JPH02237644A - Production of catalyst - Google Patents

Production of catalyst

Info

Publication number
JPH02237644A
JPH02237644A JP1057620A JP5762089A JPH02237644A JP H02237644 A JPH02237644 A JP H02237644A JP 1057620 A JP1057620 A JP 1057620A JP 5762089 A JP5762089 A JP 5762089A JP H02237644 A JPH02237644 A JP H02237644A
Authority
JP
Japan
Prior art keywords
catalyst
metal
carrier
active metal
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1057620A
Other languages
Japanese (ja)
Inventor
Suehiko Yoshitomi
吉冨 末彦
Mitsuo Kotomari
小泊 満生
Akira Miyazawa
宮澤 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1057620A priority Critical patent/JPH02237644A/en
Publication of JPH02237644A publication Critical patent/JPH02237644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a catalyst having high activity in spite of a small amt. of an active metal supported by supporting an org. complex of the active metal on a carrier, carbonizing and calcining the complex. CONSTITUTION:An org. complex of a catalytically active metal such as Mo, Co or Ni, e.g., metallophthalocyanine, metallonaphthalocyanine or acetylacetonato-metal is used as starting material, supported on a carrier, carbonized by heating in an inert gas such as nitrogen and calcined by heating in the air. The active metal is prevented from being incorporated into the carrier and a catalyst having high activity is obtd. The catalytic activity can be controlled according to the used starting material and the amt. of the active metal supported can be reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は触媒の製造法、より詳細には炭化水素の水素化
処理用触媒の活性金属種の出発原料としてMo,Co,
Ni,Wの少なくとも1種の金属の安定な各種の有機錯
体を用いて触媒の調製を行うものであり、従米の触媒機
能と異なった新しい触媒の開発を目的としている。すな
わち安定な有機金属錯体を用い、活性金属種を担体表面
に固定することにより、(1)活性金属種が 担体中に取り込まれることを防ぎ、高活性な触媒の開発
が可能になる。(2)有機金属錯体の種類を変えること
により、必要に応じ触媒活性を制御した触媒の開発が可
能になる。(3)担体表面上に活性金属種を固定するこ
とにより同一活性に対する活性金属種の使用量の低減が
可能となり、コストの大幅な低減化が可能になってくる
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a catalyst, and more particularly to a method for producing a catalyst using Mo, Co,
Catalysts are prepared using various stable organic complexes of at least one metal such as Ni and W, and the aim is to develop new catalysts that differ from conventional catalyst functions. That is, by using a stable organometallic complex to immobilize the active metal species on the surface of the carrier, (1) the active metal species can be prevented from being incorporated into the carrier, making it possible to develop highly active catalysts. (2) By changing the type of organometallic complex, it becomes possible to develop a catalyst with controlled catalytic activity as required. (3) By immobilizing the active metal species on the surface of the carrier, it is possible to reduce the amount of active metal species used for the same activity, making it possible to significantly reduce costs.

く従来の技術および当該発明が解決しようとする課題〉 近年、化石燃料の枯渇化に伴い、効率よく重・中質油な
どの炭化水素から脱硫、水素化精製などによってガソリ
ン、灯・軽油などの燃料油を製造する研究が精力的に行
われている。その際に用いられる触媒としては主にγ−
A1203などに担持したC o − M o , N
 i − M o系触媒が使用されている。
Prior Art and Problems to be Solved by the Invention In recent years, with the depletion of fossil fuels, it has become increasingly important to efficiently produce gasoline, kerosene, light oil, etc. from hydrocarbons such as heavy and medium oil through desulfurization and hydrorefining. Research is being actively conducted to produce fuel oil. The catalyst used in this case is mainly γ-
Co-Mo, N supported on A1203 etc.
An i-Mo catalyst is used.

