JPH02237178A - Manufacture of laminated electromotive force element - Google Patents

Manufacture of laminated electromotive force element

Info

Publication number
JPH02237178A
JPH02237178A JP1058388A JP5838889A JPH02237178A JP H02237178 A JPH02237178 A JP H02237178A JP 1058388 A JP1058388 A JP 1058388A JP 5838889 A JP5838889 A JP 5838889A JP H02237178 A JPH02237178 A JP H02237178A
Authority
JP
Japan
Prior art keywords
laminated
board
type
laminate
type ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058388A
Other languages
Japanese (ja)
Inventor
Takayoshi Kodama
児玉 貴義
Nobuhiro Ito
信宏 伊藤
Akira Kumada
明 久万田
Mitsuhiro Murata
充弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1058388A priority Critical patent/JPH02237178A/en
Publication of JPH02237178A publication Critical patent/JPH02237178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve production efficiency by laminating a P-type ceramic semiconductor board and an N-type ceramic semiconductor board before burning with an insulating ceramic board before burning therebetween, and by burning the whole body as in the state of lamination. CONSTITUTION:A P-type semiconductor ceramic board 1 and an N-type semiconductor ceramic board 2 are laminated alternatively with an insulating ceramic board 7 before burning therebetween to form an laminated body. Thereafter, the laminated body is heated and burnt through application of a load to make it integral. The integrated laminated body is cut off and divided into a plurality of element raw materials. A cold junction electrode 3 is formed to one end side of the element raw material and a hot junction electrode 4 is formed to the other end side. Thereby, it is possible to simplify an integral formation process of a laminated body extremely and to greatly improve production efficiency of a laminated electromotive force element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、人体等から発せられる赤外線を感知
して熱起電力を発生させる積層熱起電力素子の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a laminated thermoelectromotive force that generates a thermoelectromotive force by sensing infrared rays emitted from, for example, a human body.

〔従来の技術〕[Conventional technology]

人体から発せられる赤外線を惑知して熱起電力を発生す
る熱起電力素子が室内侵入者等の検出手段として防犯シ
ステム等において広く使用されている。この種の熱起電
力素子として、近年においては、熱起電力を高めるため
に、複数のP型半導体層とn型半導体層を積層して一体
化した積層熱起電力素子が広く使用されている。
Thermoelectromotive force elements that generate thermoelectromotive force by sensing infrared rays emitted from the human body are widely used in crime prevention systems and the like as means for detecting indoor intruders. In recent years, as this type of thermoelectromotive force element, in order to increase the thermoelectromotive force, a multilayer thermoelectromotive force element in which multiple P-type semiconductor layers and n-type semiconductor layers are laminated and integrated has been widely used. .

