JPH02237413A - Cryogenic current lead - Google Patents

Cryogenic current lead

Info

Publication number
JPH02237413A
JPH02237413A JP1055822A JP5582289A JPH02237413A JP H02237413 A JPH02237413 A JP H02237413A JP 1055822 A JP1055822 A JP 1055822A JP 5582289 A JP5582289 A JP 5582289A JP H02237413 A JPH02237413 A JP H02237413A
Authority
JP
Japan
Prior art keywords
atmosphere
current lead
electric field
shield
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055822A
Other languages
Japanese (ja)
Inventor
Hideshige Moriyama
英重 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1055822A priority Critical patent/JPH02237413A/en
Publication of JPH02237413A publication Critical patent/JPH02237413A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Insulators (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

PURPOSE:To suppress the occurrence of partial discharge by putting the part where the electric field concentrates in the atmosphere or in liquid helium and by putting only the low electric field part in the cold gas helium. CONSTITUTION:Since a flange 2 and a shield member 12 of an angle section 9 are both earthed, the electric field of the angle section 9 becomes zero. Likewise, as a supporting body 3 of a clearance section 10 and the shield member 12 are both earthed, the electric field of the clearance section 10 becomes zero. No partial discharge will thereby occur at the angle section 9 and clearance section 10. The electric field of shield ends 12a and 12b becomes high, but it is hard to discharge the current partially since their location is in atmosphere 6 and liquid helium 8 high in dielectric strength.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は,液体ヘリウムなどの液化不活性ガスを冷媒と
した超電導機器の電流リードやクエンチ検出用リード線
などの極低温用電流リードに関する. (従来の技術) 超電導機器の極低温用電流リードについては例えば実開
昭63 − 49265号公報が知られている。この種
の電流リードについて第4図を参照して説明する。第4
図において、■は電流リードであり,電流リード■の上
部は金属製のフランジ■に強く固定してある。また、電
流リードのとフランジ■の間は気密シール(図示せず)
を施してある。電流リード■の中央部は金属製の支持体
■によって支えてある,これらのフランジ■および支持
体■は電気的に接地してある。電流リード■は導体(イ
)に端部を残して絶縁部材0を被覆したものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is applicable to ultra-low temperature applications such as current leads and quench detection lead wires of superconducting equipment using liquefied inert gas such as liquid helium as a refrigerant. Regarding current leads. (Prior Art) Regarding cryogenic current leads for superconducting equipment, for example, Japanese Utility Model Application Laid-open No. 63-49265 is known. This type of current lead will be explained with reference to FIG. Fourth
In the figure, ■ is a current lead, and the upper part of the current lead ■ is strongly fixed to a metal flange ■. Also, there is an airtight seal between the current lead and the flange (not shown).
has been applied. The central part of the current lead (2) is supported by a metal support (2), and these flanges (2) and support (2) are electrically grounded. The current lead (2) is a conductor (A) covered with an insulating member 0, leaving the end portion intact.

電流リード■の所在部については、フランジ■より大気
0中であり,フランジ■の下部近傍が常温ガスヘリウム
■中であり,電流リード■の下端部が液体ヘリウム■中
である.常温ガスヘリウム■の雰囲気において、0はフ
ランジ■と絶縁部材■とが接する角部であり、(10)
は支持体■と絶縁部材■との間隙部である. (発明が解決しようとする課題) 以上のように構成した電流リード■においては、導体←
)に高電圧を印加した際や、高電圧が発生した際,電界
が角部0や間隙部(10)などに集中する.しかも、角
部(9)や間隙部(10)の雰囲気は常温ガスヘリウム
■であり,その絶縁耐力は大気0の値の1/6以下、液
体ヘリウム0の値のl/40以下と低いため.角部■)
や間隙部(10)は部分放電の発生し易い場所となる。
The location of the current lead (■) is in the atmosphere from the flange (■), the vicinity of the bottom of the flange (■) is in room-temperature gas helium (2), and the lower end of the current lead (■) is in liquid helium (2). In an atmosphere of room temperature gas helium ■, 0 is the corner where the flange ■ and the insulating member ■ contact, and (10)
is the gap between the support ■ and the insulating member ■. (Problem to be solved by the invention) In the current lead ■ configured as described above, the conductor ←
), or when a high voltage is generated, the electric field concentrates at the corner 0 or the gap (10). Moreover, the atmosphere in the corners (9) and gaps (10) is room temperature gas helium, and its dielectric strength is low, less than 1/6 of the value in the atmosphere (0) and less than 1/40 of the value in liquid helium (0). .. Corner ■)
and the gap (10) are places where partial discharge is likely to occur.