これら触媒は主に活性金属種の無機塩の水溶液より担体
に含浸させ、含漬後、乾燥・焼成さらに硫化することに
より調製されている.しかし、その調製過程において金
属種と担体との相互作用により金属種の一部が担体に取
り込まれ、活性金属種の表面濃度の低下をもたらし、ま
た硫化過程での金属の硫化が不均一になるなどの現象を
生じ、水素化処理用触媒としての本来の機能を発揮でき
ない欠点がある。さらに、これらの欠点を克服するため
に活性金属種の担体への担持量を大きく取らざるを得な
い欠点も有している。
These catalysts are mainly prepared by impregnating a carrier with an aqueous solution of an inorganic salt of an active metal species, followed by drying, calcining, and sulfurization. However, during the preparation process, a portion of the metal species is incorporated into the support due to the interaction between the metal species and the support, resulting in a decrease in the surface concentration of the active metal species, and also causing non-uniform sulfidation of the metal during the sulfidation process. These phenomena occur, and the catalyst has the disadvantage that it cannot perform its original function as a hydrotreating catalyst. Furthermore, in order to overcome these drawbacks, it is necessary to increase the amount of active metal species supported on the carrier.

性金属種であるMo,Co,Ni,Wからの少なくとも
1種の金属の安定な有機銘体をγ一A l 2 0 3
などの担体に種々の方法で担持させた触媒を調製した。
γ-A l 2 0 3 is a stable organic constituent of at least one metal from the chemical metal species Mo, Co, Ni, and W.
Catalysts were prepared by supporting them on carriers such as

その結果、試作した触媒は高い水素化処理活性を有し、
かつ有機錯体の種類や担持法を変えることにより水素化
活性、水素化分解活性などの基本的な機能を制御でき、
また活性金属種の担持量を低減できることが明らかにな
った。
As a result, the prototype catalyst had high hydrotreating activity,
Moreover, by changing the type of organic complex and the supporting method, basic functions such as hydrogenation activity and hydrogenolysis activity can be controlled.
It has also become clear that the amount of active metal species supported can be reduced.

本発明の触媒の組成はA I , M o , C o
 , N i , Wの二成分あるいは三成分よりなり
、触媒担体にはAIの酸化物−たとえばγ一A 12 
0 iなどが、活性金属としてはMo,Ni,Co,W
からの少なくとも1種の金属の遷移金属の安定な有機錯
体が用いられる。
The composition of the catalyst of the present invention is A I , Mo , Co
, N i , and W, and the catalyst carrier contains an oxide of AI, such as γ-A 12
0 i, etc., but the active metals include Mo, Ni, Co, and W.
Stable organic complexes of transition metals of at least one metal from are used.

これら活性金属は酸化物として0.1〜20wt%の担
持量、好ましくは0.15〜10wt%を担持して用い
られる。また有機銘体としては金属フタ口シアニン、金
属ナフタロシアニン、合属アセチルアセトナート、金属
ジメチルグリオキシム、が用いられる。
These active metals are used as oxides in an amount of 0.1 to 20 wt%, preferably 0.15 to 10 wt%. Further, as organic constituents, metal phthalocyanine, metal naphthalocyanine, metal acetylacetonate, and metal dimethylglyoxime are used.

本発明の触媒調製法はつぎの各調製法が用いられる。The following preparation methods are used for the catalyst preparation method of the present invention.

(1)調製法1 活性金属の有機錯体を担体に担持し、
窒素などの不活性ガス中で加熱処理(炭化)を行い、つ
いで空気中で加熱処理(焼成)する。
(1) Preparation method 1 Supporting an organic complex of active metal on a carrier,
Heat treatment (carbonization) is performed in an inert gas such as nitrogen, and then heat treatment (calcination) is performed in air.

(2)調製法2 活性金属の有機錯体を担体に担持し、
空気中で焼成する。
(2) Preparation method 2 Supporting an organic complex of active metal on a carrier,
Baking in air.

