JPH0223702B2 - - Google Patents

Info

Publication number
JPH0223702B2
JPH0223702B2 JP58163789A JP16378983A JPH0223702B2 JP H0223702 B2 JPH0223702 B2 JP H0223702B2 JP 58163789 A JP58163789 A JP 58163789A JP 16378983 A JP16378983 A JP 16378983A JP H0223702 B2 JPH0223702 B2 JP H0223702B2
Authority
JP
Japan
Prior art keywords
engine
fuel
throttle valve
amount
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58163789A
Other languages
Japanese (ja)
Other versions
JPS6056140A (en
Inventor
Takashi Komura
Toyohei Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16378983A priority Critical patent/JPS6056140A/en
Priority to US06/646,684 priority patent/US4513713A/en
Priority to DE19843432379 priority patent/DE3432379A1/en
Priority to GB08422454A priority patent/GB2146142B/en
Priority to FR8413720A priority patent/FR2551498B1/en
Publication of JPS6056140A publication Critical patent/JPS6056140A/en
Publication of JPH0223702B2 publication Critical patent/JPH0223702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning

Description

【発明の詳細な説明】 本発明は内燃エンジンの燃料噴射制御方法に関
し、特にアイドル運転時にエンジンに供給すべき
燃料量をエンジンの運転状態により適応した値に
制御し、もつてエンジン回転数のハンチングを防
止して運転性能の向上を図つた燃料噴射制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control method for an internal combustion engine, and in particular to a method for controlling fuel injection for an internal combustion engine, and in particular for controlling the amount of fuel to be supplied to the engine during idling to a value that is more suited to the operating condition of the engine, thereby preventing engine rotational speed hunting. The present invention relates to a fuel injection control method that prevents this and improves driving performance.

従来内燃エンジンに噴射供給される燃料量を、
エンジン回転数と吸気管内絶対圧とに応じた基本
燃料量に、エンジン運転パラメータ、例えばエン
ジン回転数、吸気管内絶対圧、エンジン水温、ス
ロツトル弁開度、排気酸素濃度等に応じた定数及
び/または係数を加算及び/または乗算すること
により決定し、もつてエンジンに供給される混合
気の空燃比を適宜値に制御するようにした燃料噴
射制御方法が、例えば特開昭57−137633号により
知られている。
The amount of fuel injected into an internal combustion engine is
In addition to the basic fuel amount depending on the engine speed and intake pipe absolute pressure, constants and/or engine operating parameters such as engine speed, intake pipe absolute pressure, engine water temperature, throttle valve opening, exhaust oxygen concentration, etc. A fuel injection control method in which the air-fuel ratio of the air-fuel mixture supplied to the engine is determined by adding and/or multiplying coefficients to an appropriate value is known, for example, from JP-A-57-137633. It is being

又、エンジンの吸気通路の容積、特にスロツト
ル弁下流側通路部分の容積を大きく設計し、吸入
空気の吸気通路の流通時に生じる吸入空気の圧力
損失を極力小さく抑えて吸入空気の充填効率を高
め、もつてエンジン出力の増大等のエンジン特性
の向上を計る方法も知られている。
In addition, the volume of the engine's intake passage, especially the volume of the passage on the downstream side of the throttle valve, is designed to be large to minimize the pressure loss of intake air that occurs when the intake air flows through the intake passage, thereby increasing the filling efficiency of intake air. There are also known methods for improving engine characteristics such as increasing engine output.

しかるに、スロツトル弁下流側の吸気通路部分
の容積を増大させることはエンジンアイドル時等
の低負荷運転時にエンジン回転数の変化度合に対
する吸気管内絶対圧の変化度合を小さくさせるこ
とになり、このため上述のエンジン回転数及び吸
気管内絶対圧による基本燃料量の算出方式(一般
に「スピードデンシテイ方式」と称されるので以
下単に「SD方式」と称する)によればエンジン
に供給すべき燃料量をエンジン運転状態に適応し
て正確に算出出来なくなりエンジン回転数のハン
チング等を生じさせ運転性能に悪影響を与える。
However, increasing the volume of the intake passage downstream of the throttle valve reduces the degree of change in the absolute pressure in the intake pipe with respect to the degree of change in engine speed during low-load operation such as when the engine is idling. According to the basic fuel amount calculation method based on the engine speed and the absolute pressure in the intake pipe (generally referred to as the "speed density method", hereinafter simply referred to as the "SD method"), the amount of fuel to be supplied to the engine is calculated by calculating the amount of fuel to be supplied to the engine. Accurate calculations cannot be made in accordance with the driving conditions, causing engine rotational speed hunting, which adversely affects driving performance.

一方、例えば特開昭47−9354号に示される方
式、すなわちフローメータを使用して吸入空気量
Qaを検出し、検出した吸入空気量Qaとエンジン
回転数とにより供給燃料量を決定する方式(一般
に「L−ジエトロ方式」と呼ばれる)によれば、
上述のアイドル運転時のエンジン回転数のハンチ
ング現象は生じにくくなるが高価なフローメータ
を必要とする。
On the other hand, for example, the method shown in Japanese Patent Application Laid-Open No. 47-9354, that is, using a flow meter, is used to measure the amount of intake air.
According to a method (generally called the "L-dietro method") that detects Qa and determines the amount of fuel to be supplied based on the detected intake air amount Qa and engine rotation speed.
Although the aforementioned hunting phenomenon of engine speed during idling operation is less likely to occur, an expensive flow meter is required.

上述の問題点を解決するために、アイドル運転
等の低負荷運転時にはスロツトル弁の上流側圧力
P′Aと下流側圧力PBAとの圧力比(PBA/P′A)が音
速流を生じさせる臨界圧力比(0.528)以下とな
り、この臨界圧力比以下では吸気量がスロツトル
弁下流側圧力PBAや排気圧力には全く依存せず、
スロツトル弁の開口面積に依存することに着目
し、スロツトル弁の弁開度のみを検出して低負荷
時の吸入空気流量を検出し、該検出した吸入空気
量に基いて燃料流量を制御する方法が特公昭52−
6414号により提案されている。
In order to solve the above problems, the upstream pressure of the throttle valve is reduced during low load operation such as idling operation.
The pressure ratio (P BA /P' A ) between P′ A and the downstream pressure P BA becomes less than the critical pressure ratio (0.528) that generates sonic flow, and below this critical pressure ratio, the intake air amount is lower than the throttle valve downstream pressure. Does not depend on P BA or exhaust pressure,
A method that focuses on the dependence on the opening area of the throttle valve, detects only the valve opening of the throttle valve, detects the intake air flow rate at low load, and controls the fuel flow rate based on the detected intake air amount. The special public service was issued in 1977.
Proposed by No. 6414.

斯る吸入空気量の検出方法をエンジン回転数に
同期して噴射する燃料噴射制御に適用する場合、
燃料噴射量は上述のようにして求められた吸入空
気量に加えエンジン回転数の関数として決定する
必要がある。これは単位時間当りスロツトル弁を
通過する吸入気量はスロツトル弁の開口面積が一
定の場合一定となるが、エンジンに吸入される一
吸気行程当りの空気量はエンジン回転数により変
化するからである。
When applying this intake air amount detection method to fuel injection control that injects fuel in synchronization with the engine speed,
The fuel injection amount must be determined as a function of the engine rotational speed in addition to the intake air amount determined as described above. This is because the amount of intake air that passes through the throttle valve per unit time is constant when the opening area of the throttle valve is constant, but the amount of air taken into the engine per intake stroke changes depending on the engine speed. .

又、スロツトル弁をバイパスしてエンジンに供
給される補助空気量を制御してアイドル時のエン
ジン回転数を一定値に保持したり、冷間始動特性
を向上させるアイドル回転数制御方法が、例えば
本出願人による特願昭57−077250号に開示されて
いる。エンジンに供給される吸入空気がスロツト
ル弁を介する空気のみならず、スロツトル弁をバ
イパスする補助空気通路に設けられた制御弁を介
する補助空気を含む場合、スロツトル弁の弁開度
のみを検出するだけではエンジンに供給される全
吸入空気量を検出することが出来ない。
In addition, idle speed control methods that bypass the throttle valve and control the amount of auxiliary air supplied to the engine to maintain the engine speed at a constant value during idling and improve cold starting characteristics have been developed, for example. It is disclosed in Japanese Patent Application No. 57-077250 filed by the applicant. If the intake air supplied to the engine includes not only air that passes through the throttle valve but also auxiliary air that passes through a control valve installed in the auxiliary air passage that bypasses the throttle valve, only the valve opening of the throttle valve is detected. In this case, the total amount of intake air supplied to the engine cannot be detected.

