる力が燃料圧力上昇に伴い順次増加し、何
mSという短い開弁時間において、開ききるまで
の時間に大きな影響を与え、開弁時間同一の場
合、圧力上昇による燃料噴射量の増量は、√
Aより小さくなり、かつ、第2図に示すように、
開弁時間の大きさにより異なり、開弁時間が短い
と、より大きな影響を受ける。
In order to measure the fuel pressure applied to the electromagnetic injection valve with a fuel pressure sensor and perform correction control based on its output, the reference pressure should theoretically be set to AKg/cm 2 (in this example, 5Kg/cm as shown in Figure 2). 2 ), and the fuel pressure is PKg/cm 2
In this case, for the same amount of air, the injection time t P at pressure PKg/cm 2 is
t P = t A ×√, but in reality, the valve closing force due to fuel pressure increases sequentially as the fuel pressure rises, and what happens is
The short valve opening time of mS has a large effect on the time until the valve fully opens, and when the valve opening time is the same, the increase in fuel injection amount due to pressure increase is √
smaller than A, and as shown in Figure 2,
This varies depending on the length of the valve opening time, and the shorter the valve opening time, the greater the influence.

本案は、上記特性を把握し、圧力による燃料噴
射増量の逆数である圧力補正係数を、第3図のよ
うに噴射時間により、切換制御する事により、あ
る圧力下の異なる空気量域においても基準圧力下
の同一空気量下における空燃比になるように補正
するものである。
This project grasps the above characteristics and controls the pressure correction coefficient, which is the reciprocal of the increase in fuel injection amount due to pressure, according to the injection time as shown in Figure 3, so that it can be used as a standard even in different air amount ranges under a certain pressure. This is to correct the air-fuel ratio under the same amount of air under pressure.

〔考案の実施例〕[Example of idea]

本案の一実施例を図によつて説明する。第4図
は本方式を用いた一実施例の系統図である。
LPG燃料は燃料ボンベ7より燃料カツトソレノ
イド8を通り、燃料ポンプ9にてボンベ圧より加
圧され、気泡のない完全なる液状燃料にて、燃料
溜10に送られ、電磁式噴射弁6にかかる燃料圧
力とその液温を燃料圧力センサー2とサーミスタ
等の温度センサー13により検出され、電磁式噴
射弁6に送られ、吸入管1に噴射され、エンジン
17に供給される。吸入管1に噴射されなかつた
LPG燃料はリターン通路14を通り、ボンベ圧
との差圧を一定にするように制御しているレギユ
レータ11を通り、燃料カツトソレノイド12を
経て、LPGボンベ7の気相側へ戻つている。
An embodiment of the present invention will be described with reference to figures. FIG. 4 is a system diagram of an embodiment using this method.
LPG fuel passes through the fuel cut solenoid 8 from the fuel cylinder 7, is pressurized by the cylinder pressure by the fuel pump 9, and is sent to the fuel reservoir 10 as completely liquid fuel without air bubbles, and is applied to the electromagnetic injection valve 6. The fuel pressure and liquid temperature are detected by a fuel pressure sensor 2 and a temperature sensor 13 such as a thermistor, and are sent to an electromagnetic injection valve 6, injected into an intake pipe 1, and supplied to an engine 17. Not injected into suction pipe 1
The LPG fuel passes through a return passage 14, passes through a regulator 11 that controls the pressure difference with the cylinder pressure to be constant, passes through a fuel cut solenoid 12, and returns to the gas phase side of the LPG cylinder 7.

LPG燃料はプロパンとブタンの混合物であり、
それ自身で燃料蒸気圧を持つており、温度とその
混合割合で燃料蒸気圧が大きく変化することは一
般に良く知られている。そして、その蒸気圧より
低い圧力では、気化するため、圧力を一定にて液
状LPGにて制御することは非常に困難であり、
本方式では、燃料ポンプ9により加圧し、気泡の
発生を押え、その燃料圧力を燃料圧力センサー2
により検出し、コントローラー18にて補正制御
している。
LPG fuel is a mixture of propane and butane,
It is generally well known that fuel itself has its own fuel vapor pressure, and that the fuel vapor pressure changes greatly depending on temperature and mixture ratio. At a pressure lower than the vapor pressure, it will vaporize, so it is very difficult to control the pressure at a constant level with liquid LPG.
In this method, the fuel pump 9 pressurizes to suppress the generation of bubbles, and the fuel pressure is transferred to the fuel pressure sensor 2.
The controller 18 performs correction control.