(3)調製法3 活性金属の有機錯体を窒素などの不活
性ガス中で炭化したのち、担体に担持さらに空気中で焼
成する. (4)調製法4 活性金属の有機錯体を担体に担持し、
空気中で焼成したのち、第2、第3の活性#L属の有機
銘体を添加する。
(3) Preparation method 3 After carbonizing the active metal organic complex in an inert gas such as nitrogen, it is supported on a carrier and then calcined in air. (4) Preparation method 4 Supporting an organic complex of active metal on a carrier,
After firing in air, the second and third active #L organic components are added.

前記各調製で調製された触媒は、各種の硫化処理を行う
。しかし、被水素化処理物に含有される硫黄による硫化
もこの硫化処理の意味に含まれる。
The catalysts prepared in each of the above preparations are subjected to various sulfurization treatments. However, sulfurization with sulfur contained in the hydrogenated product is also included in the meaning of this sulfurization treatment.

前記調製における有機金属錯体を担体に担持させるに使
用する有機溶媒としては、エチルアルコール、n−ヘキ
サンなどがある。さらに、処理条件は次の通りである。
Examples of the organic solvent used to support the organometallic complex on the carrier in the above preparation include ethyl alcohol and n-hexane. Furthermore, the processing conditions are as follows.

炭化条件: 昇温速度約100゜C/lhr 炭化時間約2 br〜3 1+rs 雰囲気 N2などの不活性ガス中 焼成条件: 焼成温度約400〜600℃ 焼成時間約3〜51+rs 雰囲気 空気中 硫化条件: 硫化温度約400〜500゜C 硫化時間約1〜3 hrs 雰囲気 H2/H2S 本発明の調製法(1)〜(3)で得られた触媒では、活
性金属が一定の構造を有する安定な有機錯体として添加
されるため、炭化・焼成過程において活性金属と担体と
の相互作用が抑制され、表面上に均一に分散した活性サ
イトが形成されている.したがって、活性金属の担持量
が同じであれば、従来の調製法による触媒よりも高い表
面濃度をもっている。その結果、本発明の触媒は低担持
量で高い活性を示すことになる。
Carbonization conditions: Temperature increase rate approximately 100°C/lhr Carbonization time approximately 2br~31+rs Atmosphere Firing conditions in inert gas such as N2: Firing temperature approximately 400~600°C Firing time approximately 3~51+rs Atmosphere Sulfiding conditions in air: Sulfiding temperature: about 400-500°C Sulfurizing time: about 1-3 hrs Atmosphere: H2/H2S In the catalysts obtained by the preparation methods (1) to (3) of the present invention, the active metal is a stable organic complex having a certain structure. Because it is added as an active metal, the interaction between the active metal and the support is suppressed during the carbonization and sintering process, and active sites are formed evenly distributed on the surface. Therefore, if the amount of active metal supported is the same, the catalyst has a higher surface concentration than the catalyst prepared by the conventional method. As a result, the catalyst of the present invention exhibits high activity with a low loading.

また、本発明で得られた触媒の硫化後の状態をX線回折
装置やX線光電子分光装置により測定した結果ではCO
などの活性金属の硫化は金属種の分散度が高いため従来
法の触媒系の場合よりもずっと容易である. さらに特徴的なことは調製法(4)で調製された触媒で
は安定な有機錯体の骨格が担体表面上に存在し、活性金
属が有機錯体により固定されているために、硫化後も硫
化状態にならず金属種として活性を示す場合も考えられ
る。
In addition, the results of measuring the state of the catalyst obtained in the present invention after sulfidation using an X-ray diffraction device or an X-ray photoelectron spectrometer indicate that CO
The sulfidation of active metals, such as catalytic converters, is much easier than with conventional catalyst systems due to the high degree of dispersion of metal species. A further characteristic feature of the catalyst prepared by preparation method (4) is that a stable organic complex skeleton exists on the support surface, and the active metal is fixed by the organic complex, so that it remains in the sulfided state even after sulfidation. It is also conceivable that it may show activity as a metal species.