本発明は上述の問題点を解決するためになされ
たものであり、内燃エンジンが、絞り弁下流側に
開口して補助空気を供給する補助空気通路を備え
る場合において、特別に専用のフローメータを用
いることなく低負荷運転時のエンジン回転数のハ
ンチングを防止し、もつて運転性能の向上を図る
ことができる内燃エンジンの燃料噴射制御方法を
提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and when an internal combustion engine is provided with an auxiliary air passage that opens downstream of a throttle valve and supplies auxiliary air, a specially designed flow meter is installed. An object of the present invention is to provide a fuel injection control method for an internal combustion engine that can prevent engine rotational speed hunting during low-load operation without using the engine, and thereby improve driving performance.

本発明は上記目的を達成するため、吸気通路
と、該吸気通路途中に配置された絞り弁と、該絞
り弁下流側の前記吸気通路に開口し大気と連通す
る補助空気通路と、該補助空気通路に配設され、
該通路を介してエンジンに供給される補助空気量
を制御する制御弁とを備える内燃エンジンに該エ
ンジンの回転に同期して所要量の燃料を噴射供給
する燃料噴射制御方法であつて、前記エンジンに
掛かる負荷が基準負荷より高いとき、前記絞り弁
下流側の前記吸気通路内圧力と前記エンジンの回
転数とに応じて決定した燃料量を前記エンジンに
噴射供給する方法において、エンジンに掛かる負
荷が前記基準負荷より低いとき、前記絞り弁の開
口面積に応じた第1の係数値と、前記制御弁の開
口面積に応じた第2の係数値と、前記エンジンの
回転数とを夫々求め、前記第1及び第2の係数値
の和と前記エンジン回転数とに応じて燃料量を算
出し、斯く算出した燃料量をエンジンに噴射供給
するようにしたものである。
In order to achieve the above object, the present invention includes an intake passage, a throttle valve arranged in the middle of the intake passage, an auxiliary air passage that opens into the intake passage downstream of the throttle valve and communicates with the atmosphere, and an auxiliary air passage that opens into the intake passage downstream of the throttle valve and communicates with the atmosphere. placed in the aisle,
A fuel injection control method for injecting and supplying a required amount of fuel to an internal combustion engine in synchronization with the rotation of the engine, the method comprising: a control valve for controlling the amount of auxiliary air supplied to the engine through the passage; In the method of injecting and supplying fuel to the engine determined according to the pressure in the intake passage downstream of the throttle valve and the rotation speed of the engine, when the load applied to the engine is higher than the reference load, the load applied to the engine is When the load is lower than the reference load, a first coefficient value corresponding to the opening area of the throttle valve, a second coefficient value corresponding to the opening area of the control valve, and the rotation speed of the engine are respectively determined; The amount of fuel is calculated according to the sum of the first and second coefficient values and the engine speed, and the amount of fuel thus calculated is injected and supplied to the engine.

又、前記絞り弁下流側の吸気通路部分に開口
し、大気と連通する補助空気通路を複数個備え、
各補助空気通路に夫々制御弁が配されている内燃
エンジンの場合、前記第2の係数値を前記複数の
制御弁の内作動状態にある制御弁の開口面積の総
和に応じた値に設定するようにしたものである。
Further, a plurality of auxiliary air passages are provided that open in the intake passage downstream of the throttle valve and communicate with the atmosphere,
In the case of an internal combustion engine in which a control valve is arranged in each auxiliary air passage, the second coefficient value is set to a value corresponding to the sum of the opening areas of the control valves in the operating state among the plurality of control valves. This is how it was done.

以下本発明の実施例を添付図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の方法が適用される、補助空気
量を制御する複数の補助空気量制御弁を備える内
燃エンジンの燃料噴射制御装置の全体を略示する
構成図であり、符号1は、例えば4気筒の内燃エ
ンジンを示し、エンジン1には開口端にエアクリ
ーナ2を取り付けた吸気管3と排気管4が接続さ
れている。吸気管3の途中にはスロツトル弁5が
配置され、このスロツトル弁5の下流の吸気管3
に開口し大気に連通する第1空気通路8及び第2
空気通路8′が配設されている。第1空気通路8
の大気側開口端にはエアクリーナ7が取り付けら
れ又、第1空気通路8途中には第1補助空気量制
御弁(以下単に「第1制御弁」という)6が配置
されている。この第1制御弁6は常閉型の電磁弁
であり、ソレノイド6aと6aの付勢時に第1空
気通路8を開成する弁6bとで構成され、ソレノ
イド6aは電子コントロールユニツト(以下
「ECU」という)9に電気的に接続されている。
FIG. 1 is a block diagram schematically showing the entirety of a fuel injection control device for an internal combustion engine including a plurality of auxiliary air amount control valves for controlling auxiliary air amount, to which the method of the present invention is applied; For example, a four-cylinder internal combustion engine is shown, and an engine 1 is connected to an intake pipe 3 and an exhaust pipe 4, both of which have an air cleaner 2 attached to their open ends. A throttle valve 5 is arranged in the middle of the intake pipe 3, and the intake pipe 3 downstream of the throttle valve 5
A first air passage 8 and a second air passage 8 open to the atmosphere and communicating with the atmosphere.
An air passage 8' is provided. First air passage 8
An air cleaner 7 is attached to the open end on the atmosphere side, and a first auxiliary air amount control valve (hereinafter simply referred to as "first control valve") 6 is disposed in the middle of the first air passage 8. The first control valve 6 is a normally closed solenoid valve, and is composed of a solenoid 6a and a valve 6b that opens the first air passage 8 when the 6a is energized.The solenoid 6a is an electronic control unit (hereinafter referred to as "ECU"). 9).

前記第2空気通路8′は通路途中で第3空気通
路8″が分岐し、第2空気通路8′及び第3空気通
路8″の各大気側開口端には夫々エアクリーナ
7′,7″が取り付けられている。第2空気通路
8′の前記第3空気通路8″の分岐点と大気開口端
側との間及び前記第3空気通路8″の途中には前
記第1制御弁と同様の常閉型電磁弁である第2制
御弁6′及び第3制御部6″が夫々配設されてい
る。各制御弁6′,6″は夫々ソレノイド6′a,
6″a及びソレノイドが付勢されたときに各通路
を開成させる弁6′b,6″bで構成され、各制御
弁6′,6″のソレノイド6′a及び6″aの各一端
側は接地され各他端側は夫々スイツチ18,19
を介して直流電源20に接続されていると共に前
記ECU9に接続されている。
The second air passage 8' branches into a third air passage 8'' in the middle of the passage, and air cleaners 7', 7'' are provided at the open ends of the second air passage 8' and the third air passage 8'' on the atmosphere side, respectively. A control valve similar to the first control valve is installed between the branch point of the third air passage 8'' of the second air passage 8' and the atmospheric opening end side, and in the middle of the third air passage 8''. A second control valve 6' and a third control section 6'', which are normally closed solenoid valves, are respectively provided. Each control valve 6', 6'' has a solenoid 6'a,
6''a and valves 6'b, 6''b that open each passage when the solenoid is energized, and one end side of each solenoid 6'a and 6''a of each control valve 6', 6'' is grounded, and the other ends are connected to switches 18 and 19, respectively.
It is connected to the DC power supply 20 via the ECU 9 as well as to the ECU 9.

前記第1空気通路8には第1制御弁6の下流で
分岐する分岐通路8bが接続されており、この分
岐通路8bの大気側開口端にはエアクリーナ11
が取り付けられ、又分岐通路8bの途中にはフア
ーストアイドリング制御装置10が配設されてい
る。フアーストアイドリング制御装置10は、例
えば、スプリング10cによつて弁座10bに押
圧されて分岐通路路8bを閉成可能な弁体10a
と、エンジン冷却水温に感応して腕10d′を伸縮
させる検知装置10dと、検知装置の腕10d′の
伸縮に応答して回動し、弁体10aを開閉方向に
変位するレバー10eとで構成されている。
A branch passage 8b that branches downstream of the first control valve 6 is connected to the first air passage 8, and an air cleaner 11 is connected to the open end of the branch passage 8b on the atmosphere side.
is attached, and a fast idling control device 10 is disposed in the middle of the branch passage 8b. The fast idling control device 10 includes, for example, a valve body 10a that can be pressed against a valve seat 10b by a spring 10c to close the branch passageway 8b.
, a detection device 10d that expands and contracts the arm 10d' in response to the engine cooling water temperature, and a lever 10e that rotates in response to the expansion and contraction of the arm 10d' of the detection device and displaces the valve body 10a in the opening and closing direction. has been done.

