JPH0223698B2 - - Google Patents

Info

Publication number
JPH0223698B2
JPH0223698B2 JP57089397A JP8939782A JPH0223698B2 JP H0223698 B2 JPH0223698 B2 JP H0223698B2 JP 57089397 A JP57089397 A JP 57089397A JP 8939782 A JP8939782 A JP 8939782A JP H0223698 B2 JPH0223698 B2 JP H0223698B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
intake pipe
engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57089397A
Other languages
Japanese (ja)
Other versions
JPS58206833A (en
Inventor
Kazuo Inoe
Seigo Suzuki
Tetsuo Yamagata
Toshihiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP57089397A priority Critical patent/JPS58206833A/en
Publication of JPS58206833A publication Critical patent/JPS58206833A/en
Publication of JPH0223698B2 publication Critical patent/JPH0223698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃エンジンの電子式燃料噴射制御装
置の噴射量補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection amount correction method for an electronic fuel injection control device for an internal combustion engine.

内燃エンジンの電子式燃料噴射制御装置におい
てはエンジンの吸気管に設けたスロツトル弁下流
の吸気管内圧又はスロツトル弁開度のいずれか一
方と回転数とを用いて燃料噴射の基本量を決定す
る方式がある。このような基本噴射量を決定する
方法としては、エンジンの比較的低負荷領域では
エンジン回転数Neとスロツトル弁下流の吸気管
内圧PBとをパラメータとしたマトリツクスメモ
リ(PB−Neマツプ)を用いて又比較的高負荷領
域ではエンジン回転数Neとスロツトル弁開度θth
とをパラメータとしたマトリツクスメモリ(θth
−Neマツプ)を用いて基本燃料噴射量Tiを決定
するハイブリツド方式がある。
In an electronic fuel injection control device for an internal combustion engine, the basic amount of fuel injection is determined using either the intake pipe internal pressure downstream of a throttle valve installed in the engine's intake pipe or the throttle valve opening and the rotational speed. There is. A method for determining such a basic injection amount is to use a matrix memory (P B - Ne map) using the engine speed Ne and the intake pipe internal pressure P B downstream of the throttle valve as parameters in a relatively low load region of the engine. Also, in a relatively high load region, engine speed Ne and throttle valve opening θth
Matrix memory (θth
There is a hybrid method that uses the -Ne map) to determine the basic fuel injection amount Ti.

更にターボチヤージヤ付エンジンにおいては、
コンプレツサ上流側の吸気管内圧(吸気圧)P1
及び吸気温度T1並びにコンプレツサ下流側の吸
気管内圧すなわちコンプレツサ出口とスロツトル
弁との中間における過給された吸気圧力(過給
圧)P2を夫々検出し、これらの各検出値P1,T1
P2をパラメータとして吸気密度補正係数γAを求
め、該補正係数γAにより前記基本燃料噴射量Ti
を補正し、運転状態の変化による吸気の温度及び
圧力すなわち密度の変化に応じて燃料噴射量の補
正を行なうようにしている。
Furthermore, in turbocharged engines,
Intake pipe internal pressure (intake pressure) on the upstream side of the compressor P 1
and the intake air temperature T 1 and the intake pipe internal pressure on the downstream side of the compressor, that is, the supercharged intake air pressure (supercharging pressure) P 2 at the intermediate point between the compressor outlet and the throttle valve, and these detected values P 1 , T 1 ,
Determine the intake air density correction coefficient γ A using P 2 as a parameter, and use the correction coefficient γ A to adjust the basic fuel injection amount Ti.
The fuel injection amount is corrected in accordance with changes in intake air temperature and pressure, that is, density due to changes in operating conditions.

しかしながら、吸気密度補正のための前記コン
プレツサの下流側の吸気管内圧P2を検出する過
給圧センサは検出精度が高く且つ応答性の速いも
のが要求される。このように圧力センサとしては
ダイヤフラム式半導体圧力センサが使用されてい
るが、かかる圧力センサは高価であり、これに伴
ないシステムが高価となる。
However, the boost pressure sensor that detects the intake pipe internal pressure P2 on the downstream side of the compressor for intake air density correction is required to have high detection accuracy and quick response. As described above, a diaphragm type semiconductor pressure sensor is used as a pressure sensor, but such a pressure sensor is expensive, and the system accordingly becomes expensive.