及1匠 つぎに本発明を実施例によりさらに詳細に説明する。1st craftsman Next, the present invention will be explained in more detail with reference to Examples.

実施例1 触媒の活性金属種にはCoまたはNiアセチルアセトナ
ー}(CooまたはNiOとして担体100wt%に対
し3wL%担持量に相当する量)とMOアセチルアセト
ナート( M o O 3として7.2wt%担持量に
相当する量)を用い、これら有機金属銘体を担体である
γ−A l 2 0 3に加え、有機溶媒中で24時間
攪拌し、溶媒を留去したのち充分乾燥する。ついで窒素
気流中で400℃、4時間炭化処理を行い、さらに55
0℃、4時間空気焼成を行い、さらに400℃、2時間
、H 2 S / H 2気流中で硫化処理したものを
触媒とした(調製法1)。 水素化活性はつぎの通りで
あった。
Example 1 The active metal species of the catalyst include Co or Ni acetylacetoner (an amount equivalent to 3wL% supported amount as Coo or NiO on 100wt% of the carrier) and MO acetylacetonate (7.2wt as MoO3). These organometallic constituents are added to γ-Al 2 O 3 as a carrier, stirred for 24 hours in an organic solvent, and the solvent is distilled off, followed by thorough drying. Next, carbonization treatment was performed at 400°C for 4 hours in a nitrogen stream, and further
The catalyst was air-calcined at 0° C. for 4 hours, and then sulfurized in a H 2 S/H 2 stream at 400° C. for 2 hours (Preparation method 1). The hydrogenation activities were as follows.

触媒の水素化活性の測定にはモデル化合物として1−メ
チルナフタレンを用い、1−メチルナフタレン1og,
触媒量1.0g、水素初圧30kg7cm2、反応温度
350℃、反応時間2時間の条件で反応を行い、1−メ
チルテトラリンと5−メチルテトラリンの生成量をもっ
て水素化活性とした。
1-methylnaphthalene was used as a model compound to measure the hydrogenation activity of the catalyst.
The reaction was carried out under the conditions of a catalyst amount of 1.0 g, an initial hydrogen pressure of 30 kg 7 cm2, a reaction temperature of 350 DEG C., and a reaction time of 2 hours, and the amount of 1-methyltetralin and 5-methyltetralin produced was defined as the hydrogenation activity.

触媒      水素化活性(従来触媒の活性)/γ一
AI.0, 実施例2 つぎにNi,Coの出発物質である有機錯体の種類を変
え、調製法1で触媒の調製を行った。担体γ−Al20
3への担持量はCooまたはNiOとして 3wt%、
MoOz 7.2wt%を用い、実施例1と同様に触媒
を調製した。以下に結果を示す。
Catalyst Hydrogenation activity (activity of conventional catalyst)/γ-AI. 0. Example 2 Next, a catalyst was prepared using Preparation Method 1 by changing the type of organic complex that was the starting material for Ni and Co. Support γ-Al20
The amount supported on 3 is 3wt% as Coo or NiO,
A catalyst was prepared in the same manner as in Example 1 using 7.2 wt% MoOz. The results are shown below.