吸気管3のエンジン1と前記第1空気通路の開
口8a及び第2空気通路の開口8′aとの間には
燃料噴射弁12及び管15を介し吸気管3に連通
する吸気管内絶対圧センサ16が夫々取り付けら
れている。前記燃料噴射弁12は図示しない燃料
ポンプに接続されていると共にECU9に電気的
に接続されており、前記絶対圧センサ16も
ECU9に電気的に接続されている。更に、前記
スロツトル弁5にはスロツトル弁開度センサ17
が、エンジン1本体にはエンジン水温センサ13
が設けられ、このセンサ13はサーミスタ等から
成り、冷却水が充満したエンジン気筒周壁内に挿
着されて、その検出水温信号をECU9に供給す
る。
An intake pipe absolute pressure sensor is connected to the intake pipe 3 through a fuel injection valve 12 and a pipe 15 between the engine 1 and the first air passage opening 8a and the second air passage opening 8'a. 16 are attached respectively. The fuel injection valve 12 is connected to a fuel pump (not shown) and electrically connected to the ECU 9, and the absolute pressure sensor 16 is also connected to the ECU 9.
Electrically connected to ECU9. Furthermore, the throttle valve 5 is provided with a throttle valve opening sensor 17.
However, the engine 1 body has an engine water temperature sensor 13.
The sensor 13 is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies the detected water temperature signal to the ECU 9.

エンジン回転数センサ(以下「Neセンサ」と
云う)14がエンジンの図示しないカム軸周囲又
はクランク軸周囲に取り付けられており、Neセ
ンサ14はTDC信号即ちエンジンのクランク軸
の180゜回転毎に所定のクランク角度位置で1パル
スを出力するものであり、このパルスはECU9
に送られる。
An engine rotation speed sensor (hereinafter referred to as "Ne sensor") 14 is attached around the camshaft or crankshaft (not shown) of the engine, and the Ne sensor 14 receives a TDC signal, that is, a predetermined value every 180° rotation of the engine crankshaft. It outputs one pulse at the crank angle position of ECU9.
sent to.

符号21は例えばヘツドライト、ブレーキライ
ト、ラジエータ冷却用フアン等の電気装置を示
し、電気装置21はスイツチ22を介してECU
9に電気的に接続されている。符号23は大気圧
センサを示し、大気圧センサ23の検出した大気
圧信号はECU9に供給される。
Reference numeral 21 indicates an electrical device such as a headlight, a brake light, a radiator cooling fan, etc., and the electrical device 21 is connected to the ECU via a switch 22.
It is electrically connected to 9. Reference numeral 23 indicates an atmospheric pressure sensor, and an atmospheric pressure signal detected by the atmospheric pressure sensor 23 is supplied to the ECU 9.

次に上述のように構成される燃料噴射制御装置
の作用について説明する。
Next, the operation of the fuel injection control device configured as described above will be explained.

先ず、スイツチ18は、例えば、図示しないエ
アコンを作動させる、図示しないエアコンスイツ
チと連動し、スイツチ18を閉成させたときエア
コンの作動を示すエアコン信号をECU9に供給
すると共に第2制御弁6′のソレノイド6′aを付
勢して弁6′bを開弁させアイドル時のエアコン
の作動によるエンジン負荷の増加に対応する所定
量の補助空気量をエンジン1に供給する。スイツ
チ19は、例えば自動変速機を装備する内燃エン
ジンの場合に図示しないシフトレバーに取り付け
られ自動変速機の係合位置にシフトレバーを操作
したときスイツチ19は閉成して自動変速機の係
合を示すオン信号(以下「Dレンジ信号」とい
う)をECU9に供給すると共に第3制御弁6″の
ソレノイド6″aを付勢して弁6″bを開弁させア
イドル時の自動変速機の作動によるエンジン負荷
の増加に対応する所定量の補助空気量をエンジン
1に供給する。
First, the switch 18 operates in conjunction with, for example, an air conditioner switch (not shown) that operates an air conditioner (not shown), and when the switch 18 is closed, it supplies an air conditioner signal indicating the operation of the air conditioner to the ECU 9 and also controls the second control valve 6'. The solenoid 6'a is energized to open the valve 6'b, and a predetermined amount of auxiliary air is supplied to the engine 1 in response to the increase in engine load due to the operation of the air conditioner during idling. For example, in the case of an internal combustion engine equipped with an automatic transmission, the switch 19 is attached to a shift lever (not shown), and when the shift lever is operated to the engagement position of the automatic transmission, the switch 19 closes and engages the automatic transmission. An on signal (hereinafter referred to as the "D range signal") indicating the automatic transmission is supplied to the ECU 9, and the solenoid 6"a of the third control valve 6" is energized to open the valve 6"b, thereby controlling the automatic transmission during idling. A predetermined amount of auxiliary air is supplied to the engine 1 in response to an increase in engine load due to operation.

上述のようにエアコンや自動変速機のようなエ
ンジンが直接駆動する補助機械位置の負荷、即ち
エンジンに対して比較的大きな負荷になる機械負
荷に対しては夫々個別に第2及び第3制御弁を設
けて夫々の負荷に対応してアイドル回転数を一定
に保つようにしている。
As mentioned above, the second and third control valves are used individually for loads on auxiliary machines such as air conditioners and automatic transmissions that are directly driven by the engine, that is, mechanical loads that are relatively large loads on the engine. is provided to keep the idle speed constant according to each load.

フアーストアイドリング制御装置10は冷寒始
動時等、エンジン冷却水温が所定値より低い場合
(例えば50℃)に作動する。より具体的には、フ
アーストアイドリング制御装置10の検知装置1
0dはエンジン冷却水温に感応して腕10d′を伸
縮させる。検知装置10dとしては種々のものが
適用出来、例えば内部にワツクスを充填しその熱
膨張特性を利用するものでもよい。エンジン冷却
水温が所定値より低い場合には検知装置10dの
腕10d′は縮んだ状態にあり、レバー10eはバ
ネ10fによつて回動し、バネ10cに抗して弁
体10aを右方向に変位させて分岐通路8bを開
成させる。この分岐通路8bが開成しているとき
にはフイルタ11、通路8b,8を介して十分な
補助空気がエンジン1に供給されるためエンジン
回転数を通常アイドル回転数より高い回転数に保
持出来るので冷寒時アイドル運転のエンジンスト
ールの心配もなく正常な運転が確保される。
The fast idling control device 10 operates when the engine cooling water temperature is lower than a predetermined value (for example, 50° C.), such as during a cold start. More specifically, the detection device 1 of the fast idling control device 10
0d expands and contracts the arm 10d' in response to the engine cooling water temperature. Various devices can be used as the detection device 10d, for example, it may be filled with wax and utilize its thermal expansion characteristics. When the engine cooling water temperature is lower than a predetermined value, the arm 10d' of the detection device 10d is in a contracted state, and the lever 10e is rotated by the spring 10f, and the valve body 10a is moved to the right against the spring 10c. The branch passage 8b is opened by displacement. When this branch passage 8b is open, sufficient auxiliary air is supplied to the engine 1 via the filter 11 and the passages 8b and 8, so the engine rotation speed can be maintained at a rotation speed higher than the normal idle rotation speed, so it is cold. Normal operation is ensured without fear of engine stall during idling operation.

暖機運転によるエンジン冷却水温の上昇に伴つ
て検知装置10dの腕10d′が熱膨張によつて伸
長すると、腕10d′はレバー10eを上方に押し
上げて時計廻り方向に回動させる。このとき弁体
10aはバネ10cの押圧力によつて次第に左動
するようになり、エンジン冷却水温が所定値以上
になると遂に弁体10aは弁座10bに当接して
分岐通路8bを閉成しフアーストアイドリング制
御装置10を介する補助空気の供給を停止せしめ
る。
When the arm 10d' of the detection device 10d expands due to thermal expansion as the engine cooling water temperature increases due to warm-up operation, the arm 10d' pushes the lever 10e upward and rotates it clockwise. At this time, the valve body 10a gradually moves to the left due to the pressing force of the spring 10c, and when the engine cooling water temperature reaches a predetermined value or higher, the valve body 10a finally comes into contact with the valve seat 10b and closes the branch passage 8b. The supply of auxiliary air via the fast idling control device 10 is stopped.