本発明は上述の点に鑑みてなされたもので、コ
ンプレツサ下流側の吸気管内圧P2を他のパラメ
ータによつてシユミレートすることにより必要な
吸気密度補正を行ない、前記コンプレツサ下流側
の吸気管内圧P2検出用圧力センサを省略したシ
ステムを提供することを目的とする。この目的を
達成するために本発明においては、ターボチヤー
ジヤ等のコンプレツサとエアクリーナとエンジン
の吸気ポートとが連なる吸気管を有する燃料噴射
式エンジンの回転数Neと、前記吸気管に設けた
スロツトル弁下流の吸気管内圧PB又はスロツト
ル弁開度θthのパラメータにより基本燃料噴射量
を決定し、前記エンジンの運転状態に応じた吸気
密度補正係数を求めて前記基本燃料噴射量を補正
する内燃エンジンの電子式燃料噴射制御装置の噴
射量補正方法において、前記コンプレツサの上流
側の吸気管内圧P1とその吸気温度T1のパラメー
タ及び前記スロツトル弁下流の吸気管内圧PB
パラメータの関数として前記吸気密度補正係数を
求めるようにした内燃エンジンの電子式燃料噴射
制御装置の噴射量補正方法を提供するものであ
る。
The present invention has been made in view of the above-mentioned points, and it is possible to perform necessary intake air density correction by simulating the intake pipe internal pressure P2 downstream of the compressor using other parameters. The purpose of this invention is to provide a system that does not require a pressure sensor for P2 detection. In order to achieve this object, the present invention has developed a system for adjusting the rotational speed Ne of a fuel injection engine having an intake pipe in which a compressor such as a turbocharger, an air cleaner, and an intake port of the engine are connected, and a throttle valve downstream of a throttle valve provided in the intake pipe. An electronic method for an internal combustion engine that determines the basic fuel injection amount based on parameters such as intake pipe internal pressure P B or throttle valve opening θth, and corrects the basic fuel injection amount by determining an intake air density correction coefficient according to the operating state of the engine. In the injection amount correction method of the fuel injection control device, the intake air density is corrected as a function of the parameters of the intake pipe internal pressure P 1 and its intake air temperature T 1 on the upstream side of the compressor, and the intake pipe internal pressure P B downstream of the throttle valve. The present invention provides an injection amount correction method for an electronic fuel injection control device for an internal combustion engine, which calculates a coefficient.

以下本発明の一実施例を添付図面に基づいて詳
述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

先ず、本発明の燃料噴射量の補正方法の原理に
ついて説明する。
First, the principle of the fuel injection amount correction method of the present invention will be explained.

基本熱料噴射量Tiを補正する吸気密度補正係
数γAは次式で表わされる。
The intake air density correction coefficient γ A for correcting the basic heating charge injection amount Ti is expressed by the following equation.

γA=P2/P0×T0/T2 ………(1) ここに、値P0は標準大気圧(760mmHg)、T0
標準温度(25℃)、P2はコンプレツサ下流側の吸
気管内圧、T2はコンプレツサ下流側の吸気温度
を表わす。この吸気温度T2はエンジンの運転条
件変化による温度変化が大きく又早いために、検
出精度及び応答性の点から温度センサにより直接
検出することは高価な温度センサ装置を用いる必
要が有るので演算により算出している。
γ A = P 2 / P 0 × T 0 / T 2 ………(1) Here, the value P 0 is standard atmospheric pressure (760mmHg), T 0 is standard temperature (25℃), and P 2 is the downstream side of the compressor. T2 represents the intake pipe internal pressure, and T2 represents the intake air temperature downstream of the compressor. This intake air temperature T 2 changes greatly and quickly due to changes in engine operating conditions, so in terms of detection accuracy and responsiveness, direct detection with a temperature sensor requires the use of an expensive temperature sensor device, so it is necessary to use calculations. It is being calculated.