第3図には従来の積層熱起電力素子の一般的な断面構成
が示されている。この種の積層熱起電力素子は、通常、
次のように製造されている.まず、焼成されたp型セラ
ミック半導体板1とn型セラミック半導体板2の片面側
に、導電ぺ一スト等の焼付印刷により冷接点電極3を形
成し、また、裏面側には前記冷接点電極3と対になる温
接点電極4を同様に形成しておく。次に、これらの冷接
点電極3および温接点電極4の表面にガラスの導電材あ
るいは導電性樹脂を繰り返し塗布乾燥して導電N5を形
成する.次に、前記冷接点電極3同志および温接点電極
4同志を重ねてP型セラミック半導体板1とn型セラミ
ック半導体板2とを交互に積み重ねて積層する。次に、
この積層体の上側から荷重をかけながら加熱して導電層
5同志を融着して前記積層体を一体化する。次に、この
一体化された積層体の各層の空間部にエボキシ等の絶縁
樹脂を注入充填して絶縁層6を形成するものであった. 〔発明が解決しようとする課題] しかしながら、上記従来の製造方法においては、P型セ
ラミック半導体板1とn型セラミック半導体板2との積
層体の一体化を導電性樹脂等の融着を利用して行ってい
るため、積層熱起電力素子の製造に際しては、冷接点電
極3および温接点電極4の表面に導電性樹脂等を繰り返
し塗布乾燥するという面倒な時間がかかる作業を行わな
ければならず、積層熱起電力素子の生産効率を向上する
上で障害となっていた. 本発明は、上記従来の課題を解決するためになされたも
のであり、その目的は、導電性樹脂等の塗布乾燥という
面倒な作業を必要とせず、生産効率を大幅に向上させる
ことができる積層熱起電力素子の製造方法を提供するこ
とにある.〔課題を解決するための手段〕 本発明は上記目的を達成するために、次のように構成さ
れている。すなわち、本発明の積層熱起電力素子の製造
方法は、間に焼成前の絶縁セラミック板を挟んで焼成前
のp型半導体セラミック板とn型半導体セラミック板と
を交互に重ねて積層体を形成し、然る後に、この積層体
を、荷重を加えながら加熱焼成して一体化し、次に、こ
の一体化した積層体を複数に切断分割してエレメント素
材を切り出し、この切り出されたエレメント素材の一端
側に冷接点電極を、他端側に温接点電極をそれぞれ形成
することを特徴として構成されている。
FIG. 3 shows a general cross-sectional configuration of a conventional laminated thermoelectromotive force element. This type of laminated thermoelectromotive force element usually
It is manufactured as follows. First, a cold contact electrode 3 is formed on one side of the fired p-type ceramic semiconductor board 1 and n-type ceramic semiconductor board 2 by baking printing with conductive paste, etc., and the cold contact electrode 3 is formed on the back side. A hot junction electrode 4 to be paired with 3 is formed in the same manner. Next, a glass conductive material or a conductive resin is repeatedly applied and dried on the surfaces of the cold contact electrode 3 and the hot contact electrode 4 to form a conductive layer N5. Next, the cold contact electrodes 3 and the hot contact electrodes 4 are stacked on top of each other, and the P-type ceramic semiconductor boards 1 and the n-type ceramic semiconductor boards 2 are stacked alternately. next,
The laminate is heated while applying a load from above to fuse the conductive layers 5 together, thereby integrating the laminate. Next, an insulating resin such as epoxy was injected into the spaces in each layer of this integrated laminate to form an insulating layer 6. [Problems to be Solved by the Invention] However, in the conventional manufacturing method described above, the laminate of the P-type ceramic semiconductor board 1 and the N-type ceramic semiconductor board 2 is integrated by using fusion of a conductive resin or the like. Therefore, when manufacturing a laminated thermoelectromotive force element, it is necessary to repeatedly apply and dry conductive resin on the surfaces of the cold contact electrode 3 and the hot contact electrode 4, which is a troublesome and time-consuming process. This has been an obstacle to improving the production efficiency of laminated thermoelectromotive devices. The present invention has been made in order to solve the above-mentioned conventional problems, and its purpose is to provide a laminated film that does not require the troublesome work of coating and drying conductive resin, etc., and can significantly improve production efficiency. The purpose of this invention is to provide a method for manufacturing a thermoelectromotive force element. [Means for Solving the Problems] In order to achieve the above object, the present invention is configured as follows. That is, the method for manufacturing a laminated thermoelectromotive force element of the present invention involves forming a laminate by alternately stacking unfired p-type semiconductor ceramic plates and n-type semiconductor ceramic plates with unfired insulating ceramic plates sandwiched between them. Then, this laminate is heated and fired while applying a load to integrate it, and then this integrated laminate is cut and divided into a plurality of pieces to cut out element materials. The structure is characterized in that a cold contact electrode is formed on one end side and a hot contact electrode is formed on the other end side.

〔作用〕[Effect]

本発明では、焼成前のp型セラミック半導体板とn型セ
ラミック半導体板とを焼成前の絶縁セラミック板を挟ん
で積層するが、その積層状態で上側から荷重を加え、加
熱することで、各セラミック板の焼成が行われると同時
に積層体の一体化が行われる. 〔実施例〕 以下、本発明の一実施例を図面に基づいて説明する。第
1図および第2図には本発明に係る積層熱起電力素子の
製造方法の一実施例が示されている。
In the present invention, an unfired p-type ceramic semiconductor board and an n-type ceramic semiconductor board are laminated with an unfired insulating ceramic board in between, and by applying a load from above and heating the laminated state, each ceramic At the same time as the board is fired, the laminate is integrated. [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIGS. 1 and 2 show an embodiment of a method for manufacturing a laminated thermoelectromotive force element according to the present invention.