第5図に噴射時間計算のゼネラルフローを第6
図に補正計算のチヤート図、第1図に本案の燃料
圧力の補正制御方法のチヤート図を示し説明す
る。
Figure 5 shows the general flow of injection time calculation.
FIG. 1 shows a chart of the correction calculation, and FIG. 1 shows a chart of the fuel pressure correction control method of the present invention.

キー・オンしコントローラ18に電源が入ると
イニシヤライズ処理が行なわれ、ソレノイド8及
び12がオンし、LPG燃料が燃料通路に供給さ
れる。次に、クランキング信号が入つたかどうか
を判定し、クランキング信号が入れば、燃料ポン
プ9が駆動し、クランキング噴射が行なわれる。
そして、エンスト判定をしつつ、噴射タイミング
信号(TOP)が入ると、吸入管圧センサー16
よりのアナログ信号をA/D変換器3にてA/D
変換後CPU4にて吸入管圧力を算出し、また、
点火コイルからの点火信号により回転数を算出
し、吸入管圧力と回転数より基準圧力下における
定常噴射時間を算出し、各種補正係数を乗じ、噴
射時間を算出している。
When the key is turned on and power is turned on to the controller 18, initialization processing is performed, the solenoids 8 and 12 are turned on, and LPG fuel is supplied to the fuel passage. Next, it is determined whether or not a cranking signal is input, and if a cranking signal is input, the fuel pump 9 is driven and cranking injection is performed.
Then, when the injection timing signal (TOP) is input while determining the engine stall, the intake pipe pressure sensor 16
A/D converter 3 converts the analog signal from
After conversion, CPU 4 calculates the suction pipe pressure, and
The rotation speed is calculated from the ignition signal from the ignition coil, the steady injection time under standard pressure is calculated from the suction pipe pressure and the rotation speed, and the injection time is calculated by multiplying by various correction coefficients.

噴射時間TはT=TB×(1+CTW+CST)×CCA×
CLPG×CFPo+CBAT(TB:基準噴射時間、吸入管圧
力と回転数で算出、CTW:水温度補正係数、
CCA:吸気温補正係数、CLPG:LPG補正係数、液
温と燃料圧力により燃料組成を判定し、液比重と
理論空燃比を補正、CFPo:圧力補正係数、CBAT
バツテリー補正係数、CST:始動補正係数)より
算出され、各種補正係数の内時間的影響の少ない
CCA,CTW,CLPG,CFPo,CBAT5項目に関しては時
分割処理され、第6図に示すように順次補正値が
更新され、噴射時間計算時の最新値が採用され
る。
The injection time T is T = T B × (1 + C TW + C ST ) × C CA ×
C LPG ×C FPo +C BAT (T B : Standard injection time, calculated using suction pipe pressure and rotation speed, C TW : Water temperature correction coefficient,
C CA : Intake temperature correction coefficient, C LPG : LPG correction coefficient, determines fuel composition based on liquid temperature and fuel pressure, corrects liquid specific gravity and theoretical air-fuel ratio, C FPo : Pressure correction coefficient, C BAT :
Calculated from the battery correction coefficient ( CST : startup correction coefficient), which has the least time impact among the various correction coefficients.
The five items C CA , C TW , C LPG , C FPo , and C BAT are processed in a time-sharing manner, and the correction values are sequentially updated as shown in FIG. 6, and the latest values at the time of injection time calculation are adopted.

第1図にその中の圧力補正係数の詳細チヤート
図を示し、圧力補正係数の算出方法を説明する。
圧力補正係数CFPoというのは、第7図の表に示す
ように例えばn=8のCFPICFP8までという基準噴
射時間(TB)の大きさにより分けられた8種の
マツプを持ち、燃料圧力センサー2より取り込ま
れた燃料圧力の大きさを判定すると、その圧力の
大きさに応じた、8ヶの基準噴射時間により異な
る値が更新され、噴射時間算出時、基準噴射時間
の大きさにより、1つが選択されて補正係数とし
て採用乗ぜられる。
FIG. 1 shows a detailed chart of the pressure correction coefficient therein, and a method of calculating the pressure correction coefficient will be explained.
As shown in the table in Figure 7, the pressure correction coefficient C FPo has eight types of maps divided by the size of the standard injection time (T B ), for example up to C FPI C FP8 where n = 8. When the magnitude of the fuel pressure taken in from the fuel pressure sensor 2 is determined, different values are updated according to the magnitude of the pressure according to eight reference injection times, and when calculating the injection time, the magnitude of the reference injection time is updated. , one is selected and adopted as a correction coefficient and multiplied.