一方、ヘツドライト、ブレーキライト、ラジエ
ータ冷却用フアン等の電気装置21のエンジン1
に対して比較的小さな負荷である電気負荷に対応
すると共にエンジン回転数が目標アイドル回転数
になるように補助空気量を精度よく増減させる補
助空気の供給量制御には第1制御弁6が用いられ
る。すなわち、ECU9はエンジンの上死点
(TDC)信号毎にスロツトル弁開度センサ17、
絶対圧センサ16、冷却水温センサ13、エンジ
ン回転数センサ14及び大気圧センサ23から供
給される夫々のエンジン運転パラメータ信号の値
と電気装置21からの電気負荷状態信号に基いて
第1制御弁6による補助空気を供給すべき運転状
態を判別すると共に、目標アイドル回転数を設定
し、補助空気を供給すべき運転状態を判別したと
き、目標アイドル回転数と実エンジン回転数の差
に応じ、この差をなくすように補助空気量、従つ
て第1制御弁6の開弁デユーテイ比DouTを演算
し、該演算値に応じて第1制御弁6を作動させる
駆動信号を第1制御弁6に供給する。
On the other hand, the engine 1 of electrical equipment 21 such as headlights, brake lights, and radiator cooling fans
The first control valve 6 is used to control the supply amount of auxiliary air to respond to the electrical load, which is a relatively small load, and to accurately increase or decrease the amount of auxiliary air so that the engine speed reaches the target idle speed. It will be done. That is, the ECU 9 detects the throttle valve opening sensor 17 for each top dead center (TDC) signal of the engine.
The first control valve 6 is controlled based on the values of engine operating parameter signals supplied from the absolute pressure sensor 16 , cooling water temperature sensor 13 , engine speed sensor 14 , and atmospheric pressure sensor 23 and the electrical load status signal from the electrical device 21 . In addition to determining the operating condition in which auxiliary air should be supplied by Calculate the auxiliary air amount and therefore the valve opening duty ratio Dou T of the first control valve 6 to eliminate the difference, and send a drive signal to the first control valve 6 to operate the first control valve 6 according to the calculated value. supply

第1制御弁6のソレノイド6aは前記開弁デユ
ーテイ比DouTに応じた開弁時間に亘り付勢され
て弁6を開弁して第1空気通路8を開成し開弁時
間に応じた所定量の空気が第1空気通路8及び、
吸気管3を介してエンジン1に供給される。
The solenoid 6a of the first control valve 6 is energized for a valve opening time corresponding to the valve opening duty ratio Dou T , opens the valve 6, opens the first air passage 8, and opens the first air passage 8. A fixed amount of air is supplied to the first air passage 8 and
It is supplied to the engine 1 via the intake pipe 3.

一方、ECU9は上述の各種エンジン運転パラ
メータ信号値に基いてTDC信号に同期して燃料
噴射弁12の燃料噴射時間TouTを以下に示す式
により演算する。
On the other hand, the ECU 9 calculates the fuel injection time Tou T of the fuel injection valve 12 based on the above-mentioned various engine operating parameter signal values and in synchronization with the TDC signal using the formula shown below.

TouT=Ti×K1+K2 ……(1) ここにTiは基本噴射時間を示し、該基本噴射
時間Tiは、詳細は後述するようにエンジンが所
定のアイドル運転条件が成立する領域にあるか否
かに応じて前述のSD方式及び本発明に係る方式
のいずれかによつて設定される。
Tou T = Ti × K 1 + K 2 ... (1) Here, Ti indicates the basic injection time, and the basic injection time Ti is in a region where the engine meets a predetermined idle operating condition, as will be described in detail later. The setting is made according to either the above-mentioned SD method or the method according to the present invention.

補正係数又は補正値K1及びK2は前述の各種セ
ンサ、すなわち吸気管内絶対圧センサ16、冷却
水温センサ13、Neセンサ14、スロツトル弁
開度センサ17、大気圧センサ23等のエンジン
運転パラメータセンサからのエンジン運転パラメ
ータ信号に応じて演算される補正係数又は補正値
であつてエンジン運転状態に応じ始動特性、排ガ
ス特性、燃費特性、エンジン加速特性等の諸特性
が最適なものとなるように所定の演算式に基いて
演算される。
The correction coefficients or correction values K 1 and K 2 are determined by the various sensors mentioned above, that is, engine operating parameter sensors such as the intake pipe absolute pressure sensor 16, the cooling water temperature sensor 13, the Ne sensor 14, the throttle valve opening sensor 17, and the atmospheric pressure sensor 23. A correction coefficient or correction value that is calculated according to the engine operating parameter signal from the engine, and is predetermined so that various characteristics such as starting characteristics, exhaust gas characteristics, fuel efficiency characteristics, engine acceleration characteristics, etc. are optimized according to the engine operating state. It is calculated based on the calculation formula.

ECU9は上述のようにして求めた燃料噴射時
間TouTに基いて燃料噴射弁12を開弁させる駆
動信号を燃料噴射弁12に供給する。
The ECU 9 supplies the fuel injection valve 12 with a drive signal to open the fuel injection valve 12 based on the fuel injection time Tou T determined as described above.

第2図は第1図のECU9内部の回路構成を示
す図で、第1図のエンジン回転数Neセンサ14
からの出力信号は波形整形回路901で波形整形
された後、TDC信号として中央処理装置(以下
「CPU」という)903に供給されるとともに
Meカウンタ902にも供給される。Meカウンタ
902はエンジン回転数Neセンサ14からの前
回TDC信号の入力時から今回TDC信号の入力時
までの時間間隔を計数するもので、その計数値
Meはエンジン回転数Neの逆数に比例する。Me
カウンタ902は、この計数値Meをデータバス
910を介してCPU903に供給する。
Figure 2 is a diagram showing the circuit configuration inside the ECU 9 in Figure 1, and shows the engine rotation speed Ne sensor 14 in Figure 1.
The output signal is waveform-shaped by a waveform shaping circuit 901 and then supplied to a central processing unit (hereinafter referred to as "CPU") 903 as a TDC signal.
It is also supplied to the Me counter 902. The Me counter 902 counts the time interval from the input of the previous TDC signal from the engine rotation speed Ne sensor 14 to the input of the current TDC signal.
Me is proportional to the reciprocal of the engine speed Ne. Me
Counter 902 supplies this count value Me to CPU 903 via data bus 910.

第1図のスロツトル弁開度センサ17、吸気管
内絶対圧PBAセンサ16、冷却水温センサ13及
び大気圧センサ23からの夫々の出力信号はレベ
ル修正回路904で所定電圧レベルに修正された
後、マルチプレクサ905により順次A/Dコン
バータ906に供給される。A/Dコンバータ9
06は前述の各センサからの出力信号を順次デジ
タル信号に変換して該デジタル信号をデータバス
910を介してCPU903に供給する。
After the respective output signals from the throttle valve opening sensor 17, intake pipe absolute pressure P BA sensor 16, cooling water temperature sensor 13, and atmospheric pressure sensor 23 shown in FIG. The signals are sequentially supplied to an A/D converter 906 by a multiplexer 905. A/D converter 9
06 sequentially converts the output signals from each of the sensors described above into digital signals and supplies the digital signals to the CPU 903 via the data bus 910.

第1図のエアコンの作動時に第2制御弁6′を
開弁させるスイツチ18、自動変速機の係合時に
第3制御弁6″を開弁させるスイツチ19、電気
装置21のスイツチ22の各オン−オフ信号は
夫々レベル修正回路912で所定電圧レベルに修
正された後、データ入力回路913で所定信号に
変換されデータバス910を介してCPU903
に供給される。
The switch 18 that opens the second control valve 6' when the air conditioner is activated, the switch 19 that opens the third control valve 6'' when the automatic transmission is engaged, and the switch 22 of the electric device 21 shown in FIG. - Each off signal is corrected to a predetermined voltage level by a level correction circuit 912, and then converted into a predetermined signal by a data input circuit 913 and sent to the CPU 900 via a data bus 910.
supplied to

CPU903は、更にデータバス910を介し
てリードオンリメモリ(以下「ROM」という)
907、ランダムアクセスメモリ(以下
「RAM」とい)908及び駆動回路909,9
11に接続されており、RAM908はCPU90
3での演算結果等を一時的に記憶し、ROM90
7はCPU903で実行される制御プログラム等
を記憶している。
The CPU 903 further uses a read-only memory (hereinafter referred to as "ROM") via a data bus 910.
907, random access memory (hereinafter referred to as "RAM") 908 and drive circuit 909, 9
11, RAM908 is connected to CPU90
3. Temporarily stores the calculation results etc. in ROM90.
7 stores control programs and the like executed by the CPU 903.