本実施例においては、焼成前のP型セラミック半導体板
1と、焼成前のn型セラミック半導体板2とを間に焼成
前の絶縁セラミック仮7を挟んで第1図に示すように交
互に複数積層する.次に、この積層体の上側に荷重をか
けながら、加熱し、これらセラミック板1,2.7を焼
成することによって、積層体を一体的に固定する.次に
、この一体化した積層体を第1図に示す切断線a,bに
沿って切断することにより、積層熱起電力素子のエレメ
ント素材を切り出す。
In the present embodiment, a plurality of unfired P-type ceramic semiconductor boards 1 and unfired N-type ceramic semiconductor boards 2 are alternately arranged in plurality as shown in FIG. Layer. Next, the laminate is fixed integrally by heating and firing the ceramic plates 1, 2.7 while applying a load to the upper side of the laminate. Next, the element material of the laminated thermoelectromotive element is cut out by cutting this integrated laminate along cutting lines a and b shown in FIG.

次に、この切り出されたエレメント素材の長手方向の一
端側に冷接点電極を、他端側に温接点電極をそれぞれ導
電ペースト等の焼付印刷により形成している.本実施例
では、第2図に示すように、一番上側のp型セラミック
半導体板1の側端部に信号取り出し用のリードを接続す
るための冷接点電極3aが形成され、上側から第3層目
のn型セラミック半導体板2と5層目のp型セラミック
半導体板1とを接続する冷接点電極3bが形成され、同
様に、上下隣合うp型セラミック半導体板1とn型セラ
ミック半導体板2とを接続する冷接点電極3c,3dが
形成される。そして一番下側のn型セラミック半導体板
2の側端面にはアース線を接続するための冷接点電極3
eが形成される。また、エレメント素材の右側端部の側
端面には、番上の第1層目のP型セラミック半導体板l
と第3層目のn型セラミック半導体板2とを接続する温
接点電極4aが導電ペースト等の焼付印刷により形成さ
れ、同様に第5層目のp型セラミック半導体板lと第7
層目のn型セラミック半導体仮2とを接続する温接点電
極4bが形成される。同様に、上下隣合うp型セラミッ
ク半導体板1とn型セラミック半導体板2とを接続する
温接点電極4c,4dが形成され、目的とする積層熱起
電力素子のエレメントが形成されるのである.?に、本
実施例の具体的な試作例について説明する。
Next, a cold contact electrode is formed on one end of the element material in the longitudinal direction, and a hot contact electrode is formed on the other end by baking printing with conductive paste or the like. In this embodiment, as shown in FIG. 2, a cold contact electrode 3a for connecting a lead for signal extraction is formed at the side end of the uppermost p-type ceramic semiconductor board 1, and a third cold contact electrode 3a is formed from the top. A cold contact electrode 3b is formed to connect the n-type ceramic semiconductor board 2 of the layer and the p-type ceramic semiconductor board 1 of the fifth layer, and similarly, the p-type ceramic semiconductor board 1 and the n-type ceramic semiconductor board that are vertically adjacent to each other are connected. Cold contact electrodes 3c and 3d are formed to connect the two. On the side end surface of the lowest n-type ceramic semiconductor board 2 is a cold contact electrode 3 for connecting a ground wire.
e is formed. In addition, on the side end surface of the right end of the element material, the first layer of P-type ceramic semiconductor plate l
A hot junction electrode 4a connecting the third-layer n-type ceramic semiconductor plate 2 and the fifth-layer p-type ceramic semiconductor plate 1 is formed by baking printing with conductive paste, etc.
A hot junction electrode 4b is formed to connect the n-type ceramic semiconductor temporary 2 of the layer. Similarly, hot junction electrodes 4c and 4d connecting the vertically adjacent p-type ceramic semiconductor board 1 and n-type ceramic semiconductor board 2 are formed, thereby forming the desired element of the laminated thermoelectromotive element. ? Next, a concrete prototype example of this embodiment will be explained.