触媒          水素化活性 /γ−A 1 2 0 3 /γ−A l20 3 /γ一Al20, 案施例3 え、24時間攪拌し、溶媒を留去したのち充分乾燥する
.乾燥後、4時間、550℃で空気焼成を行い、中で2
4時間攪拌し、溶媒を留去したのち充分乾燥し、直ちに
550℃、4時間空気焼成し、実施例1と同様に硫化処
理して調製(調製法2)した触媒による結果を以下に示
す. 触媒           水素化活性/γ一Ah○, /γ−A 1 2 0 :1 実施例4 活性金属Moの出発物質であるMoアセチルアセ時間攪
拌し、溶媒を留去したのち乾燥を行ったものを触媒とし
な(調製法4)。これをさらに400℃、2時間、H 
2 S / H 2気流中で硫化して反応を用いた場合
の水素化活性は26.00%であった。
Catalyst Hydrogenation Activity/γ-A 120 3 /γ-A 120 3 /γ-Al20, Example 3 The mixture was stirred for 24 hours, the solvent was distilled off, and then thoroughly dried. After drying, air baking was performed at 550°C for 4 hours, and 2
The results of a catalyst prepared by stirring for 4 hours, distilling off the solvent, thoroughly drying, immediately calcining in air at 550°C for 4 hours, and performing sulfurization treatment in the same manner as in Example 1 (preparation method 2) are shown below. Catalyst Hydrogenation activity/γ-Ah○, /γ-A 120:1 Example 4 Mo acetylaceta, the starting material for the active metal Mo, was stirred for a period of time, the solvent was distilled off, and then dried. (Preparation method 4). This was further heated at 400°C for 2 hours with H
The hydrogenation activity was 26.00% when the reaction was sulfurized in a 2S/H2 gas stream.

また、X線回折法による構造解析の結果では図1に示す
ように活性金属であるCOフタ口シアニンが触媒表面上
に存在しており、Coが安定な銘体により担体表面に固
定され、担体との相互作用が抑制されていることが明ら
かである。
In addition, as shown in Figure 1, the results of structural analysis using X-ray diffraction showed that CO cyanine, an active metal, was present on the catalyst surface, and Co was fixed on the surface of the carrier by a stable marker. It is clear that the interaction with is suppressed.

実施例5 Coの出発物質としてCoフタ口シアニン(実施例1と
同様の担持量に相当する!)を例に触媒調製法1〜4(
但しMoアセチルアセトナートは実施例1と同様の担持
量に相当する量を含み、実施例4の硫化処理条件で調製
した)の水素化活性に対する結果を以下に示す. 触媒調製法       水素化活性 第1法       18.54% 第2法        22.24% 第3法        17.83% 第4法        26.00% 従来法         14.05%金属種の出発物
質に安定な有機銘体を用いた場合、いずれの調製法にお
いても水素化活性は従来法よりも高いことが明らかであ
る。
Example 5 Catalyst preparation methods 1 to 4 (
However, Mo acetylacetonate was contained in an amount corresponding to the same supported amount as in Example 1, and the results for the hydrogenation activity of the sample (prepared under the sulfiding conditions of Example 4) are shown below. Catalyst preparation method Hydrogenation activity 1st method 18.54% 2nd method 22.24% 3rd method 17.83% 4th method 26.00% Conventional method 14.05% Stable organic name for starting material of metal species It is clear that in all preparation methods, the hydrogenation activity is higher than that in the conventional method.