エンジンのスロツトル弁下流の吸気管内圧、コ
ンプレツサ上流側の吸気管内圧を夫々PB,P1
それらの吸気温度を夫々TB,T1とすると(TB
T1)と(PB/P1)との関係は第1図に示すよう
な1次関数で近似され、次式の関係式で表わすこ
とができる。
The intake pipe internal pressure downstream of the engine throttle valve and the intake pipe internal pressure upstream of the compressor are respectively P B , P 1 ,
Let those intake air temperatures be T B and T 1 respectively (T B /
The relationship between T 1 ) and (P B /P 1 ) is approximated by a linear function as shown in FIG. 1, and can be expressed by the following relational expression.

TB/Ti=ai(PB/P1)+bi ………(2) (ai、biは定数) よつて、 TB=T1{ai(PB/P1)+bi} ………(3) また、吸気密度補正係数γAは次式で表わされ
る。
T B /Ti=ai(P B /P 1 )+bi ……(2) (ai and bi are constants) Therefore, T B =T 1 {ai(P B /P 1 )+bi} ……( 3) In addition, the intake air density correction coefficient γ A is expressed by the following formula.

γA=P2/P0×T0/T2=(PB/P0n-1/n×T0/TB……
…(4) (nはポリトロープ指数) 従つて、この(4)式に前記(3)式を代入すると、係
数γAは次式で与えられる。
γ A =P 2 /P 0 ×T 0 /T 2 = (P B /P 0 ) n-1/n ×T 0 /T B ......
...(4) (n is a polytropic index) Therefore, by substituting the above equation (3) into this equation (4), the coefficient γ A is given by the following equation.

γA=(PB/P0n-1/n×T0/TB=(PB/P0
))n-1/n×T0/T1×1/ai(PB/P1)+bi………(5) この式(4)において、値P0,T0は前述したよう
に定数であり、吸気管内圧P1は圧力センサで検
出し吸気温度T1は温度センサで検出する。従つ
て、上式によれば値P2をPBで近似的にする算出
することができ、吸気管内圧P2を検出すること
なく補正係数γAを求めることが可能である。
γ A = (P B /P 0 ) n-1/n ×T 0 /T B = (P B /P 0
)) n-1/n ×T 0 /T 1 ×1/ai (P B /P 1 ) + bi……(5) In this formula (4), the values P 0 and T 0 are constants as mentioned above. The intake pipe internal pressure P 1 is detected by a pressure sensor, and the intake air temperature T 1 is detected by a temperature sensor. Therefore, according to the above equation, it is possible to approximate the value P 2 by P B , and it is possible to obtain the correction coefficient γ A without detecting the intake pipe internal pressure P 2 .

第2図は本発明の2気筒エンジンにおける一実
施例を示すブロツク図である。図において、符号
1及び2は夫々第1及び第2の可変レラクタンス
式軸回転センサを示し、これらの各センサ1,2
は第3図に示すエンジンEのカム軸CAを基準位
置に検出するもので、本実施例においては、互い
に180度位相を異にするパルスを出力するように
配されている。これらの各センサ1,2は夫々波
形整形回路3,4の入力側に接続され、後者の出
力側はエンジン回転数カウンタ6及び噴射時間カ
ウンタ31,32の入力側に接続されている。ク
ロツク発信回路はカウンタ6,23,31,32
及びアナログスイツチ11の入力側に接続されて
おり、カウンタ6,23,31,32にクロツク
パルスCPを、アナログスイツチ11に制御パル
スφを供給する。
FIG. 2 is a block diagram showing an embodiment of a two-cylinder engine according to the present invention. In the figure, numerals 1 and 2 indicate first and second variable reluctance shaft rotation sensors, respectively.
is for detecting the camshaft CA of the engine E shown in FIG. 3 at the reference position, and in this embodiment, they are arranged so as to output pulses having a phase difference of 180 degrees from each other. These sensors 1 and 2 are connected to the input sides of waveform shaping circuits 3 and 4, respectively, and the output side of the latter is connected to the input sides of an engine revolution counter 6 and injection time counters 31 and 32. The clock oscillation circuit consists of counters 6, 23, 31, 32.
and the input side of the analog switch 11, and supplies the counters 6, 23, 31, and 32 with the clock pulse CP, and the analog switch 11 with the control pulse φ.