CPU903はROM907に記憶されている制
御プログラムに従つて前述の各種エンジンパラメ
ータ信号及びスイツチ18,19及び21のオン
−オフ状態に応じてエンジン運転状態を判別して
前述の第1制御弁6の開弁デユーテイ比DouT
演算すると共に、詳細は後述するように燃料噴射
弁12の開弁時間TouTを演算し、これらの演算
値に応じた制御信号をデータバス910を介して
駆動回路911及び909に夫々供給する。駆動
回路911及び909は前述の制御信号が供給さ
れている間第1制御弁6及び燃料噴射弁12を開
弁させる駆動信号を制御弁6及び燃料噴射弁12
に夫々供給する。
The CPU 903 determines the engine operating state according to the aforementioned various engine parameter signals and the on/off states of the switches 18, 19, and 21 according to the control program stored in the ROM 907, and opens the aforementioned first control valve 6. In addition to calculating the valve duty ratio Dou T , the valve opening time Tou T of the fuel injection valve 12 is calculated as will be described in detail later, and a control signal corresponding to these calculated values is sent to the drive circuit 911 and the control signal via the data bus 910. 909 respectively. The drive circuits 911 and 909 send a drive signal to open the first control valve 6 and the fuel injection valve 12 while the above-mentioned control signal is supplied to the control valve 6 and the fuel injection valve 12.
supply each.

第3図は第2図のCPU903で実行される、
燃料噴射弁12の開弁時間TouTを演算する方法
を示すフロローチヤートである。第3図のステツ
プ1乃至3はエンジンが所定のアイドル運転条件
が成立したか否かを判別するものであり、先ず、
ステツプ1ではエンジン回転数Neが所定回転数
NIDL(例えば1000rpm)以下であるか否かを判別
し、判別結果が否定(No)であればアイドル運
転条件は成立せずとして直ちに後述するステツプ
4に進む。ステツプ1の判別結果が肯定(Yes)
であればステツプ2に進み、吸気管内絶対圧PBA
が基準圧力PBAcよりエンジン低負荷側、すなわ
ち基準圧力PBAc以下か否かを判別する。この基
準圧力PBAcはスロツトル弁5上流側の吸気管内
絶対圧PA′に対するスロツトル弁5下流側の吸気
管内絶対圧PBAの比(PBA/PA′)がスロツトル弁
5を通過する吸気流速が音速流となる臨界圧力比
(0.528)以下となるか否かを判別するために設定
されるものであつて基準圧力PBAcは次式によつ
て与えられる。
Figure 3 is executed by the CPU 903 in Figure 2.
This is a flowchart showing a method of calculating the valve opening time Tou T of the fuel injection valve 12. Steps 1 to 3 in FIG. 3 are for determining whether or not the engine has met a predetermined idle operating condition.
In step 1, the engine speed Ne is the predetermined speed.
It is determined whether or not the engine speed is below N IDL (for example, 1000 rpm), and if the determination result is negative (No), the idle operation condition is not satisfied and the process immediately proceeds to step 4, which will be described later. The determination result of step 1 is positive (Yes)
If so, proceed to step 2 and calculate the intake pipe absolute pressure P BA
It is determined whether or not the engine load is lower than the reference pressure P BA c, that is, below the reference pressure P BA c. This reference pressure P BA c is the ratio (P BA /P A ') of the absolute pressure P BA in the intake pipe on the downstream side of the throttle valve 5 to the absolute pressure P A ' in the intake pipe on the upstream side of the throttle valve 5. The reference pressure P BA c, which is set to determine whether or not the intake flow velocity becomes equal to or lower than the critical pressure ratio (0.528) at which the air flow becomes sonic, is given by the following equation.

PBAc=PA′×(臨界圧力比) =PA′×(2/χ+1)〓/-1=0.528×PA ……(2) ここにχは空気の比熱比(χ=1.4)であり、
スロツトル弁5上流の吸気管内絶対圧PA′は近似
的に第1図の大気圧センサ23により検出される
大気圧PAに等しいので上式の関係が得られ、上
式(2)の基準圧力PBAcと大気圧PAとの関係は第4
図に示される。
P BA c=P A ′×(critical pressure ratio) =P A ′×(2/χ+1)〓 /-1 =0.528×P A ……(2) Here, χ is the specific heat ratio of air (χ=1.4 ) and
Since the absolute pressure P A ' in the intake pipe upstream of the throttle valve 5 is approximately equal to the atmospheric pressure P A detected by the atmospheric pressure sensor 23 in FIG. The relationship between pressure P BA c and atmospheric pressure P A is the fourth
As shown in the figure.

ステツプ2での判別結果が否定(No)の場合、
所定運転条件は成立せずとしてステツプ4に進
み、肯定(Yes)の場合ステツプ3に進む。ステ
ツプ3ではスロツトル弁5の弁開度θTHが所定開
度θIDLH以下であるか否かを判別する。この判別を
設ける理由はスロツトル弁5が略全閉位置のアイ
ドル運転状態からスロツトル弁が急速に開弁され
る加速運転状態に移行した場合、上述のステツプ
1及び2のエンジン回転数及び吸気管内絶対圧の
変化のみによりこの加速運転状態を判別すると絶
対圧センサの応答遅れ等により加速運転状態の検
出が遅れるため、加速運転状態をスロツトル弁度
により検出し、加速運転状態が検出された場合に
は、後述するSD方式により適宜量の加速燃料量
を演算し、この燃料量をエンジンに供給する必要
があるためである。ステツプ3の判別結果が否定
(No)の場合、所定アイドル運転条件は成立せず
としてステツプ4に進み、肯定(Yes)の場合ス
テツプ6に進む。
If the determination result in step 2 is negative (No),
It is determined that the predetermined operating condition is not met and the process proceeds to step 4, and if affirmative (Yes), the process proceeds to step 3. In step 3, it is determined whether the valve opening θTH of the throttle valve 5 is less than or equal to a predetermined opening θIDLH . The reason for this determination is that when the throttle valve 5 shifts from an idling operating state in which the throttle valve 5 is in a substantially fully closed position to an accelerating operating state in which the throttle valve is rapidly opened, the engine speed and intake pipe absolute If the acceleration operation state is determined only by pressure changes, the detection of the acceleration operation state will be delayed due to the response delay of the absolute pressure sensor, etc. Therefore, the acceleration operation state is detected by the throttle valve degree, and when the acceleration operation state is detected, This is because it is necessary to calculate an appropriate amount of acceleration fuel using the SD method, which will be described later, and supply this amount of fuel to the engine. If the determination result in step 3 is negative (No), it is assumed that the predetermined idling operation condition is not satisfied, and the process proceeds to step 4; if affirmative (Yes), the process proceeds to step 6.

アイドル運転条件が成立しない場合に実行され
るステツプ4ではSD方式により基本燃料噴射時
間Tiが決定される。即ち、検出した吸気管内絶
対圧PBAと、エンジン回転数Neとに応じてECU
9内のROM907に記憶されている基本燃料噴
射時間Tiが読み出される。斯く決定された基本
噴射時間Tiにより前記式(1)に基づいて燃料噴射
時間TouTが算出される(ステツプ5)。
In step 4, which is executed when the idle operating conditions are not satisfied, the basic fuel injection time Ti is determined by the SD method. In other words, the ECU
The basic fuel injection time Ti stored in the ROM 907 in ROM 907 is read out. Based on the basic injection time Ti thus determined, the fuel injection time Tou T is calculated based on the equation (1) (step 5).

アイドル運転条件が成立した場合に実行される
ステツプ6では本発明に係る方式(これを以下
「KMe方式」と称する)により基本噴射時間Tiが
決定され、この基本噴射時間Tiにより燃料噴射
時間TouTが算出される(ステツプ5)。
In step 6, which is executed when the idle operating condition is satisfied, the basic injection time Ti is determined by the method according to the present invention (hereinafter referred to as the "KMe method"), and the fuel injection time Tou T is determined by this basic injection time Ti. is calculated (step 5).

尚、上述のステツプ1乃至3の判別において、
各ステツプにおける判別値をエンジンが前記所定
アイドル運転条件が成立する運転領域への突入時
と離脱時とで夫々異なる値に設定し、上述の
KMe方式及びSD方式の選択にヒステリシス特性
を持たせてエンジン作動制御の安定化を図るよう
にしてもよい。
In addition, in the determination of steps 1 to 3 above,
The discrimination value in each step is set to a different value when the engine enters and leaves the operating range where the predetermined idle operating conditions are satisfied, and
The selection of the KMe method and the SD method may have hysteresis characteristics to stabilize engine operation control.

第5図は第3図のステツプ6において実行され
るKMe方式による基本噴射時間Ti値の決定手順
を示すフローチヤートである。先ず、第5図のフ
ローチヤートに示す本発明に係るKMe方式によ
る基本噴射時間Tiの算出式は下記により誘導さ
れる。
FIG. 5 is a flowchart showing the procedure for determining the basic injection time Ti value using the KMe method executed in step 6 of FIG. First, the formula for calculating the basic injection time Ti according to the KMe method according to the present invention shown in the flowchart of FIG. 5 is derived as follows.