圧力補正係数はある時間ごとに取り込まれる燃
料圧力を判定し補間されて圧力値が判定される
と、その圧力値に対応したCFP1〜CFP8までの圧力
補正係数の値が更新される。
The pressure correction coefficient is determined by interpolating the fuel pressure taken in every certain time, and when the pressure value is determined, the values of the pressure correction coefficients C FP1 to C FP8 corresponding to the pressure value are updated.

噴射タイミング信号が入力し、吸入管圧力と回
転数が算出され、基準噴射時間が算出されると、
基準噴射時間の大きさが判定され、圧力補正係数
の選択(CFP1〜CFP8)が行なわれ、選択された補
正係数が用いられる。補正係数は一定の時間ごと
に書きかえられており、噴射時間計算に要する余
計な時間は基準噴射時間(TB)が何mSであるか
という判定の時間だけであり、計算時間が長くな
り、遅れ等の心配はない。
When the injection timing signal is input, the suction pipe pressure and rotation speed are calculated, and the standard injection time is calculated,
The magnitude of the reference injection time is determined, pressure correction coefficients are selected (C FP1 to C FP8 ), and the selected correction coefficients are used. The correction coefficient is rewritten at regular intervals, and the extra time required to calculate the injection time is only the time to determine how many mS the reference injection time (T B ) is, which increases the calculation time. There is no need to worry about delays.

〔考案の効果〕[Effect of idea]

本案によれば、電磁式噴射弁に加わるLPG燃
料の絶対圧力が変化しても、吸入空気量の異なる
種々の噴射弁の開弁時間において、基準圧力下の
同一の空気量下で同一の空燃比になるような噴射
時間を与え、LPG液温や組成の変化による燃料
蒸気圧の変化にも対応し、どんな条件でも同一空
気量・負荷に対して、同一な空燃比にさせること
が出来る。
According to this proposal, even if the absolute pressure of LPG fuel applied to the electromagnetic injection valve changes, the same amount of air will be maintained under the same air amount under the reference pressure at the opening time of various injection valves with different intake air amounts. It gives the injection time to maintain the same fuel ratio, responds to changes in fuel vapor pressure due to changes in LPG liquid temperature and composition, and can maintain the same air-fuel ratio for the same amount of air and load under any conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力補正係数の詳細チヤート図、第2
図は電磁式噴射弁の圧力一流量比率特性図、第3
図は圧力補正係数のグラフ、第4図は本システム
の系統図、第5図は噴射時間算出のゼネラルフロ
ー図、第6図は補正計算のフローチヤート図、第
7図は圧力補正係数の一例を示す図である。 1……吸入管、2……燃料圧力センサー、3…
…A/D変換器、4……CPU、5……インジエ
クタ駆動回路、6……電磁式噴射弁、7……燃料
ボンベ、8,12……ソレノイド、9……燃料ポ
ンプ、10……燃料溜、11……レギユレータ、
13……燃料温度センサー、14……リターン通
路、15……回転数センサー、16……吸入管圧
力センサー、17……エンジン、18……コント
ローラ。
Figure 1 is a detailed chart of the pressure correction coefficient, Figure 2
The figure is a pressure-flow rate ratio characteristic diagram of an electromagnetic injection valve.
The figure is a graph of the pressure correction coefficient, Fig. 4 is a system diagram of this system, Fig. 5 is a general flow diagram of injection time calculation, Fig. 6 is a flow chart of correction calculation, and Fig. 7 is an example of the pressure correction coefficient. FIG. 1...Suction pipe, 2...Fuel pressure sensor, 3...
... A/D converter, 4 ... CPU, 5 ... Injector drive circuit, 6 ... Electromagnetic injection valve, 7 ... Fuel cylinder, 8, 12 ... Solenoid, 9 ... Fuel pump, 10 ... Fuel Tame, 11...regulator,
13...Fuel temperature sensor, 14...Return passage, 15...Rotational speed sensor, 16...Suction pipe pressure sensor, 17...Engine, 18...Controller.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電磁式噴射弁の噴射時間により液化石油ガス内
燃機関の燃料供給量を制御する電子制御燃料噴射
装置において、内燃機関の運転状態を検出するセ
ンサと、上記運転状態に基づいて基準噴射時間を
決定する基準噴射時間決定手段と、上記電磁噴射
弁にかかる燃料圧力を検出する燃料圧力センサ
と、上記燃料圧力及び上記基準噴射時間に応じて
圧力補正係数を記憶手段から続み出す圧力補正係
数決定手段と、上記基準噴射時間及び上記圧力補
正係数から噴射時間を決定する噴射時間決定手段
を備えたことを特徴とする電子制御燃料噴射装
置。
An electronically controlled fuel injection device that controls the amount of fuel supplied to a liquefied petroleum gas internal combustion engine based on the injection time of an electromagnetic injection valve includes a sensor that detects the operating state of the internal combustion engine and a reference injection time that determines the reference injection time based on the operating state. a reference injection time determining means; a fuel pressure sensor for detecting fuel pressure applied to the electromagnetic injection valve; and a pressure correction coefficient determining means for retrieving a pressure correction coefficient from a storage means in accordance with the fuel pressure and the reference injection time. . An electronically controlled fuel injection device, comprising injection time determining means for determining an injection time from the reference injection time and the pressure correction coefficient.
JP15023684U 1984-10-05 1984-10-05 Expired JPH0223813Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15023684U JPH0223813Y2 (en) 1984-10-05 1984-10-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15023684U JPH0223813Y2 (en) 1984-10-05 1984-10-05