第3図は本発明に係るターボチヤージヤ付エン
ジンの模式図で、エンジンEの排気ガスは排気管
Exを通してターボチヤージヤTBのタービンTに
供給され、このタービンTを駆動した後マフラM
から排出され、エアクリーナACから送出された
空気はタービンTに直結されたコンプレツサCに
より圧縮され吸気管Inを通してエンジンEの吸入
弁側に供給される。また、符号Rはレゾナンスチ
ヤンバ、符号Sはサージタンクを示す。
FIG. 3 is a schematic diagram of a turbocharged engine according to the present invention, and the exhaust gas of engine E is discharged from the exhaust pipe.
It is supplied to the turbine T of the turbocharger TB through Ex, and after driving this turbine T, the muffler M
The air discharged from the air cleaner AC is compressed by a compressor C directly connected to the turbine T, and is supplied to the intake valve side of the engine E through the intake pipe In. Further, the symbol R indicates a resonance chamber, and the symbol S indicates a surge tank.

圧力センサ7はエンジンの吸気管の第3図に示
す様にスロツトル弁TL下流側の圧力PBを検出す
るもので、例えばダイヤフラムと半導体で構成さ
れている。スロツトル弁開度センサ8は前記エン
ジンの吸気管内に配されたスロツトル弁TLの開
度θthを検出するもので、例えばポテンシヨンメ
ータで構成されている。温度センサ9はターボチ
ヤージヤ付コンプレツサの入口の吸気温度T1
検出するものである。圧力センサ10はコンプレ
ツサの上流側すなわち、コンプレツサCの入口の
吸気管内圧P1を検出するものである。これらの
圧力センサ7、スロツトル弁開度センサ8、温度
センサ9及び圧力センサ10はアナログスイツチ
11の各入力側に接続され、該アナログスイツチ
11の出力側はアナログーデジタル変換器(以下
A−D変換器という)12の入力側に接続されて
いる。
The pressure sensor 7 detects the pressure P B on the downstream side of the throttle valve TL as shown in FIG. 3 in the intake pipe of the engine, and is composed of, for example, a diaphragm and a semiconductor. The throttle valve opening sensor 8 detects the opening θth of the throttle valve TL disposed in the intake pipe of the engine, and is composed of, for example, a potentiometer. The temperature sensor 9 detects the intake air temperature T1 at the inlet of the compressor with turbocharger. The pressure sensor 10 detects the intake pipe internal pressure P1 on the upstream side of the compressor, that is, at the inlet of the compressor C. These pressure sensor 7, throttle valve opening sensor 8, temperature sensor 9, and pressure sensor 10 are connected to each input side of an analog switch 11, and the output side of the analog switch 11 is connected to an analog-to-digital converter (hereinafter referred to as A-D). 12 (referred to as a converter).

A−D変換器12の出力側は、基本燃料噴射量
算出回路13の比較回路14、基本燃料噴射量記
憶回路(PB−Neマツプ)15、基本燃料噴射量
記憶回路(θth−Neマツプ)16及び吸気密度補
正係数記憶回路26の各入力側に接続されてい
る。基本燃料噴射量記憶回路15,16の各入力
側には前記エンジン回転数カウンタ6の出力側が
接続されている。
The output side of the A-D converter 12 includes a comparison circuit 14 of the basic fuel injection amount calculation circuit 13, a basic fuel injection amount storage circuit (P B -Ne map) 15, and a basic fuel injection amount storage circuit (θth-Ne map). 16 and the intake air density correction coefficient storage circuit 26, respectively. The output side of the engine revolution counter 6 is connected to each input side of the basic fuel injection amount storage circuits 15 and 16.

乗算回路30の一方の入力側には基本燃料噴射
量記憶回路15及び16の出力側が、他方の入力
側には吸気密度補正係数記憶回路26の出力側が
接続されており、出力側は噴射時間カウンタ3
1,32の入力側に接続されている。これらの各
カウンタ31,32の出力側は夫々噴射弁駆動回
路33,34の入力側に接続され、後者の出力側
は燃料噴射弁35,36に接続されている。
The output sides of the basic fuel injection amount storage circuits 15 and 16 are connected to one input side of the multiplication circuit 30, and the output side of the intake air density correction coefficient storage circuit 26 is connected to the other input side, and the output side is connected to an injection time counter. 3
It is connected to the input side of 1 and 32. The output sides of these counters 31 and 32 are connected to the input sides of injection valve drive circuits 33 and 34, respectively, and the output sides of the latter are connected to fuel injection valves 35 and 36, respectively.