吸気通路内に設けられたスロツトル弁等の絞り
部下流側圧力が前記第3図のステツプ2において
示した臨界圧力以下のとき絞り部を通過する吸入
空気の流れは音速流(sonic flow)又は閉塞流
(critical flow)となり絞り部の開口面積Aが変
化しない限り、絞り部を通過する単位時間当りの
空気流量Ga(A)は一定となる。一方、アイドル運
転時に所定空燃比(A/F)0を得る単位時間当り
の燃料流量Gfは Gf=Ga(A)/(A/F)0 ……(3) で与えられる。
When the pressure downstream of a constriction such as a throttle valve provided in the intake passage is below the critical pressure shown in step 2 of FIG. 3, the flow of intake air passing through the constriction is sonic flow or blockage. As long as the opening area A of the diaphragm does not change, the air flow rate Ga(A) per unit time passing through the diaphragm remains constant. On the other hand, the fuel flow rate Gf per unit time to obtain a predetermined air-fuel ratio (A/F) 0 during idle operation is given by Gf=Ga(A)/(A/F) 0 (3).

上述の燃料流量Gfは次式でも与えられる。 The above-mentioned fuel flow rate Gf is also given by the following equation.

Gf=2Ne/60・γf・(ΔQ/ΔTi)・Ti/1000 =γf/Me・(ΔQ/ΔTi)・Ti ……(4) ここに2Ne/60は4気筒エンジンの単位時間
(sec)当りの噴射回数、γfは燃料の比重量、
(ΔQ/ΔTi)は燃料噴射弁12の単位開弁時間当
りの燃料体積流量、Tiは基本噴射時間(msec)、
MeはTDC信号のパルス発生時間間隔(msec)
を夫々示し、Meはエンジン回転数NeによりMe
=60/2Neで与えられる。上式(3)及び(4)により、 Ti=Ga(A)/(A/F)0・(ΔQ/ΔTi)・γf・Me が得られ、 K(A)=Ga(A)/(A/F)0・(ΔQ/ΔTi)・γf とおけば、Tiは Ti=K(A)・Me ……(5) で表わされる。開口面積係数K(A)は絞り部の開口
面積Aに比例する値として与えられるので今、ス
ロツトル弁5、第1乃至第3制御弁、フアースト
アイドリング制御装置10の夫々の開口面積係数
をKθ、KAIc、KAc、KAT、KFIとすれば式(5)は Ti=K(A)・Me=(Kθ+KAIc+KAc +KAT+KFI)Me ……(5)′ と書き換えることが出来る。
Gf = 2Ne/60・γf・(ΔQ/ΔTi)・Ti/1000 = γf/Me・(ΔQ/ΔTi)・Ti...(4) Here, 2Ne/60 is per unit time (sec) of a 4-cylinder engine The number of injections, γf is the specific weight of the fuel,
(ΔQ/ΔTi) is the fuel volumetric flow rate per unit valve opening time of the fuel injection valve 12, Ti is the basic injection time (msec),
Me is TDC signal pulse generation time interval (msec)
are shown respectively, and Me is determined by the engine speed Ne.
=60/2Ne. From the above equations (3) and (4), Ti=Ga(A)/(A/F) 0・(ΔQ/ΔTi)・γf・Me is obtained, and K(A)=Ga(A)/(A /F) 0・(ΔQ/ΔTi)・γf, Ti is expressed as Ti=K(A)・Me...(5). Since the opening area coefficient K(A) is given as a value proportional to the opening area A of the throttle section, the opening area coefficients of each of the throttle valve 5, the first to third control valves, and the fast idling control device 10 are expressed as Kθ. , K AI c, K A c, K AT , K FI, equation (5) becomes Ti=K(A)・Me=(Kθ+K AI c+K A c +K AT +K FI )Me ……(5)′ It can be rewritten.

第5図のステツプ1はスロツトル弁5へ開口面
積係数値Kθを求めるもので、Kθ値は第6図に示
すスロツトル弁開度θTHと開口面積係数Kθとの関
係のテーブルを示すグラフから求められる。より
具体的には、、例えばECU9内のROM907に
スロツトル弁開度θc1乃至θc5に対応するKθ値と
して所定値Kθ1乃至Kθ5を予め記憶し、実スロツ
トル弁開度値θTHに隣接する2つのKθ値をROM
907から読み出し補間計算により実スロツトル
弁開度値θTHに対応する開口面積係数値Kθが求め
られる。
Step 1 in Fig. 5 is to obtain the opening area coefficient value Kθ for the throttle valve 5. The Kθ value is obtained from the graph showing the relationship between the throttle valve opening θTH and the opening area coefficient Kθ shown in Fig. 6. It will be done. More specifically, for example, predetermined values Kθ 1 to Kθ 5 are stored in advance in the ROM 907 in the ECU 9 as Kθ values corresponding to the throttle valve openings θc 1 to θc 5 , and the predetermined values Kθ 1 to Kθ 5 are stored adjacent to the actual throttle valve opening value θ TH . ROM the two Kθ values
The opening area coefficient value Kθ corresponding to the actual throttle valve opening value θTH is determined by reading out from 907 and performing interpolation calculation.

次に、ステツプ2では第1制御弁6の開口面積
係数値Kθが求められる。
Next, in step 2, the opening area coefficient value Kθ of the first control valve 6 is determined.

次に、ステツプ2では第1制御弁6の開口面積
係数値KAIcが求められる。第1制御弁6の開口
面積、従つてKAIc値は開弁デユーテイ比DouT
関数として求めることが出来、第7図は第1制御
弁6の開弁デユーテイ比DouTと開口面積係数KAI
cのと関係のテーブルを示すグラフであり、先の
スロツトル弁の開口面積係数Kθと同様の方法に
より第1制御弁6の開弁デユーテイ比、すなわち
開口面積に対応する開口面積係数値KAIcが求め
られる。
Next, in step 2, the opening area coefficient value K AI c of the first control valve 6 is determined. The opening area of the first control valve 6, and therefore the K AI c value, can be determined as a function of the valve opening duty ratio Dou T , and FIG. 7 shows the opening duty ratio Dou T of the first control valve 6 and the opening area coefficient. K AI
This is a graph showing a table of the relationship between c and c, and the opening area coefficient value K AI c corresponding to the valve opening duty ratio of the first control valve 6, that is, the opening area, is calculated using the same method as the opening area coefficient Kθ of the throttle valve. is required.

ステツプ3ではフアーストアイドリング制御装
置10の開口面積係数値KFIが求められる。第1
図に示すフアーストアイドリング制御装置10の
通路開口面積、従つてKFI値は冷却水温TWの関数
として求めることが出来、第8図はエンジン冷却
水温TWと開口面積係数KFIとの関係のテーブルを
示すグラフであり、先のスロツトル弁の開口面積
係数Kθと同様の方法により、フアーストアイド
リング制御装置10の開口面積係数値KFIが求め
られる。
In step 3, the aperture area coefficient value K FI of the fast idling control device 10 is determined. 1st
The passage opening area of the fast idling control device 10 shown in the figure, and therefore the K FI value, can be determined as a function of the cooling water temperature T W , and FIG. 8 shows the relationship between the engine cooling water temperature T W and the opening area coefficient K FI . The opening area coefficient value K FI of the fast idling control device 10 is determined by the same method as the opening area coefficient Kθ of the throttle valve described above.

ステツプ4では第2制御弁6′の開口面積係数
値KAcが求められる。第2制御弁6′はエアコン
スイツチと連通するスイツチ18のオン−オフ状
態に応じて全開又は全閉となるので、スイツチ1
8がオン状態にあるとき全開時の開口面積に対応
する所定値KAcがROM907から読み出され
る。
In step 4, the opening area coefficient value K A c of the second control valve 6' is determined. The second control valve 6' is fully open or fully closed depending on the on/off state of the switch 18 communicating with the air conditioner switch.
8 is in the on state, a predetermined value K A c corresponding to the aperture area when fully opened is read from the ROM 907 .

ステツプ5は本発明の方法を自動変速機を装備
する内燃エンジンに適用した場合に実行されるも
のであり、自動変速機の係合を示すスイツチ19
のオン信号により第3制御弁6″が全開となり、
この全開時の開口面積に対応する所定値KAT
ROM907から読み出される。CPU903は上
述のように求められた各開口面積係数を前記式
(5)′に示すように加算し、この加算和に前記Meカ
ウンタ902から供給されるMe値を乗算して基
本噴射時間Tiを算出する(ステツプ6)。
Step 5 is executed when the method of the present invention is applied to an internal combustion engine equipped with an automatic transmission, in which the switch 19 indicating engagement of the automatic transmission is turned on.
The third control valve 6'' is fully opened by the ON signal of
The predetermined value K AT corresponding to the opening area when fully opened is
Read from ROM907. The CPU 903 calculates each opening area coefficient obtained as described above using the above formula.
(5)' is added, and this sum is multiplied by the Me value supplied from the Me counter 902 to calculate the basic injection time Ti (step 6).