(a)半導体セラミック板の生成 p型半導体セラミック板の生成 酸化ニッケル(N i O ) 99.5molχに対
して酸化リチウム(Li.0)をQ.5molズドープ
した材料を40X25X0.05no+のグリーンシ一
トとして成形した。
(a) Generation of semiconductor ceramic plate Generation of p-type semiconductor ceramic plate Lithium oxide (Li. The 5 mols doped material was molded into a 40x25x0.05no+ green sheet.

n型半導体セラミック板の生成 チタン酸バリウム(B a T i O:+ ) 80
molχおよびチタン酸カルシウム(C a T i 
03 ) 19.511+01χに対して酸化イットリ
ウム(y.o.)を0.5a+olχ ドーブした材料
を40X25X0.05a+o+のグリーンシ一トとし
て成形した。
Production of n-type semiconductor ceramic plate Barium titanate (B a T i O:+) 80
molχ and calcium titanate (C a T i
03) A material in which 19.511+01χ was doped with 0.5a+olχ of yttrium oxide (yo) was molded into a 40×25×0.05a+o+ green sheet.

(b)絶縁セラミック板の形成 絶縁セラミック板として、酸化イットリウム(YzO,
 ) 3+++olχで部分安定化した酸化ジルコニウ
ム(Z,0■)を40X25X0.05mmのグリーン
シ一トとして成形した。
(b) Formation of insulating ceramic plate Yttrium oxide (YzO,
) Zirconium oxide (Z, 0■) partially stabilized with 3+++olχ was molded into a green sheet of 40 x 25 x 0.05 mm.

(C)セラミック板の積層一体形成 上記のグリーンシ一トからなるp型セラミック半導体板
とn型セラミック半導体板とを間にグリーンシ一トの絶
縁セラミック板を挟んで交互に重ね合わせ、これを繰り
返してp型セラミック半導体板とn型セラミック半導体
板とを合計25層積層し、上側から荷重を加えて圧着し
た。
(C) Integrated lamination of ceramic plates P-type ceramic semiconductor plates and n-type ceramic semiconductor plates made of the green sheets described above are stacked alternately with insulating ceramic plates of green sheets sandwiched between them. A total of 25 layers of p-type ceramic semiconductor boards and n-type ceramic semiconductor boards were stacked repeatedly, and a load was applied from above to bond them together.

次に、この圧着された積層体を8 X5.I X4.5
mn+の寸法にカットした後、これを大気中において1
300゜Cの温度で1時間焼成し、前記積層体を強固に
一体化した。
Next, this crimped laminate was placed in an 8 x 5. IX4.5
After cutting it to a size of mn+, it is placed in the atmosphere for 1
The laminate was baked at a temperature of 300° C. for 1 hour to firmly integrate the laminate.

(d)エレメント素材の切り出し 上記のようにして一体化した積層体を第1図に示すよう
に切断線a,bに沿って切断し、縦6llIIll×横
0.2 +mn+X高さ4+++mのエレメント素材を
複数切り出した. (e)冷・温接点電極の形成 上記のようにして切り出したエレメント素材の長手方向
の両端部に焼付銀ペーストを印刷し、950゜Cに加熱
してこれを焼き付け、第2図に示すように、冷接点電極
3a〜3eと温接点電極4a〜4dとを形成し、最終目
的の積層熱起電力素子を形成した。
(d) Cutting out the element material The laminate integrated as described above is cut along cutting lines a and b as shown in Fig. 1, and the element material is 6llllllll (length) x 0.2 (width) + mn + x height 4 + + + m. I cut out several. (e) Formation of cold and hot contact electrodes Print a baking silver paste on both longitudinal ends of the element material cut out as above, heat it to 950°C and bake it, as shown in Figure 2. Then, cold contact electrodes 3a to 3e and hot contact electrodes 4a to 4d were formed to form the final layered thermoelectromotive element.