次に第2図の構成の作動を説明する。 Next, the operation of the configuration shown in FIG. 2 will be explained.

第1、第2の軸回転センサ1,2はカム軸CA
の基準位置を検出し、互いに180度以相に異にす
るパルスが夫々波形整形回路3,4に供給され、
そこで波形整形され、パルスPa,Pbとして出力
される。カウンタ6はパルスPaが入力された時
刻からパルスPbが入力された時刻までの間にク
ロツク発振回路5から入力されるクロツクパルス
CPをカウントして軸回転センサ1,2の基準位
置間の周期を計側し、周期の逆数すなわち、エン
ジン回転数Neに比例した2進コード信号を出力
する。
The first and second shaft rotation sensors 1 and 2 are the camshaft CA
A reference position is detected, and pulses having a phase difference of 180 degrees or more are supplied to waveform shaping circuits 3 and 4, respectively.
There, the waveform is shaped and output as pulses Pa and Pb. The counter 6 receives clock pulses input from the clock oscillation circuit 5 between the time when the pulse Pa is input and the time when the pulse Pb is input.
The period between the reference positions of the shaft rotation sensors 1 and 2 is measured by counting CP, and a binary code signal proportional to the reciprocal of the period, that is, the engine rotation speed Ne is output.

エンジンのスロツトル弁下流側の吸気管内圧
PBを圧力センサ7により、スロツトル弁開度θth
はスロツトル弁開度センサ8により、コンプレツ
サCの上流側の吸気温度T1は温度センサ9によ
り、コンプレツサの上流側の吸気管内圧P1は圧
力センサ10により夫々検出され、検出された各
アナログ信号はクロツク発振回路5から所定のタ
イミングで加えられる制御パルスφにより切換作
動するアナログスイツチ11を通して順次A−D
変換器12に送られ、夫々相当する2進コード信
号に変換され必要な信号を各回路に出力する。
Intake pipe internal pressure downstream of engine throttle valve
P B is determined by pressure sensor 7 as throttle valve opening θth
is detected by the throttle valve opening sensor 8, the intake air temperature T1 on the upstream side of the compressor C is detected by the temperature sensor 9, the intake pipe internal pressure P1 on the upstream side of the compressor is detected by the pressure sensor 10, and each detected analog signal are sequentially A-D through an analog switch 11 which is switched by a control pulse φ applied from a clock oscillation circuit 5 at a predetermined timing.
The signals are sent to a converter 12, where they are converted into corresponding binary code signals, and the necessary signals are output to each circuit.

比較回路14はA−D変換されたスロツトル弁
開度θthに相当する信号と設定値θth1とを比較し、
θth<θth1の場合には基本燃料噴射量記憶回路1
5を、θth>θth1の場合には基本燃料噴射量記憶
回路16を選択する。基本燃料噴射量記憶回路1
5はカウンタ6から出力されるエンジン回転数
Neに相当する信号と、A−D変換器12から出
力されるスロツトル弁下流側の吸気管内圧PB
相当する信号とを入力し、予めスロツトル弁下流
側の吸気管内圧PB及びエンジン回転数数Neの関
数として記憶されている基本燃料噴射量Tiに相
当する2進コード信号を出力する。基本燃料噴射
量記憶回路16はカウンタ6から出力されるエン
ジン回転数Neに相当する信号と、A−D変換器
12から出力されるスロツトル弁開度θthに相当
する信号とを入力とし、予めスロツトル弁開度
θth及びエンジン回転数Neの関数として記憶され
ている基本燃料噴射量Tiに相当する2進コード
信号を出力する。すなわち、θth<θth1のときに
は基本燃料噴射量記憶回路15から、θth>θth1
のときには基本燃料噴射量記憶回路16から所要
の基本燃料噴射量Tiに相当する2進コード信号
を出力する。
The comparison circuit 14 compares the A-D converted signal corresponding to the throttle valve opening θth with the set value θth 1 ,
If θth<θth 1 , the basic fuel injection amount memory circuit 1
5, and when θth>θth 1 , the basic fuel injection amount storage circuit 16 is selected. Basic fuel injection amount memory circuit 1
5 is the engine rotation speed output from counter 6
A signal corresponding to Ne and a signal corresponding to the intake pipe internal pressure P B on the downstream side of the throttle valve output from the A-D converter 12 are input, and the intake pipe internal pressure P B on the downstream side of the throttle valve and the engine speed are set in advance. A binary code signal corresponding to the basic fuel injection amount Ti stored as a function of the number Ne is output. The basic fuel injection amount storage circuit 16 inputs a signal corresponding to the engine rotation speed Ne output from the counter 6 and a signal corresponding to the throttle valve opening θth output from the A-D converter 12, and A binary code signal corresponding to the basic fuel injection amount Ti stored as a function of the valve opening θth and the engine speed Ne is output. That is, when θth<θth 1 , the basic fuel injection amount storage circuit 15 reads θth>θth 1.
At this time, the basic fuel injection amount storage circuit 16 outputs a binary code signal corresponding to the required basic fuel injection amount Ti.

