JPH02236894A - Mos dram type semiconductor device with cell capacity measuring function - Google Patents

Mos dram type semiconductor device with cell capacity measuring function

Info

Publication number
JPH02236894A
JPH02236894A JP1057495A JP5749589A JPH02236894A JP H02236894 A JPH02236894 A JP H02236894A JP 1057495 A JP1057495 A JP 1057495A JP 5749589 A JP5749589 A JP 5749589A JP H02236894 A JPH02236894 A JP H02236894A
Authority
JP
Japan
Prior art keywords
capacity
cell
bit lines
measured
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1057495A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagayama
宏 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1057495A priority Critical patent/JPH02236894A/en
Publication of JPH02236894A publication Critical patent/JPH02236894A/en
Pending legal-status Critical Current

Links

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a large amount of cell capacity data automatically by adding a switching function to capacity to be measured and charging and discharging the capacitor, and measuring its charging and discharging currents and finding the cell capacity. CONSTITUTION:A changeover switch S is added to the chip of the capacity to be measured and has an N channel MOS transistor(TR) TRQN1 interposed between one-terminal sides of all bit lines BL and an input terminal (a) and a P channel MOSTRQP1 interposed between the other-terminal sides of all the bit lines BL and an earth terminal (d), and the gates of both the TRs QP1 and QN1 are connected to an input terminal (c) in common. When a driving signal 2 is held at H, the TRQN1 turns on to charge the bit lines BL with a current (i) and when at L, the TRQP1 turns on a discharge the bit lines. At this time, when a signal 1 is at H, a cell MC is also charged and discharged and the total capacity including the cell is the capacity to be measured. When the signal 1 is at L, on the other hand, only the bit lines BL are charged and discharged, so only the total capacity of the bit lines is the capacity to be measured.

Description

【発明の詳細な説明】 〔発明の概要〕 MOS DRAM型のセル容量測定機能付き半導体装置
に関し、 一次試験用のメモリ測定システムを使用して、セル容量
が測定できるようにすることを目的とし、被測定容量に
対し充放電を行なわせる電源及びスイッチ回路を備え、
その充放電電流を測定してセル容量を算出できるように
構成する。
[Detailed Description of the Invention] [Summary of the Invention] An object of the present invention is to enable cell capacitance measurement of a MOS DRAM type semiconductor device with a cell capacitance measurement function using a memory measurement system for primary testing. Equipped with a power supply and switch circuit to charge and discharge the capacitance to be measured,
The configuration is such that the cell capacity can be calculated by measuring the charging/discharging current.

〔産業上の利用分野〕[Industrial application field]

本発明は、8GS DRAM型のセル容量測定機能付き
半導体装置に関する. MOSダイナミックRAM (MOS DRAM)のセ
ル容量はα線によるソフトエラー率を左右する重要なフ
ァクタである.近年のDRAMではα線によるソフトエ
ラーのエラー率についての要求は益々厳しくなる一方で
あり、そのソフトエラ一率に大きな影響を与えるセル容
量は監視すべき重要なファクタになうている.そのため
セル容量を簡易にモニターリングできる技術の開発が必
要である.〔従来の技術〕 第6図は従来のDRAMのセル容量測定法の概略図で、
MCはマトリクス状に配列されたメモリセル、BLはビ
ット線、WLはワード線である.これはセル容量測定用
に、基板にメモリセル、ビットIIおよびワード線をレ
イアウトしただけのモニタチップであり、抜取り検査用
に作られたものである.このモニタチップでは全てのワ
ード線WLの一端を共通に人力端子aに接続する一方、
全てのワード線WLの一端を共通に入力端子bに接続し
てある。
The present invention relates to an 8GS DRAM type semiconductor device with a cell capacitance measurement function. The cell capacity of MOS dynamic RAM (MOS DRAM) is an important factor that influences the soft error rate due to alpha rays. In recent years, requirements regarding the error rate of soft errors due to alpha rays have become increasingly strict in DRAMs, and the cell capacity, which has a large influence on the soft error rate, has become an important factor to monitor. Therefore, it is necessary to develop a technology that can easily monitor cell capacity. [Prior art] Figure 6 is a schematic diagram of a conventional DRAM cell capacity measurement method.
MC is a memory cell arranged in a matrix, BL is a bit line, and WL is a word line. This is a monitor chip with only a memory cell, bit II, and word line laid out on a substrate for cell capacitance measurement, and was made for sampling inspection. In this monitor chip, one end of all word lines WL is commonly connected to the human power terminal a,
One end of all word lines WL is commonly connected to input terminal b.