以上詳述したように本発明の内燃エンジンの燃
料噴射制御方法に依れば、エンジンの中・高負荷
状態において絞り弁下流側の吸気通路内圧力とエ
ンジン回転数とに応じて燃料噴射量が決定される
一方、絞り弁を通過する吸気流速が音速流となる
所定の低負荷状態において、絞り弁を介する吸入
空気量が該絞り弁の開口面積に応じた第1の係数
値によつて正確に検出され、制御弁を介する補助
空気量が該制御弁の開口面積に応じた第2の係数
値によつて検出されるので、両係数値の和によつ
てこのときのエンジンへの全吸入空気量を正確に
検出できるとともに、エンジン回転数Neを併せ
て運転パラメータとすることにより、一吸気行程
あたりの全吸入空気量が検出できる。したがつ
て、該検出された一吸気行程あたりの全吸入空気
量に応じて燃料噴射量を算出することにより、エ
ンジンの負荷に応じた最適な燃料量をエンジンへ
噴射供給でき、かつ高価なフローメータを必要と
するL−ジエトロ方式を採用することなくアイド
ル運転等の低負荷運転時のエンジン回転数のハン
チングを防止することが出来、運転性能の向上を
図ることが出来る。
As described in detail above, according to the fuel injection control method for an internal combustion engine of the present invention, the amount of fuel injection is controlled in accordance with the pressure in the intake passage downstream of the throttle valve and the engine speed in medium to high load conditions of the engine. On the other hand, in a predetermined low load state where the intake flow rate passing through the throttle valve is a sonic flow, the amount of intake air passing through the throttle valve is accurately determined by a first coefficient value corresponding to the opening area of the throttle valve. Since the amount of auxiliary air passing through the control valve is detected by the second coefficient value depending on the opening area of the control valve, the total intake into the engine at this time is determined by the sum of both coefficient values. In addition to being able to accurately detect the amount of air, by using the engine speed Ne as an operating parameter, the total amount of intake air per intake stroke can be detected. Therefore, by calculating the fuel injection amount according to the detected total intake air amount per intake stroke, it is possible to inject and supply the optimum amount of fuel to the engine according to the engine load, and at the same time, it is possible to avoid expensive flow. Hunting of the engine speed during low-load operation such as idling operation can be prevented without adopting the L-dietro system that requires a meter, and driving performance can be improved.

しかも、前記絞り弁の開口面積と前記制御弁の
の開口面積の検出は既存の制御系のもの(スロツ
トル弁開度センサ、エンジン回転数センサ、
ECU等)がそのまま流用できるので、上記フロ
ーメータの不使用と相まつて低コストを図ること
ができる。
Moreover, the detection of the opening area of the throttle valve and the opening area of the control valve is performed using existing control systems (throttle valve opening sensor, engine rotation speed sensor,
ECU, etc.) can be used as is, and together with not using the flow meter mentioned above, costs can be reduced.

又、前記絞り弁下流側の吸気通路部分に開口
し、大気と連通する補助空気通路を複数個備え、
各補助空気通路に夫々制御弁が配されている内燃
エンジンの場合、前記第2の係数値は前記複数の
制御弁の内作動状態にある制御弁の開口面積の総
和に応じた値に設定するようにしたので、上述と
同様に運転性能の向上を図ることが出来る。
Further, a plurality of auxiliary air passages are provided that open in the intake passage downstream of the throttle valve and communicate with the atmosphere,
In the case of an internal combustion engine in which a control valve is arranged in each auxiliary air passage, the second coefficient value is set to a value corresponding to the total opening area of the control valves in the operating state among the plurality of control valves. As a result, driving performance can be improved in the same way as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が適用される、補助空気量
を制御する複数の補助空気量制御弁を備える内燃
エンジンの燃料噴射制御装置の全体構成図、第2
図は第1図の電子コントロールユニツト(ECU)
の内部構成を示す回路図、第3図は燃料噴射弁の
開弁時間TouTを演算する方法を示すフローチヤ
ート、第4図は吸気通路内絶対圧が、絞り弁を通
過する吸入空気が音速流になる圧力であるか否か
を判別するために設定される基準圧力PBAcと大
気圧PAとの関係を示すグラフ、第5図は第3図
のステツプ6で実行される本発明による基本燃料
噴射時間Tiを求める手順を示すフローチヤート、
第6図はスロツトル弁の開口面積係数Kθとスロ
ツトル弁開度θTHとの関係のテーブルを示すグラ
フ、第7図は第1図の第1制御弁6の開口面積係
数KAIcと同制御弁の開弁デユーテイ比DouTとの
関係のテーブルを示すグラフ、及び第8図は第1
図のフアーストアイドリング制御装置の開口面積
係数KFIとエンジン冷却水温TWとの関係のテーブ
ルを示すグラフである。 1……内燃エンジン、3……吸気通路、5……
絞り弁(スロツトル弁)、6……第1制御弁、
6′……第2制御弁、6″……第3制御弁、8,
8′,8″……第1、第2及び第3空気通路、9…
…電子コントロールユニツト(ECU)、10……
フアーストアイドリング制御装置、12……燃料
噴射弁、14……エンジン回転数センサ、16…
…吸気管内絶対圧センサ、17……スロツトル弁
開度センサ、23……大気圧センサ、903……
CPU、907……ROM。
FIG. 1 is an overall configuration diagram of a fuel injection control device for an internal combustion engine equipped with a plurality of auxiliary air amount control valves for controlling auxiliary air amount, to which the method of the present invention is applied;
The diagram shows the electronic control unit (ECU) in Figure 1.
Figure 3 is a flowchart showing the method for calculating the opening time Tou T of the fuel injection valve. Figure 4 shows the absolute pressure in the intake passage and the sonic velocity of the intake air passing through the throttle valve. FIG. 5 is a graph showing the relationship between the standard pressure PBAc set to determine whether the pressure is a flow or not and the atmospheric pressure PA . Flowchart showing the procedure for determining the basic fuel injection time Ti by
Fig. 6 is a graph showing a table of the relationship between the throttle valve opening area coefficient Kθ and the throttle valve opening θ TH , and Fig. 7 shows the same control as the opening area coefficient K AI c of the first control valve 6 in Fig. 1. A graph showing a table of the relationship between the valve opening duty ratio Dou T and FIG.
2 is a graph showing a table of the relationship between the opening area coefficient K FI and the engine coolant temperature T W of the fast idling control device shown in the figure. 1...Internal combustion engine, 3...Intake passage, 5...
Throttle valve, 6...first control valve,
6'...Second control valve, 6''...Third control valve, 8,
8', 8''...first, second and third air passages, 9...
...Electronic control unit (ECU), 10...
Fast idling control device, 12...Fuel injection valve, 14...Engine speed sensor, 16...
...Intake pipe absolute pressure sensor, 17...Throttle valve opening sensor, 23...Atmospheric pressure sensor, 903...
CPU, 907...ROM.