部分放電が発生した場合、絶縁部材■は除々に劣化し、
最終的に破壊する。
When a partial discharge occurs, the insulating material ■ gradually deteriorates,
ultimately destroy it.

本発明は角部■や間隙部(10)の絶縁部材■の劣化を
なくし、絶縁破壊を防ぐことによって絶縁の信頼性を高
めた極低温用電流リードを提供することを目的とする。
An object of the present invention is to provide a current lead for cryogenic temperatures that eliminates deterioration of the insulating member (2) at the corners (1) and gaps (10), and improves insulation reliability by preventing dielectric breakdown.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明の第1の手段として
は.液体ヘリウムのような極低温冷媒中から大気雰囲気
に引き出す導体と、導体の端部を残して導体に被覆した
絶縁部材と,絶縁部材の端部を残して表面に密着させた
シールド部材とを備え、シールド片端を大気中に出し、
他端を極低温冷媒中に入れ、シールド部材を接地する接
地部材を設けたことを特徴とし.第2の手段としては,
液体ヘリウムのような極低温冷媒中から大気雰囲気中に
引出す中空導体と,中空導体の端部を残して中空導体に
被覆した絶縁部材と,絶縁部材の表面に密着した導電層
と,導電層に端部を残して導電テープを自身のずれを容
易に巻回被覆した導電テープ層と,導電テープ層に被せ
た金属パイプと、金属パイプを接地する接地部材を設け
たことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the first means of the present invention is as follows. It is equipped with a conductor drawn out from a cryogenic refrigerant such as liquid helium to the atmosphere, an insulating member covering the conductor with the ends of the conductor remaining, and a shielding member tightly attached to the surface with the ends of the insulating member remaining. , one end of the shield is exposed to the atmosphere,
The other end is placed in a cryogenic refrigerant and a grounding member is provided to ground the shield member. As a second means,
A hollow conductor drawn out from a cryogenic refrigerant such as liquid helium into the atmosphere, an insulating member covering the hollow conductor leaving the ends of the hollow conductor intact, a conductive layer that adheres to the surface of the insulating member, and a conductive layer attached to the conductive layer. The present invention is characterized by providing a conductive tape layer in which the conductive tape is easily wound and covered with the conductive tape, leaving the ends intact, a metal pipe covered with the conductive tape layer, and a grounding member for grounding the metal pipe.

(作 用) 第1の手段のように構成することにより、角部■や間隙
部(10)においては電界がゼロになるから部分放電が
発生しなくなる.また、電界が高くなるシールド端(1
2a)および(12b)においては、所在部をそれぞれ
大気■と液体へり,ウム■のような極低温冷媒にしてあ
るため雰囲気が絶縁耐力の低い常温ガスヘリウム■であ
る場合に比べ、部分放電の発生が抑えられる。
(Function) By configuring as in the first means, the electric field becomes zero at the corner (2) and the gap (10), so no partial discharge occurs. Also, the shield end (1
In cases 2a) and (12b), the locations are the atmosphere (2), a liquid helium (2), and a cryogenic refrigerant such as aluminum (2), respectively, so the partial discharge is less likely to occur than when the atmosphere is room-temperature gas helium (3), which has low dielectric strength. Occurrence can be suppressed.