実施例6 Coフタ口シアニンの添加量を変えて(他の条件は実施
例4に同じ)調製法4で調製した触媒による反応の結果
を図2に示す。Coフタ口シアニンを用いた場合、水素
化活性の最大値はCoo濃度0.3〜0.4wt%近辺
にあり、従来法により調製したCo−Mo/7−Al2
03触媒の最l!iCo○濃度の−約1/2以下でよい
ことがわかる。すなわち、本発である. 実施例7 本発明による触媒(調製法1〜3)の硫化後の状憇につ
いて、X線光電子分光装置(XPS>により測定した結
果を図3に示す。従来からの調製法で調製した触媒にあ
っては、硫化後も活性金属の一部が酸化状態で存在し、
硫化が充分に進んでいない。本発明による触媒は活性金
属種の分散度が高いため硫化が容易で、酸化状態を表す
ピークは極めて小さい。このことは活性成分の濃度が高
いことを意味している。このことは以下に表す調製法2
によるNi  Mo/7  Ah○3系触媒のxpsに
よる測定の結果からも明らかである。すなわちNiジメ
チルグリオキシムを出発物質とするNi/A1比の小さ
な、分散度の高い触媒のほうがS/N i + M o
比が大きく硫化され易く、また水素化活性も高い値を示
す。
Example 6 FIG. 2 shows the results of a reaction using a catalyst prepared by Preparation Method 4 by changing the amount of Co lid cyanine added (other conditions being the same as in Example 4). When Co lid cyanine is used, the maximum value of hydrogenation activity is around the Co concentration of 0.3 to 0.4 wt%, and compared with Co-Mo/7-Al2 prepared by the conventional method.
03 The best catalyst! It can be seen that the iCo◯ concentration may be about -1/2 or less. In other words, it is the original. Example 7 The state of the catalysts according to the present invention (preparation methods 1 to 3) after sulfidation was measured using an X-ray photoelectron spectrometer (XPS), and the results are shown in Figure 3. In some cases, some of the active metals remain in an oxidized state even after sulfidation,
Sulfidation has not progressed sufficiently. Since the catalyst according to the present invention has a high degree of dispersion of active metal species, it is easily sulfided, and the peak representing the oxidation state is extremely small. This means that the concentration of active ingredient is high. This is explained by the preparation method 2 shown below.
This is also clear from the results of XPS measurements of the Ni Mo/7 Ah○3-based catalyst. In other words, a catalyst with a small Ni/A1 ratio and a high degree of dispersion using Ni dimethylglyoxime as a starting material has a higher S/N i + M o
It has a large ratio and is easily sulfided, and also exhibits a high hydrogenation activity.

出発物質       Ni/AI’  S/Mo+N
iNiアセチルアセトナー}−  11.97    
0.796Niジメチルグリオキシム 9.46   
 0.955出発物質         水素化活性N
iアセチルアセトナート    21.20%Niジメ
チルグリオキシム    27.53%また調製法4に
よるCOフタ口シアニンの場合には、安定な有機銘体の
骨格に活性金属が固定されているため硫化されず金属状
態のままである場合も考えられ、高い活性を示している
Starting material Ni/AI' S/Mo+N
iNi acetylacetoner}- 11.97
0.796Ni dimethylglyoxime 9.46
0.955 Starting material Hydrogenation activity N
iAcetylacetonate 21.20%Ni dimethylglyoxime 27.53%Also, in the case of CO phthalocyanine prepared by Preparation Method 4, the active metal is fixed in the skeleton of a stable organic component, so it is not sulfurized and the metal is not sulfurized. It is possible that it remains in this state, showing high activity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX線回折装置により測定した調製法4によるC
o(フタ口シアニン)・Mo(アセチルアセトナート)
/γ−A 1 2 0 3触媒のスペクトルである.横
軸は回折角2θを示す。 第2図はCoフタ口シアニンの添加量を変えて調製した
触媒の反応結果を示したものである。縦軸は水素化活性
を、横軸はCooに換算した活性金属の添加量を示して
いる. 第3図はX線光電子分光装置(x p s )の測定結
果で、活性金属のCo2P3/2光電子スペクトルであ
る。1は従来法によるco−Mo/γ−A1203触媒
、2はCo(フタ口シアニン)・Mo(アセチルアセト
ナート)/γ−A120,触媒(調製法2)、3はCo
(フタ口シアニン)・Mo(アセチルアセトナート)/
γ一Al203触媒(調製法4)である。
Figure 1 shows C measured by preparation method 4 using an X-ray diffraction device.
o (lid cyanine)/Mo (acetylacetonate)
/γ-A 1 2 0 3 catalyst spectrum. The horizontal axis indicates the diffraction angle 2θ. FIG. 2 shows the reaction results of catalysts prepared by varying the amount of Co lid cyanine added. The vertical axis shows the hydrogenation activity, and the horizontal axis shows the amount of active metal added in terms of Coo. FIG. 3 shows the measurement results of an X-ray photoelectron spectrometer (x p s ), which is the Co2P3/2 photoelectron spectrum of the active metal. 1 is a co-Mo/γ-A1203 catalyst prepared by a conventional method, 2 is a Co (futacyanine)/Mo (acetylacetonate)/γ-A120, catalyst (preparation method 2), and 3 is a Co
(lid cyanine)/Mo (acetylacetonate)/
γ-Al203 catalyst (preparation method 4).