従って、入力端子bにH(ハイ)レベルの信号lを印加
して全ワード線WLを選択し、この状態で入力端子aに
図示しないが容量測定器(LCRメータ)を接続して、
該端子から見た容量即ち全ビット線の容量ΣC,と全メ
モリセルの容量ΣCMとの和を測定する。また、入力端
子bにL(ロー)レベルの信号lを印加して全ワード線
WLを非選択にし、この状態で入力端子aから見た容量
、この場合は全ビット線BLの容量ΣC,を測定する.
これら、両測定結果の差分 (ΣC.十ΣCM )一ΣC.=ΣCエをセル数Nで除
して1セル当りの容量0.4を得る。
Therefore, apply an H (high) level signal l to input terminal b to select all word lines WL, and in this state connect a capacitance measuring device (LCR meter), not shown, to input terminal a.
The capacitance seen from the terminal, that is, the sum of the capacitance ΣC of all bit lines and the capacitance ΣCM of all memory cells is measured. Also, apply an L (low) level signal l to input terminal b to deselect all word lines WL, and in this state, calculate the capacitance seen from input terminal a, in this case, the capacitance ΣC of all bit lines BL. Measure.
The difference between these two measurement results (ΣC.+ΣCM) - ΣC. =ΣC is divided by the number of cells N to obtain a capacity of 0.4 per cell.

N 器が必要であり、また各信号人力用の電源が必要である
。またモニタチップを測定するのであるから、プローバ
システムも必要である。さらに、大量に測定する場合は
大量のモニタチップが必要であり、これらを自動測定す
る場合は、マイクロコンビ二一夕で制御される測定シス
テムが不可欠となる。従って大量の測定はコスト的にも
困難となり、重要なパラメータとしてのセル容量を統計
的に管理するためのデータが少ないという問題が生じて
いる. 本発明は以上の点に鑑みてなされたもので、製品チップ
を測定する一次試験用のメモリ測定システムを使用して
、セル容量が測定できるようにすることを目的とするも
のである。
N equipment is required, and a power source for each signal is also required. Furthermore, since the monitor chip is to be measured, a prober system is also required. Furthermore, when measuring a large amount, a large number of monitor chips are required, and when measuring these automatically, a measuring system controlled by a microcontroller is indispensable. Therefore, large-scale measurements are difficult in terms of cost, and there is a problem that there is little data to statistically manage cell capacity, which is an important parameter. The present invention has been made in view of the above points, and it is an object of the present invention to enable cell capacitance to be measured using a memory measurement system for primary testing of product chips.