また、第2の手段のように構成することにより、導電層
と金属パイプが温度変化によって相対変位した場合に導
電層と金属パイプの間の導電テープ層がずれるため、導
電層の摩耗や剥離が防がれる.(実施例) 実施例1 以下、本発明の第1の実施例について第1図を参照して
説明する。第1図は第4図と同様に電流リードの縦断面
図を示す.■は電流リードであり、絶縁部材■の表面に
シールド部材(12)を密着させ、接地してあることが
第4図に示した従来の電流リード(1)と異なる。シー
ルド部材(12)は非磁性金属の編線やメッキ、あるい
は導電性塗料などで形成する。上部のシールド端(12
a)の雰囲気は大気0にしてあり,下部のシールド端(
12b)の所在部は極低温液体冷媒である液体ヘリウム
(ハ)にしてある。
In addition, by configuring as in the second means, the conductive tape layer between the conductive layer and the metal pipe shifts when the conductive layer and the metal pipe undergo relative displacement due to temperature changes, thereby preventing wear and peeling of the conductive layer. Prevented. (Examples) Example 1 A first example of the present invention will be described below with reference to FIG. 1. Figure 1, like Figure 4, shows a longitudinal cross-sectional view of the current lead. 2 is a current lead, which differs from the conventional current lead (1) shown in FIG. 4 in that a shield member (12) is closely attached to the surface of the insulating member 2 and is grounded. The shield member (12) is made of non-magnetic metal braided wire, plating, or conductive paint. Upper shield end (12
The atmosphere in a) is set to 0, and the lower shield end (
12b) is filled with liquid helium (c), which is a cryogenic liquid refrigerant.

すなわち、上部のシールド端(12a)は超電導機器の
外部に設けてあり、下部のシールド端(12b)は内部
に設けてある. 次に上記構成の作用について説明する.角部■)のフラ
ンジ■とシールド部材(l2)はいずれも接地してある
ため、角部■)の電界はゼロになる。同様に間隙部(1
0)の支持体■とシールド部材(12)はいずれも接地
してあるため、間隙部(10)の電界はゼロになる.こ
のことから角部■や間隙部(10)の部分放電は発生し
なくなる.なお、シールド端(12a)および(12b
)の電界は高くなるが、その所在部をそれぞれ絶縁耐力
の高い大気■と液体ヘリウム■にしてあるため,シール
ド端(12a) (12b)は第4図に示した従来例の
角部■や間隙部(IO)に比べ部分放電の発生が抑えら
れる。
That is, the upper shield end (12a) is provided outside the superconducting device, and the lower shield end (12b) is provided inside. Next, we will explain the effect of the above configuration. Since the flange (2) of the corner (2) and the shield member (l2) are both grounded, the electric field at the corner (2) becomes zero. Similarly, the gap (1
Since the support body 0) and the shield member (12) are both grounded, the electric field in the gap (10) becomes zero. As a result, partial discharges at the corner ■ and the gap (10) no longer occur. Note that the shield ends (12a) and (12b
), but since the electric field is located in the atmosphere ■ and liquid helium ■, which have high dielectric strength, respectively, the shield ends (12a) and (12b) are similar to the corners ■ and the conventional example shown in Fig. 4. Occurrence of partial discharge can be suppressed compared to the gap (IO).

以上説明したように第1図に示した電流リード■は、絶
縁部材0の表面に密着させたシールド部材(12)を備
えてあるので角部0や間隙部(1o)の部分放電の発生
を防止することができ、シールド端(12a), (1
2b)は所在部をそれぞれ大気0中、液体ヘリウム■中
としてあるので部分放電の発生を抑えることができる。
As explained above, the current lead ■ shown in FIG. The shield end (12a), (1
2b) is located in the atmosphere and in liquid helium, respectively, so that the occurrence of partial discharge can be suppressed.

実施例2 次に本発明の第2の実施例について第2図を参照して説
明する。第2図は第1図,第3図と同様に電流リードの
断面構成図を示す.(1)は電流リードであり、上部の
シールド端(12a)に半導電層(14)を施してある
ことが第1図に示した電流リード(I1)と異なる。半
導電層(14)は炭化ケイ素を含む塗料やテープなどで
形成してある。
Embodiment 2 Next, a second embodiment of the present invention will be described with reference to FIG. Figure 2 shows a cross-sectional diagram of the current lead, similar to Figures 1 and 3. (1) is a current lead, which differs from the current lead (I1) shown in FIG. 1 in that a semiconducting layer (14) is applied to the upper shield end (12a). The semiconductive layer (14) is formed of paint or tape containing silicon carbide.