Claims (1)

【特許請求の範囲】 1 吸気通路と、該吸気通路途中に配置された絞
り弁と、該絞り弁下流側の前記吸気通路に開口し
大気と連通する補助空気通路と、該補助空気通路
に配設され、該通路を介してエンジンに供給され
る補助空気量を制御する制御弁とを備える内燃エ
ンジンに該エンジンの回転に同期して所要量の燃
料を噴射供給する燃料噴射制御方法であつて、前
記エンジンに掛かる負荷が基準負荷より高いと
き、前記絞り弁下流側の前記吸気通路内圧力と前
記エンジンの回転数とに応じて決定した燃料量を
前記エンジンに噴射供給する方法において、エン
ジンに掛かる負荷が前記基準負荷より低いとき、
前記絞り弁の開口面積に応じた第1の係数値と、
前記制御弁の開口面積に応じた第2の係数値と、
前記エンジンの回転数とを夫々求め、前記第1及
び第2の係数値の和と前記エンジン回転数とに応
じて燃料量を算出し、斯く算出した燃料量をエン
ジンに噴射供給することを特徴とする内燃エンジ
ンの燃料噴射制御方法。 2 前記第1及び第2の係数値の和を前記エンジ
ン回転数で除した値に応じて前記燃料量を算出す
ることを特徴とする特許請求の範囲第1項記載の
内燃エンジンの燃料噴射制御方法。 3 吸気通路と、該吸気通路途中に配置された絞
り弁と、該絞り弁下流側の前記吸気通路に開口し
大気と連通する複数の補助空気通路と、該補助空
気通路の夫々に配設され、該通路を介してエンジ
ンに供給される補助空気量を制御する複数の制御
弁とを備える内燃エンジンに、所定クランク角度
位置を表わす所定制御信号のパルス発生毎に所要
量の燃料を噴射供給する燃料噴射制御方法であつ
て、前記エンジンに掛かる負荷が基準負荷より高
いとき、前記絞り弁下流側の前記吸気通路内圧力
と前記エンジンの回転数とに応じて決定した燃料
量を前記エンジンに噴射供給する方法において、
前記エンジンに掛かる負荷が基準負荷より低いと
き、該絞り弁の開口面積に応じた第1の係数値
と、前記複数の制御弁の内作動状態にある制御弁
の開口面積の総和に応じた第2の係数値と、前記
制御信号の前回パルスと今回パルスの発生時間間
隔とを夫々求め、前記第1及び第2の係数値の和
と、前記制御信号のパルス発生時間間隔とに応じ
て燃料量を算出し、斯く算出した燃料量をエンジ
ンに噴射供給することを特徴とする内燃エンジン
の燃料噴射制御方法。 4 前記第1及び第2の係数値の和に前記制御信
号のパルス発生時間間隔を乗算した積値に応じて
前記燃料量を算出することを特徴とする特許請求
の範囲第3項記載の内燃エンジンの燃料噴射制御
方法。 5 前記第2の係数値は各前記制御弁の夫々の開
口面積に応じて設定される係数値の加算和として
求められることを特徴とする特許請求の範囲第3
項又は第4項記載の内燃エンジンの燃料噴射制御
方法。
[Scope of Claims] 1. An intake passage, a throttle valve disposed in the middle of the intake passage, an auxiliary air passage that opens into the intake passage downstream of the throttle valve and communicates with the atmosphere, and an auxiliary air passage arranged in the auxiliary air passage. A fuel injection control method for injecting and supplying a required amount of fuel to an internal combustion engine in synchronization with the rotation of the engine, the control valve comprising: , in a method for injecting and supplying to the engine an amount of fuel determined according to the pressure in the intake passage downstream of the throttle valve and the rotation speed of the engine, when the load applied to the engine is higher than a reference load; When the applied load is lower than the reference load,
a first coefficient value according to the opening area of the throttle valve;
a second coefficient value according to the opening area of the control valve;
the number of revolutions of the engine is determined, the amount of fuel is calculated according to the sum of the first and second coefficient values and the number of revolutions of the engine, and the thus calculated amount of fuel is injected and supplied to the engine. A fuel injection control method for an internal combustion engine. 2. Fuel injection control for an internal combustion engine according to claim 1, wherein the fuel amount is calculated according to a value obtained by dividing the sum of the first and second coefficient values by the engine rotation speed. Method. 3. An intake passage, a throttle valve disposed in the middle of the intake passage, a plurality of auxiliary air passages that open into the intake passage downstream of the throttle valve and communicate with the atmosphere, and a plurality of auxiliary air passages arranged in each of the auxiliary air passages. , and a plurality of control valves for controlling the amount of auxiliary air supplied to the engine through the passage, the required amount of fuel is injected and supplied to an internal combustion engine each time a pulse of a predetermined control signal representing a predetermined crank angle position occurs. A fuel injection control method, wherein when the load applied to the engine is higher than a reference load, a fuel amount determined according to the pressure in the intake passage downstream of the throttle valve and the rotation speed of the engine is injected to the engine. In the method of supplying,
When the load applied to the engine is lower than the reference load, a first coefficient value corresponding to the opening area of the throttle valve, and a first coefficient value corresponding to the total opening area of the control valves in the operating state among the plurality of control valves. 2 and the generation time interval between the previous pulse and the current pulse of the control signal, and calculate the fuel consumption according to the sum of the first and second coefficient values and the pulse generation time interval of the control signal. 1. A fuel injection control method for an internal combustion engine, comprising: calculating a fuel amount, and injecting and supplying the calculated fuel amount to the engine. 4. The internal combustion system according to claim 3, wherein the fuel amount is calculated according to a product obtained by multiplying the sum of the first and second coefficient values by the pulse generation time interval of the control signal. Engine fuel injection control method. 5. Claim 3, wherein the second coefficient value is obtained as an additive sum of coefficient values set according to the opening area of each of the control valves.
5. The fuel injection control method for an internal combustion engine according to item 4.
JP16378983A 1983-09-06 1983-09-06 Fuel injection control for internal-combustion engine Granted JPS6056140A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16378983A JPS6056140A (en) 1983-09-06 1983-09-06 Fuel injection control for internal-combustion engine
US06/646,684 US4513713A (en) 1983-09-06 1984-08-31 Method of controlling operating amounts of operation control means for an internal combustion engine
DE19843432379 DE3432379A1 (en) 1983-09-06 1984-09-03 METHOD FOR ELECTRONICALLY REGULATING AN OPERATING SIZE OF AN OPERATING CONTROL ARRANGEMENT SERVING THE CONTROL OF THE OPERATION OF AN INTERNAL COMBUSTION ENGINE
GB08422454A GB2146142B (en) 1983-09-06 1984-09-05 Comtrolling an internal conbustion engine
FR8413720A FR2551498B1 (en) 1983-09-06 1984-09-06 METHOD FOR DETERMINING CONTROL VALUES OF AN OPERATING CONTROL DEVICE OF AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16378983A JPS6056140A (en) 1983-09-06 1983-09-06 Fuel injection control for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6056140A JPS6056140A (en) 1985-04-01
JPH0223702B2 true JPH0223702B2 (en) 1990-05-25

Family

ID=15780733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16378983A Granted JPS6056140A (en) 1983-09-06 1983-09-06 Fuel injection control for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6056140A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293441A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Fuel injection control method for internal combustion engine
JP2507987B2 (en) * 1986-01-23 1996-06-19 トヨタ自動車株式会社 Control device for internal combustion engine
JP2514627B2 (en) * 1986-04-07 1996-07-10 日産自動車株式会社 Air-fuel ratio control device for internal combustion engine
JPS6445934A (en) * 1987-08-12 1989-02-20 Japan Electronic Control Syst Fuel supply controller for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148536A (en) * 1974-10-22 1976-04-26 Sumitomo Const IDOKATAWAKUSOCHI
JPS5696132A (en) * 1979-12-28 1981-08-04 Honda Motor Co Ltd Engine controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148536A (en) * 1974-10-22 1976-04-26 Sumitomo Const IDOKATAWAKUSOCHI
JPS5696132A (en) * 1979-12-28 1981-08-04 Honda Motor Co Ltd Engine controller

Also Published As

Publication number Publication date
JPS6056140A (en) 1985-04-01

Similar Documents

Publication Publication Date Title
US6237563B1 (en) Method for controlling an internal combustion engine
US4513713A (en) Method of controlling operating amounts of operation control means for an internal combustion engine
US4444168A (en) Engine idling speed control method and apparatus
US5881552A (en) Control system for internal combustion engines and control system for vehicles
US4491115A (en) Method for controlling fuel supply to an internal combustion engine at deceleration
US4479471A (en) Method for controlling engine idling rpm immediately after the start of the engine
KR0127127B1 (en) Engine control system and method
JP2002227694A (en) Cylinder suction air amount calculating device for engine
US4700675A (en) Method of controlling fuel supply for internal combustion engine at idle
US4739741A (en) Fuel supply control method for internal combustion engines at starting
EP1302703A2 (en) A method and system for controlling a powertrain
US4572141A (en) Method of controlling intake air quantity for internal combustion engines
US4580541A (en) Method of controlling operating amounts of operation control means for an internal combustion engine
JP2004197716A (en) Control device for internal combustion engine
GB2136606A (en) Idling rpm feedback control method for internal combustion engines
US4549518A (en) Method of controlling operating amounts of operation control means for an internal combustion engine
EP0194878B1 (en) Method of controlling intake air quantity for internal combustion engines at idle
US4681075A (en) Idling speed feedback control method for internal combustion engines
JPH0223702B2 (en)
JP3622538B2 (en) Engine intake air amount detection device
JP4524528B2 (en) Engine internal EGR rate estimation device
JP2871270B2 (en) Slope estimation method
JPH0214980B2 (en)
JP3287863B2 (en) Idle speed control device for internal combustion engine
JP3627462B2 (en) Control device for internal combustion engine