(f)結果 上記試作積層熱起電力素子の熱起電力を測定したところ
、約35mV/kというすぐれた熱起電力の測定値を得
ることができた. 本実施例では、焼成前のP型セラミック半導体板lと、
絶縁セラミック板7と、n型セラミック半導体板2とを
積層し、これら各セラミック板1,2.7の焼成時に積
層体を一体化するものであるから、従来例の面倒な作業
、すなわち、セラミック半導体板1.2を予め焼成し、
この焼成した各セラミック半導体板1.2の表面および
裏面に接点電極3.4を形成し、さらにこれら接点電極
3.4の表面に導電性樹脂等を塗布乾燥によって形成す
るという面倒な作業を省略できるので、p型セラミック
半導体板lとn型セラミック半導体板2との積層体の一
体化が非常に容易となり、これにより積層熱起電力素子
の生産効率を大幅に向上させることができる。本試作例
においては、従来の製造方法に較べ生産効率を68%も
向上させることができた。
(f) Results When the thermoelectromotive force of the above prototype laminated thermoelectromotive force element was measured, an excellent thermoelectromotive force value of about 35 mV/k could be obtained. In this example, a P-type ceramic semiconductor plate l before firing,
Since the insulating ceramic plate 7 and the n-type ceramic semiconductor plate 2 are laminated and the laminated body is integrated when the ceramic plates 1 and 2.7 are fired, the troublesome work of the conventional example, that is, the ceramic Semiconductor board 1.2 is fired in advance,
The troublesome work of forming contact electrodes 3.4 on the front and back surfaces of each fired ceramic semiconductor board 1.2 and further forming conductive resin or the like on the surfaces of these contact electrodes 3.4 by coating and drying is omitted. Therefore, it becomes very easy to integrate the laminate of the p-type ceramic semiconductor board 1 and the n-type ceramic semiconductor board 2, and thereby the production efficiency of the multilayer thermoelectromotive element can be greatly improved. In this prototype example, production efficiency was improved by 68% compared to conventional manufacturing methods.

本発明は上記実施例に限定されることはな《様々な実施
の態様を採り得るものである。例えば、上記実施例では
、冷接点電極と温接点電極を銀ペーストの焼付により印
刷形成したが、これら接点電極3a〜3e,4a〜4d
の材料として他の導電性材料を用いることが可能であり
、また、その接点電極の形成方法も焼付印刷以外の例え
ばろう付け等の適宜の手段により形成することも可能で
ある。また、p型セラミック半導体板1とn型セラミッ
ク半導体Fi2の成分も上記実施例以外の成分構成とす
ることができる.さらに、冷接点電極3a〜3eと温接
点電極4a〜4dの形成位置も、必ずしも実施例のよう
にエレメント素材の側端面に形成する必要はなく、例え
ば、前後両端面に形成することも可能である。
The present invention is not limited to the above-mentioned embodiments, and can be implemented in various ways. For example, in the above embodiment, the cold contact electrodes and the hot contact electrodes were printed by baking silver paste, but these contact electrodes 3a to 3e, 4a to 4d
It is possible to use other conductive materials as the material of the contact electrode, and the contact electrode can also be formed by an appropriate means other than baking printing, such as brazing. Further, the components of the p-type ceramic semiconductor board 1 and the n-type ceramic semiconductor Fi2 may also have compositions other than those in the above embodiments. Furthermore, the formation positions of the cold contact electrodes 3a to 3e and the hot contact electrodes 4a to 4d do not necessarily have to be formed on the side end faces of the element material as in the embodiment, but can also be formed on both the front and rear end faces, for example. be.

〔発明の効果〕〔Effect of the invention〕

本発明は焼成前のp型セラミック半導体板とn型セラミ
ック半導体板とを同様に焼成前の絶縁セラミック板を挟
んで交互に複数積層し、この積層体をこれらセラミック
板の焼成段階で一体化するものであるから、前記積層体
の一体形成工程が極めて簡易化され、これにより、積層
熱起電力素子の生産効率を大幅に高めることが可能とな
る。
In the present invention, a plurality of unfired p-type ceramic semiconductor boards and n-type ceramic semiconductor boards are alternately stacked with unfired insulating ceramic boards in between, and these laminates are integrated at the stage of firing these ceramic boards. As a result, the step of integrally forming the laminate is extremely simplified, thereby making it possible to greatly increase the production efficiency of the laminate thermoelectromotive element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る積層熱起電力素子の
製造方法の一例を示し、第1図は焼成前のp型セラミッ
ク半導体板とn型セラミック半導体板とを絶縁セラミッ
ク板を挟んで積層することによって得られる積層体の斜
視図、第2図は第1図の積層体から切り出されたエレメ
ント素材に冷接点電極と温接点電極とを形成した状態を
示す積層熱起電力素子の斜視図、第3図は従来の一般的
な積層熱起電力素子の断面図である. 1・・・p型セラミック半導体板、2・・・n型セラミ
ック半導体板、3,3a〜3e・・・冷接点電極、4.
4a〜4d・・・温接点電極、5・・・導電層、6・・
・絶縁層、7・・・絶縁セラミック板。 第 第
FIGS. 1 and 2 show an example of a method for manufacturing a laminated thermoelectromotive force element according to the present invention, and FIG. 1 shows a p-type ceramic semiconductor board and an n-type ceramic semiconductor board before firing, sandwiching an insulating ceramic board between them. FIG. 2 is a perspective view of a laminate obtained by laminating the laminate shown in FIG. The perspective view and FIG. 3 are cross-sectional views of a conventional general laminated thermoelectromotive force element. 1... P-type ceramic semiconductor board, 2... N-type ceramic semiconductor board, 3, 3a to 3e... Cold contact electrode, 4.
4a to 4d... Hot contact electrode, 5... Conductive layer, 6...
- Insulating layer, 7... insulating ceramic plate. No.