Publications (2)

Publication Number Publication Date
JPS6165266U JPS6165266U (en) 1986-05-02
JPH0223813Y2 true JPH0223813Y2 (en) 1990-06-28

Family

ID=30708389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15023684U Expired JPH0223813Y2 (en) 1984-10-05 1984-10-05

Country Status (1)

Country Link
JP (1) JPH0223813Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613862B2 (en) * 1986-03-20 1994-02-23 トヨタ自動車株式会社 Method and apparatus for controlling air-fuel ratio of gas fuel engine
ITTO20060304A1 (en) * 2006-04-26 2007-10-27 M T M S R L METHOD AND GROUP FOR LPG SUPPLY TO AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JPS6165266U (en) 1986-05-02

Similar Documents

Publication Publication Date Title
US6766269B2 (en) LPG fuel composition estimation method and system
US5542392A (en) Compressed natural gas fuel injection control system with improved mechanism for compensating for pressure, temperature and supply voltage variations
US4442812A (en) Method and apparatus for controlling internal combustion engines
US4920494A (en) Fuel monitoring arrangement for automotive internal combustion engine control system
US6701905B1 (en) Fuel pressure control method for an alternate-fuel engine
EP2360364B1 (en) Air/Fuel ratio control apparatus for general-purpose engine
US20090107441A1 (en) Adaptive fuel control strategy for engine starting
JP4695042B2 (en) Add-on gas fuel injection system
JPS5925055A (en) Air-fuel ratio control device
JPH01237333A (en) Control device for internal combustion engine
JPH04159432A (en) Electronic control fuel injection system
JPH0223813Y2 (en)
US5494018A (en) Altitude dependent fuel injection timing
US5645035A (en) Method and apparatus for electronically controlling a fuel supply to an internal combustion engine
JPH0217703B2 (en)
JPS59208152A (en) Fuel feed system for liquefied-petroleum-gas internal-combustion engine
EP2357343B1 (en) Air/Fuel ratio control apparatus for general-purpose engine
JP4348686B2 (en) Engine fuel supply method and apparatus
JPH076440B2 (en) Internal combustion engine control method
US7761218B2 (en) Air-fuel ratio control method of engine and air-fuel ratio control apparatus for same
KR101021834B1 (en) Apparatus and method for controlling fuel pump speed of LPI vehicle
JPH0437260B2 (en)
JPH0531245Y2 (en)
JP4680638B2 (en) Air-fuel ratio control device for internal combustion engine
JPH10220264A (en) Controller for gas fuel internal combustion engine