吸気密度補正係数記憶回路26はA−D変換器
12から出力されるスロツトル弁下流側の吸気管
内圧PB、コンプレツサ入口の吸気温度T1及びコ
ンプレツサ上流側の吸気管内圧P1に相当する信
号とを入力し、予め圧力PB,P1及び温度T1の関
数として記憶されている吸気密度補正係数γAに相
当する2進コード信号を出力する。
The intake air density correction coefficient storage circuit 26 outputs signals corresponding to the intake pipe internal pressure P B on the downstream side of the throttle valve, the intake air temperature T 1 at the compressor inlet, and the intake pipe internal pressure P 1 on the upstream side of the compressor, which are output from the A-D converter 12 . is input, and a binary code signal corresponding to the intake air density correction coefficient γ A stored in advance as a function of pressures P B , P 1 and temperature T 1 is output.

この吸気密度補正係数γAにより前記基本燃料噴
射量Tiを補正する。すなわち、乗算回路30に
より基本燃料噴射量記憶回路15又は16から出
力される基本燃料噴射量Tiに相当する信号に吸
気密度補正係数γAに相当する信号を乗算して実際
の噴射量T(=Ti×γA)を算出する。この乗算回
路30は算出した噴射量Tに相当する2進コード
信号を出力する。
The basic fuel injection amount Ti is corrected using this intake air density correction coefficient γ A. That is, the signal corresponding to the basic fuel injection amount Ti outputted from the basic fuel injection amount storage circuit 15 or 16 is multiplied by the signal corresponding to the intake air density correction coefficient γ A by the multiplication circuit 30 to calculate the actual injection amount T (= Ti×γ A ) is calculated. This multiplier circuit 30 outputs a binary code signal corresponding to the calculated injection amount T.

この乗算回路30出力は波形整形回路3,4か
ら出力され噴射開路のタイミングを指定する基準
位置パルス信号Pa,Pbが噴射時間カウンタ31,
32に加えられたときにこれらの各カウンタ3
1,32にプリセツトされる。これらの各カウン
タ31,32はクロツク発振回路5から入力され
るクロツクパルスCPによりプリセツトされた値
から0になるまでダウンカウントし、このダウン
カウントしている期間噴射信号を出力する。噴射
弁駆動回路33,34は入力する噴射信号を電流
増幅して噴射弁35,36を駆動し、燃料を噴射
させる。このようにして噴射量Tに相当する燃料
が噴射弁35,36から噴射される。
The output of this multiplier circuit 30 is output from the waveform shaping circuits 3 and 4, and the reference position pulse signals Pa and Pb specifying the injection opening timing are outputted from the injection time counter 31,
Each of these counters 3 when added to 32
Preset to 1,32. Each of these counters 31 and 32 counts down from a preset value to 0 by a clock pulse CP inputted from the clock oscillation circuit 5, and outputs an injection signal during this down-counting period. The injection valve drive circuits 33 and 34 amplify the input injection signals with current to drive the injection valves 35 and 36 to inject fuel. In this way, fuel corresponding to the injection amount T is injected from the injection valves 35 and 36.