Claims (1)

【特許請求の範囲】[Claims] 間に焼成前の絶縁セラミック板を挟んで焼成前のp型半
導体セラミック板とn型半導体セラミック板とを交互に
重ねて積層体を形成し、然る後に、この積層体を、荷重
を加えながら加熱焼成して一体化し、次に、この一体化
した積層体を複数に切断分割してエレメント素材を切り
出し、この切り出されたエレメント素材の一端側に冷接
点電極を、他端側に温接点電極をそれぞれ形成する積層
熱起電力素子の製造方法。
A laminate is formed by alternately stacking unfired p-type semiconductor ceramic plates and n-type semiconductor ceramic plates with unfired insulating ceramic plates sandwiched between them, and then this laminate is heated while applying a load. The integrated laminate is heated and fired to integrate, and then the integrated laminate is cut and divided into multiple pieces to cut out the element material.A cold junction electrode is placed on one end of the cut out element material, and a hot junction electrode is placed on the other end. A method for manufacturing a laminated thermoelectromotive force element, which forms a laminated thermoelectromotive force element.
JP1058388A 1989-03-10 1989-03-10 Manufacture of laminated electromotive force element Pending JPH02237178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058388A JPH02237178A (en) 1989-03-10 1989-03-10 Manufacture of laminated electromotive force element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058388A JPH02237178A (en) 1989-03-10 1989-03-10 Manufacture of laminated electromotive force element

Publications (1)

Publication Number Publication Date
JPH02237178A true JPH02237178A (en) 1990-09-19

Family

ID=13082958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058388A Pending JPH02237178A (en) 1989-03-10 1989-03-10 Manufacture of laminated electromotive force element

Country Status (1)

Country Link
JP (1) JPH02237178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524541A (en) * 2010-04-14 2013-06-17 エクセリタス カナダ,インコーポレイテッド Laminated thermopile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524541A (en) * 2010-04-14 2013-06-17 エクセリタス カナダ,インコーポレイテッド Laminated thermopile

Similar Documents

Publication Publication Date Title
US5614044A (en) Method of manufacturing a laminated ceramic device
JPH0360471A (en) Production of laminated ceramics
JPH02237178A (en) Manufacture of laminated electromotive force element
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS59152605A (en) Laminated inductor
JPH04199755A (en) Laminated thermoelectric element
JPH06208903A (en) Multilayer semiconductor ceramic having positive temperature coefficient of resistance
JPH0311673A (en) Manufacture of laminated thermal electromotive force element
JPH02237177A (en) Laminated electromotive force element and its manufacture
JPH02214173A (en) Manufacture of laminated thermoelectric element
JPS61237413A (en) Manufacture of laminate ceramic capacitor
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPS63151087A (en) Multilayer piezoelectric device
JPH0280927A (en) Laminated thermoelectric element and preparation thereof
JPH02178958A (en) Electronic cooling element and manufacture thereof
JP2884378B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH01262678A (en) Laminated thermoelectric element and manufacture thereof
JPH1012404A (en) Lamination type ptc thermistor and its manufacture
JPS60229380A (en) Ceramic actuator
JPH0435886B2 (en)
JP2577460B2 (en) Manufacturing method of laminated piezoelectric element
JPH04167579A (en) Electrostrictive effect element and manufacture thereof
JPS58196078A (en) Electrostrictive effect element
JPH06251907A (en) Thermistor and manufacture thereof
JPH0311674A (en) Laminated thermal electromotive force element