次にこの実施例2の作用について説明する。半導電層(
l4)にはシールド@(12a)に近い絶縁部材■の表
面電位を徐々に変化させる電界緩和効果がある.この効
果によってシールド端(12a)での部分放電の発生を
抑えることができる。他は実施例1の通りである6 さらに第1図,第2図の変形として、第2図に示した半
導電層(l4)はシールド端(12a), (12b)
の両方に施すことができる.また、第1図,第2図に示
したシールド部材(12)を編線とした場合は、シール
ド部材(l2)の外側に被覆を施すことによって絶縁部
材■とシールド部材(12)の密着性を高めることがで
きる。
Next, the operation of this second embodiment will be explained. Semiconducting layer (
14) has an electric field relaxation effect that gradually changes the surface potential of the insulating member ① near the shield @(12a). This effect can suppress the occurrence of partial discharge at the shield end (12a). The rest is as in Example 1.6 Furthermore, as a modification of FIGS. 1 and 2, the semiconducting layer (l4) shown in FIG.
It can be applied to both. In addition, when the shield member (12) shown in Figs. 1 and 2 is made of braided wire, the adhesion between the insulating member ■ and the shield member (12) can be improved by coating the outside of the shield member (l2). can be increased.

実施例3 第3図に第3の実施例を示す。極低温用の電流リード■
の一端は常温側(L6a)であり、他端は低温側(16
b)である。常温側(16a)は図示しない超電導機器
の外側に取付けられ、低温側(16b)は内側に取付け
られる。
Example 3 A third example is shown in FIG. Current lead for cryogenic temperatures■
One end is the room temperature side (L6a), and the other end is the low temperature side (L6a).
b). The normal temperature side (16a) is attached to the outside of a superconducting device (not shown), and the low temperature side (16b) is attached to the inside.

極低温用電流リード■の中心部は中空銅パイプからなる
導体(ニ)であり、中空孔(17)は極低温冷媒の蒸発
ガスを導き出すためのものである。導体(イ)には絶縁
部材■が被覆してあり、その絶縁部材0の材料は繊維強
化プラスチックである。絶縁部材■の表面には導電層(
18)が設けてあり、その導電層(18)は無電解メッ
キで形成される,導電層(18)には導電テープ層(1
9)が被覆してあり、その導電テープ層(19)はアル
ミニウムのテープを多重に巻回したものであり、しかも
隣接したテープが容易にずれるように緩く巻回したもの
である.導電テープ層(l9)にはステンレス製の金属
パイプ(20)を被せ.接地部材(E)で接地してある
.次に上記構成の作用について説明する.電流リードω
の低温側(lb)は超電導機器の運転・休止に伴い温度
が大きく変化する。この温度変化に伴って導体(イ),
絶縁部材■及び導電層(18)は一体に伸縮するが,導
電層(l8)と金属パイプ(20)は互いに相対変位す
る。この相対変位に伴って導電層(18)と金属バイブ
(20)の間の導電テープ層(19)は層内の隣接テー
プが容易にずれる。また,導電テープ層(l9)は導電
層(18)と金属パイプ(20)を導通させることから
絶縁部材■の表面と金属パイプ(20)の間には電界が
発生しないため部分放電も発生しない。
The center of the cryogenic current lead (2) is a conductor (d) made of a hollow copper pipe, and the hollow hole (17) is for guiding the evaporated gas of the cryogenic refrigerant. The conductor (A) is covered with an insulating member 0, and the material of the insulating member 0 is fiber-reinforced plastic. A conductive layer (
18), the conductive layer (18) is formed by electroless plating, and the conductive layer (18) is provided with a conductive tape layer (18).
9) is coated, and the conductive tape layer (19) is made of aluminum tape wound multiple times, and is wound loosely so that adjacent tapes can be easily shifted. The conductive tape layer (19) is covered with a stainless steel metal pipe (20). It is grounded with the grounding member (E). Next, we will explain the effect of the above configuration. current lead ω
On the low temperature side (lb), the temperature changes greatly as the superconducting equipment operates and stops. With this temperature change, the conductor (A),
The insulating member (1) and the conductive layer (18) expand and contract together, but the conductive layer (18) and the metal pipe (20) are displaced relative to each other. With this relative displacement, adjacent tapes in the conductive tape layer (19) between the conductive layer (18) and the metal vibrator (20) are easily displaced. In addition, since the conductive tape layer (l9) provides electrical continuity between the conductive layer (18) and the metal pipe (20), no electric field is generated between the surface of the insulating member ■ and the metal pipe (20), so no partial discharge occurs. .