Claims (1)

【特許請求の範囲】 1、触媒活性金属のフタロシアニン、ナフタロシアニン
、アセチルアセトナート、ジメチルグリオキシムからな
る群から選択される有機金属錯体を出発原料として用い
、それを炭化、さらに必要に応じて焼成することからな
る触媒の製造法。 2、水素化処理用触媒の製造法において、触媒活性金属
がMo、Co、Ni、Wからなる群から選択された少な
くとも1種の金属の有機金属錯体を出発原料として用い
る、ここで該錯体は金属フタロシアニン、金属ナフタロ
シアニン、金属アセチルアセトナート、金属ジメチルグ
リオキシムからなる群から選択される、ことからなる前
記の製造法。 3、請求項2に記載の有機金属錯体を担体に担持し、不
活性ガス中で該錯体を炭化する加熱処理し、次に空気中
で該炭化物を焼成する加熱処理し、次いで硫化処理する
ことからなる請求項2記載の製造法。 4、請求項2に記載の有機金属錯体を担体に担持し、空
気中で直接に該錯体を焼成する加熱処理し、次いで硫化
処理することからなる請求項2記載の製造法。 5、請求項2に記載の有機金属錯体を不活性ガス中で炭
化する加熱処理し、該炭化物を担体に担持し、空気中で
該炭化物を焼成する加熱処理し、次いで硫化処理するこ
とからなる請求項2記載の製造法。 6、主たる触媒活性金属を含有する請求項2に記載の有
機金属錯体を担体に担持し、空気中で直接に該錯体を焼
成する加熱処理し、次に該焼成物に残余の触媒活性金属
を含有する有機金属錯体を添加し、次いで硫化処理する
ことからなる請求項2記載の製造法。
[Claims] 1. An organometallic complex selected from the group consisting of catalytically active metals phthalocyanine, naphthalocyanine, acetylacetonate, and dimethylglyoxime is used as a starting material, carbonized, and optionally calcined. A method for producing a catalyst, which comprises: 2. In the method for producing a catalyst for hydrotreating, an organometallic complex in which the catalytically active metal is at least one metal selected from the group consisting of Mo, Co, Ni, and W is used as a starting material, where the complex is The above-mentioned production method comprises a metal phthalocyanine, a metal naphthalocyanine, a metal acetylacetonate, and a metal dimethylglyoxime. 3. Supporting the organometallic complex according to claim 2 on a carrier, subjecting the complex to a heat treatment to carbonize it in an inert gas, then a heat treatment to sinter the carbide in air, and then a sulfiding treatment. The manufacturing method according to claim 2, comprising: 4. The production method according to claim 2, which comprises supporting the organometallic complex according to claim 2 on a carrier, heat-treating the complex by directly firing it in air, and then subjecting it to sulfurization treatment. 5. The organometallic complex according to claim 2 is heat-treated to carbonize in an inert gas, the carbide is supported on a carrier, the carbide is heat-treated to be fired in air, and then sulfurization treatment is performed. The manufacturing method according to claim 2. 6. Supporting the organometallic complex according to claim 2 containing the main catalytically active metal on a carrier, heat-treating the complex by directly firing it in air, and then adding the remaining catalytically active metal to the fired product. 3. The production method according to claim 2, which comprises adding the organometallic complex contained therein and then subjecting it to sulfurization treatment.
JP1057620A 1989-03-09 1989-03-09 Production of catalyst Pending JPH02237644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057620A JPH02237644A (en) 1989-03-09 1989-03-09 Production of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057620A JPH02237644A (en) 1989-03-09 1989-03-09 Production of catalyst