以上説明したように本発明によれば、ターボチ
ヤージヤ等のコンプレツサとエアクリーナとエン
ジンの吸気ポートとが連なる吸気管を有する燃料
噴射式エンジンの回転数と、前記吸気管内に設け
られたスロツトル弁下流の吸気管内圧又はスロツ
トル弁開度のパラメータにより基本燃料噴射量を
決定し、前記エンジンの運転状態に応じた吸気密
度補正係数を求めて前記基本燃料噴射量を補正す
る内燃エンジンの電子式燃料噴射制御装置の噴射
量補正方法において、前記コンプレツサの上流側
の吸気管内圧とその吸気温度のパラメータ及び前
記スロツトル弁下流の吸気管内圧のパラメータの
関数として前記吸気密度補正係数を求めるように
したので、コンプレツサ下流側の吸気管内圧検出
用の圧力センサを省くことができる。
As explained above, according to the present invention, the rotational speed of a fuel injection engine having an intake pipe in which a compressor such as a turbocharger, an air cleaner, and an intake port of the engine are connected, and the intake air downstream of a throttle valve provided in the intake pipe. An electronic fuel injection control device for an internal combustion engine that determines a basic fuel injection amount based on parameters such as pipe pressure or throttle valve opening, and corrects the basic fuel injection amount by determining an intake air density correction coefficient according to the operating state of the engine. In the injection amount correction method, the intake air density correction coefficient is determined as a function of the intake pipe internal pressure and its intake air temperature on the upstream side of the compressor, and the intake pipe internal pressure downstream of the throttle valve. The pressure sensor for detecting the internal pressure in the intake pipe on the side can be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエンジンの吸入負圧とコンプレツサの
上流側の吸気管内圧(PB/P1)と、各吸気温度
(TB/T1)と関係を示す特性図、第2図は本発明
に係る内燃エンジンの電子式燃料噴射制御装置の
噴射量補正方法の一実施例を示すブロツク図、第
3図は本発明に係るターボチヤージヤ付エンジン
模式図である。 1,2……回転センサ、3,4……波形整形回
路、5……クロツク発振回路、6,31,32…
…カウンタ、7,10……圧力センサ、8……ス
ロツトル弁開度センサ、9……温度センサ、11
……アナログスイツチ、12……A−D変換器、
13……基本燃料噴射量算出回路、26……吸気
密度補正係数記憶回路、33,34……噴射弁駆
動回路、30……乗算回路、35,36……噴射
弁、AC……エアクリーナ、C……コンプレツサ、
T……タービン、R……レゾナンスチヤンバ、S
……サージタンク、In……吸気管、E……エンジ
ン、M……マフラ、TL……スロツトル。
Figure 1 is a characteristic diagram showing the relationship between the engine's intake negative pressure, the intake pipe internal pressure on the upstream side of the compressor (P B /P 1 ), and each intake air temperature (T B /T 1 ), and Figure 2 is a characteristic diagram showing the relationship between the engine's intake negative pressure, the intake pipe internal pressure on the upstream side of the compressor (P B /P 1 ), and each intake air temperature (T B /T 1 ). FIG. 3 is a schematic diagram of an engine with a turbocharger according to the present invention. 1, 2... Rotation sensor, 3, 4... Waveform shaping circuit, 5... Clock oscillation circuit, 6, 31, 32...
... Counter, 7, 10 ... Pressure sensor, 8 ... Throttle valve opening sensor, 9 ... Temperature sensor, 11
...Analog switch, 12...A-D converter,
13... Basic fuel injection amount calculation circuit, 26... Intake air density correction coefficient storage circuit, 33, 34... Injection valve drive circuit, 30... Multiplication circuit, 35, 36... Injection valve, AC... Air cleaner, C ...compressa,
T...Turbine, R...Resonance chamber, S
...Surge tank, In...Intake pipe, E...Engine, M...Muffler, TL...Throttle.