以上説明したように導電層(18)と金肩バイプ(20
)は直に摩擦することがなく、導電テープ層(19)が
導電層(18)と金属パイプ(20)の相対変位を吸収
するので,導電層(18)は擦られることが少なくなる
. さらに実施例3の変形例として.導電層(18)として
は銅の紹線を用い、二〇編線を絶縁部材■の表面に接着
してもよい。また、導電層(18)としては導電塗料を
用いてもよい。導電テープ層(19)はテープを重ねな
がら巻回したものでもよく、あるいは重ねないで巻回し
たものでもよい。また、エンボス加工を施したテープを
用いることにより隣接テープが容易にずれるようにして
もよい。金属パイプ(20)は予め分割しておいたもの
を結合したものでもよい。導電層(18)と金屑パイブ
(2o)の一箇所が相対変位しないように固定し、固定
した部分の導電テープ層(19)を接着剤で固めること
により、極低温冷媒の蒸発ガスが導電テープ層(19)
の層内を通過しないようにしてもよい。
As explained above, the conductive layer (18) and the golden shoulder pipe (20)
) does not rub directly, and the conductive tape layer (19) absorbs the relative displacement between the conductive layer (18) and the metal pipe (20), so the conductive layer (18) is less likely to be rubbed. Furthermore, as a modification of Example 3. A copper introduction wire may be used as the conductive layer (18), and twenty braided wires may be bonded to the surface of the insulating member (1). Furthermore, a conductive paint may be used as the conductive layer (18). The conductive tape layer (19) may be formed by winding the tapes in an overlapping manner, or may be formed by winding the tapes without overlapping them. Further, by using an embossed tape, adjacent tapes may be easily displaced. The metal pipe (20) may be a combination of previously divided pieces. By fixing the conductive layer (18) and the metal scrap pipe (2o) in one place so that they do not displace relative to each other, and hardening the fixed part of the conductive tape layer (19) with adhesive, the evaporated gas of the cryogenic refrigerant becomes conductive. Tape layer (19)
It may be arranged so that it does not pass through the layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、請求項1に示す第1の手段のよう
に構成することにより、角部やltjl隙部においては
電界がゼロになるから部分放電が発生しなくなり、また
電界が高くなるシールド端は、所在部をそれぞれ大気と
極低温冷媒にしてあるため、部分放電の発生が抑えられ
る.また、請求項2に示す第2の手段のように構成する
ことにより,導電層と金属パイプが温度変化によって相
対変位した場合に、導電層と金属パイプとの間の導電テ
ープ層がずれるため導電層の摩耗や剥離が防止できる。
As explained above, by configuring as in the first means shown in claim 1, the electric field becomes zero at corners and ltjl gaps, so partial discharge does not occur, and the shield where the electric field becomes high The ends are connected to the atmosphere and cryogenic refrigerant, respectively, so the occurrence of partial discharge can be suppressed. Further, by configuring as in the second means shown in claim 2, when the conductive layer and the metal pipe undergo relative displacement due to a temperature change, the conductive tape layer between the conductive layer and the metal pipe is shifted, so that the conductive tape layer is displaced. Abrasion and peeling of the layer can be prevented.

従って本発明によれば絶縁部材の損傷を防ぎ、信頼性の
高い極低温用電流リードを提供することができる。
Therefore, according to the present invention, damage to the insulating member can be prevented and a highly reliable current lead for cryogenic temperatures can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の第1乃至第3の実施例を示
す縦断面図,第4図は従来例を示す縦断面図である。 1・・・電流リード   4・・・導体5・・・絶縁部
材    6・・・大気8・・・液体ヘリウム  l2
・・・シールド部材l8・・・導電層     l9・
・・導電テープ層20・・・金属パイプ   E・・・
接地部材代理人 弁理士  大 胡 典 夫
1 to 3 are longitudinal sectional views showing first to third embodiments of the present invention, and FIG. 4 is a longitudinal sectional view showing a conventional example. 1... Current lead 4... Conductor 5... Insulating member 6... Atmosphere 8... Liquid helium l2
... Shield member l8... Conductive layer l9.
...Conductive tape layer 20...Metal pipe E...
Grounding component representative Patent attorney Norio Ogo

Claims (2)