Publications (1)

Publication Number Publication Date
JPH02237644A true JPH02237644A (en) 1990-09-20

Family

ID=13060918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057620A Pending JPH02237644A (en) 1989-03-09 1989-03-09 Production of catalyst

Country Status (1)

Country Link
JP (1) JPH02237644A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113178A (en) * 1999-08-17 2001-04-24 Eurecat Europ De Retraitement De Catalyseurs Preliminary carbonization of hydrogenation catalyst
JP2007238601A (en) * 2006-02-08 2007-09-20 Sumitomo Chemical Co Ltd Polynuclear metal complex modified product and application thereof
CN101563437A (en) * 2006-12-19 2009-10-21 埃克森美孚研究工程公司 High activity supported distillate hydroprocessing catalysts
JP2021530343A (en) * 2018-07-20 2021-11-11 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Nanoparticles and preparation method
JP2021530344A (en) * 2018-07-20 2021-11-11 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Nanoparticles and preparation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113178A (en) * 1999-08-17 2001-04-24 Eurecat Europ De Retraitement De Catalyseurs Preliminary carbonization of hydrogenation catalyst
JP2007238601A (en) * 2006-02-08 2007-09-20 Sumitomo Chemical Co Ltd Polynuclear metal complex modified product and application thereof
CN101563437A (en) * 2006-12-19 2009-10-21 埃克森美孚研究工程公司 High activity supported distillate hydroprocessing catalysts
EP2102315A4 (en) * 2006-12-19 2010-02-24 Exxonmobil Res & Eng Co High activity supported distillate hydroprocessing catalysts
JP2010513015A (en) * 2006-12-19 2010-04-30 エクソンモービル リサーチ アンド エンジニアリング カンパニー Highly active supported distillate hydrotreating catalyst
AU2007338871B2 (en) * 2006-12-19 2011-10-20 Exxonmobil Research And Engineering Company High activity supported distillate hydroprocessing catalysts
JP2021530343A (en) * 2018-07-20 2021-11-11 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Nanoparticles and preparation method
JP2021530344A (en) * 2018-07-20 2021-11-11 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Nanoparticles and preparation method

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP3244692B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
JP3959107B2 (en) Highly active catalyst
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
JPH0723209B2 (en) Manufacturing method of silicon carbide with large specific surface area and use for high temperature catalytic reaction
JP3244693B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
KR100300805B1 (en) Manufacturing method of catalyst carrier
US20060054536A1 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
TW200302130A (en) Arsenic removal catalyst and method for making same
JP3676849B2 (en) Gas oil hydrodesulfurization catalyst
JP2000117121A (en) Ex-situ presulfurization in the presence of hydrocarbon molecule
CN104841493A (en) On-site external vulcanization processing method of hydrogenation catalysts
JPH02237644A (en) Production of catalyst
CN115555013B (en) Pt/silicon modified alumina-based catalyst and preparation method and application thereof
JP2008272646A (en) Hydrogenation catalyst re-activation method and manufacturing method of hydrogenation catalyst
CN1916121B (en) Method for preparing diene selective hydrotreating catalyst for gasoline
JP3868010B2 (en) Catalysts based on highly dispersed metal oxides, especially containing zirconia
CN114950493A (en) Molybdenum-based sulfide supported catalyst and in-situ preparation method and application thereof
JPH09150059A (en) Production of hydrodesulfurization catalyst for hydrocarbon oil
JP2008105031A (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
CN113546638A (en) Paraffin hydrogenation catalyst and preparation method thereof
CN111375429A (en) Preparation method of vulcanization type hydrogenation catalyst
JPH03267149A (en) Catalyst for hydrogenation and production thereof
CN110882711A (en) Carbide-based catalyst, preparation method thereof and naphthenic hydrocarbon hydrogenolysis ring-opening method
JP3537937B2 (en) Hydrodesulfurization catalyst for gas oil