Claims (1)

【特許請求の範囲】[Claims] 1 ターボチヤージヤのコンプレツサとエアクリ
ーナとエンジンの吸気ポートとが連なる吸気管を
有する燃料噴射式エンジンの回転数と、前記吸気
管に設けられたスロツトル弁下流の吸気管内圧又
はスロツトル弁開度のパラメータにより基本燃料
噴射量を決定し、前記エンジンの運転状態に応じ
た吸気密度補正係数を求めて前記基本燃料噴射量
を補正する内燃エンジンの電子式燃料噴射制御装
置の噴射量補正方法において、前記コンプレツサ
の上流側の吸気管内圧とその吸気温度のパラメー
タ及び前記スロツトル弁下流の吸気管内圧のパラ
メータの関数として前記吸気密度補正係数を求め
たことを特徴とする内燃エンジンの電子式燃料噴
射制御装置の噴射量補正方法。
1 Based on the rotational speed of a fuel injection engine that has an intake pipe in which the turbocharger compressor, air cleaner, and engine intake port are connected, and the parameters of the intake pipe internal pressure downstream of the throttle valve provided in the intake pipe or the throttle valve opening. In the injection amount correction method for an electronic fuel injection control device for an internal combustion engine, the injection amount correction method for an electronic fuel injection control device for an internal combustion engine determines a fuel injection amount and corrects the basic fuel injection amount by determining an intake air density correction coefficient according to the operating state of the engine. An injection amount of an electronic fuel injection control device for an internal combustion engine, characterized in that the intake air density correction coefficient is determined as a function of a parameter of an intake pipe internal pressure and its intake air temperature, and a parameter of an intake pipe internal pressure downstream of the throttle valve. Correction method.
JP57089397A 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine Granted JPS58206833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089397A JPS58206833A (en) 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089397A JPS58206833A (en) 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Publications (2)

Publication Number Publication Date
JPS58206833A JPS58206833A (en) 1983-12-02
JPH0223698B2 true JPH0223698B2 (en) 1990-05-25

Family

ID=13969509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089397A Granted JPS58206833A (en) 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Country Status (1)

Country Link
JP (1) JPS58206833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534299U (en) * 1991-10-08 1993-05-07 小岩金網株式会社 Gate device
JPH071289U (en) * 1993-06-08 1995-01-10 久保熔接工業株式会社 Gate opening / closing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394627B1 (en) * 2000-11-30 2003-08-14 현대자동차주식회사 Idle speed control method for electro-throttle engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534299U (en) * 1991-10-08 1993-05-07 小岩金網株式会社 Gate device
JPH071289U (en) * 1993-06-08 1995-01-10 久保熔接工業株式会社 Gate opening / closing device

Also Published As

Publication number Publication date
JPS58206833A (en) 1983-12-02

Similar Documents

Publication Publication Date Title
US5069184A (en) Apparatus for control and intake air amount prediction in an internal combustion engine
US7681442B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
US4630206A (en) Method of fuel injection into engine
JP2973418B2 (en) Method for detecting intake pipe pressure of internal combustion engine
JP2602031B2 (en) Electronic control unit for internal combustion engine
JP2005220888A (en) Supercharging pressure presuming device of internal combustion engine with supercharger
CA2048085A1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
US4683857A (en) Method for controlling air/fuel ratio
US11002197B2 (en) Control device for internal combustion engine
JPS6328212B2 (en)
JPH0120301B2 (en)
JP2625048B2 (en) Failure detection device for exhaust gas recirculation device
EP0433671B1 (en) Fuel injection control apparatus having atmospheric pressure correction function
JP3544197B2 (en) Electronic control unit for internal combustion engine
US5159913A (en) Method and system for controlling fuel supply for internal combustion engine coupled with supercharger
JPH0223698B2 (en)
US5315979A (en) Electronic control apparatus for an internal combustion engine
US5035226A (en) Engine control system
US4702213A (en) Method for controlling air/fuel ratio
JPH0256492B2 (en)
JPH0226692B2 (en)
JPS60249645A (en) Fuel feed control in internal-combustion engine
JP2622625B2 (en) Intake air flow rate detection device and fuel supply control device for internal combustion engine
JPH0756239B2 (en) Basic control variable setting method for internal combustion engine
JP3599378B2 (en) Throttle valve control device for internal combustion engine