【特許請求の範囲】[Claims] (1)液体ヘリウムのような極低温冷媒中から大気雰囲
気に引き出す導体と、導体の端部を残して導体に被覆し
た絶縁部材と、絶縁部材の端部を残して表面に密着させ
たシールド部材とを備え、シールド片端を大気中に出し
、他端を極低温冷媒中に入れ、シールド部材を接地する
接地部材を設けたことを特徴とする極低温用電流リード
(1) A conductor drawn out from a cryogenic refrigerant such as liquid helium to the atmosphere, an insulating member covering the conductor with the ends of the conductor remaining, and a shielding member tightly attached to the surface with the ends of the insulating member remaining. A current lead for cryogenic use, characterized in that one end of the shield is exposed to the atmosphere, the other end is placed in a cryogenic refrigerant, and a grounding member is provided for grounding the shield member.
(2)液体ヘリウムのような極低温冷媒中から大気雰囲
気中に引出す中空導体と、中空導体の端部を残して中空
導体に被覆した絶縁部材と、絶縁部材の表面に密着した
導電層と、導電層に端部を残して自身のずれを容易に導
電テープを巻回被覆した導電テープ層と、導電テープ層
に被せた金属パイプと、金属パイプを接地する接地部材
を設けたことを特徴とする極低温用電流リード。
(2) A hollow conductor drawn out from a cryogenic refrigerant such as liquid helium into the atmosphere, an insulating member covering the hollow conductor with the ends of the hollow conductor remaining, and a conductive layer in close contact with the surface of the insulating member; The present invention is characterized by the following: a conductive tape layer in which a conductive tape is wound to easily cover the conductive tape so as to leave an end on the conductive layer; a metal pipe covered with the conductive tape layer; and a grounding member for grounding the metal pipe. Current lead for cryogenic temperatures.
JP1055822A 1989-03-08 1989-03-08 Cryogenic current lead Pending JPH02237413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055822A JPH02237413A (en) 1989-03-08 1989-03-08 Cryogenic current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055822A JPH02237413A (en) 1989-03-08 1989-03-08 Cryogenic current lead

Publications (1)

Publication Number Publication Date
JPH02237413A true JPH02237413A (en) 1990-09-20

Family

ID=13009650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055822A Pending JPH02237413A (en) 1989-03-08 1989-03-08 Cryogenic current lead

Country Status (1)

Country Link
JP (1) JPH02237413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) * 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation
JP2006344928A (en) * 2005-03-17 2006-12-21 Nexans Electric bushing for superconductive member
JP2007200882A (en) * 2006-01-24 2007-08-09 Nexans Electric bushing
CN105044573A (en) * 2015-07-17 2015-11-11 中国科学院电工研究所 High temperature superconductivity power device low temperature high voltage partial discharge experiment and test device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) * 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation
JP2006344928A (en) * 2005-03-17 2006-12-21 Nexans Electric bushing for superconductive member
JP2007200882A (en) * 2006-01-24 2007-08-09 Nexans Electric bushing
KR101292146B1 (en) * 2006-01-24 2013-08-09 넥쌍 Electrical bushing
CN105044573A (en) * 2015-07-17 2015-11-11 中国科学院电工研究所 High temperature superconductivity power device low temperature high voltage partial discharge experiment and test device

Similar Documents

Publication Publication Date Title
US3541473A (en) Suppression of electro-magnetic interference in electrical power conductors
JPH0670498A (en) Apparatus for prevention of corona for stator winding of electric equipment
JP2001052542A (en) Superconductive cable
JPH02237413A (en) Cryogenic current lead
HU200029B (en) High-voltage transformer
JP3193976B2 (en) High voltage noise filter and magnetron device
US3736365A (en) Cryogenic cable
US3017485A (en) Means for electric vacuum furnaces
JP3029198B1 (en) Grounding wire
JP3372984B2 (en) Bushing shield device
JP3601557B2 (en) Superconducting cable
JP2001224120A (en) Gas-insulated bus
RU1786510C (en) Non-insulated wire for aerial electric power transmission lines
JPS6243603B2 (en)
JPH03151608A (en) Lead wire supporting equipment
JPH06187849A (en) High-temperature superconducting cable
JPS62139210A (en) Power cable
JP2732720B2 (en) Stationary guidance equipment
JPH02159707A (en) Through type current transformer
JPH03103052A (en) External shielding structure of coil for linear motor
JPS6123644B2 (en)
JPS61117809A (en) Device for supporting transformer lead wire
JPS5834657Y2 (en) power cable
JPH0935955A (en) Winding for gas-insulated stationary electric machine
JPH0620824A (en) Driving coil