即ち、製品チップが構成されているウエハ上で、LCR
メータなどによらず簡易に、セル容量測定を可能にしよ
うとするものである。
That is, on the wafer on which the product chips are constructed,
The aim is to easily measure cell capacity without using a meter or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら第6図の測定方式では、容量測定〔課題を
解決するための手段〕 第1図は本発明の原理図で、Cはセルの総容量またはそ
れにビット線総容量を加えた被測定容量、Sは該容IC
に充電電流と放電電流を流すスイッチ、Aは平均電流測
定器、■は充電電源である.スイッチSと容量Cはチッ
プに含まれ、平均電流測定器Aと充電電源Vは測定シス
テムに含まれる.容量Cの放電電源はアースGであり、
これも測定システム側から供給される.また、スイッチ
Sの切替信号も測定システムから供給される.この測定
システムは製品チップをウエハ段階で測定するメモリテ
スタやウエハプローバ等の1次試験用メモリ測定システ
ムである。
However, in the measurement method shown in FIG. 6, the capacitance is measured [means for solving the problem]. S is the corresponding IC
A is the average current measuring device, and ■ is the charging power source. A switch S and a capacitor C are included in the chip, and an average current measuring device A and a charging power source V are included in the measurement system. The discharge power source of capacity C is earth G,
This is also supplied from the measurement system. A switching signal for the switch S is also supplied from the measurement system. This measurement system is a memory measurement system for primary testing such as a memory tester or wafer prober that measures product chips at the wafer stage.

〔作用〕[Effect]

第1図のスイッチSを電源v側、グランドG側に切替え
ると容量Cは充電、放電を繰り返すため、測定器Aで測
定される平均電流■から容量Cを算出できる.つまり、
電圧Vで容量Cに蓄えられる電荷の総量Qは Q−C−V           ・・・・・・(1)
であり、電流は電荷の時間変化 i=dq/dt             ・・・・・
・(2)である,このiの積分値Sidtは(1)式の
Qであり、これは測定器Aで測定される平均電流■と充
電時間Tとの積でもあるので、 Q= S idt = I・T      ・・・・・
・(3)が成り立つ。従って、(1)(3)式より■ が導びき出されるので、■=一定,T=一定とすれば平
均電流1から容1cを求めることができる.スイッチS
を高、低レベルの時間比率が50%のパルスで電源V側
、グランドG側に交互に切換える場合は、上記Tはこの
パルスの周期で表わせる。
When the switch S in Figure 1 is switched to the power supply V side and the ground G side, the capacitance C repeats charging and discharging, so the capacitance C can be calculated from the average current ■ measured by the measuring device A. In other words,
The total amount of charge Q stored in capacitor C at voltage V is Q-C-V (1)
The current is the time change of charge i=dq/dt...
・The integral value Sidt of this i, which is (2), is Q in equation (1), which is also the product of the average current ■ measured by measuring device A and the charging time T, so Q= S idt = I・T・・・・・・
-(3) holds true. Therefore, ■ is derived from equations (1) and (3), so if ■ = constant and T = constant, the capacity 1c can be found from the average current 1. switch S
When switching alternately to the power supply V side and the ground G side with a pulse in which the time ratio of high and low levels is 50%, the above T can be expressed by the period of this pulse.

〔実施例〕〔Example〕

第2図は本発明の一実施例を示す構成図で、第6図のモ
ニタチップ上に、充放電の切替用スイッチSを付加した
ものである。これはモニタチップとせず、普通の製品に
なり得るチップとし、唯、ワード線とビット線の全選択
が可能としたものでもよい。このスイッチSは、全ての
ビット線BLの一端と入力端子aの間に介在したNチャ
ネルMOSトランジスタQN.と、全てのビット線BL
の他端(上記一端でもよい)と接地端子dの間に介在し
たPチャネルMOS}ランジスタQP.とを備え、両ト
ランジスタQPI .QNI のゲートを共通に入力端
子Cに接続してある。
FIG. 2 is a block diagram showing an embodiment of the present invention, in which a charging/discharging switch S is added to the monitor chip shown in FIG. 6. This may not be a monitor chip, but may be a chip that can be used as an ordinary product, and only allows selection of all word lines and bit lines. This switch S is an N-channel MOS transistor QN. and all bit lines BL
A P-channel MOS transistor QP. and both transistors QPI . The gates of QNI are commonly connected to input terminal C.

本例の端子a − dは全て測定システムに接続する.
先ず、第1の入力端子aは第1図に示した平均電流測定
器Aを通して電源■に接続する。また、第2の入力端子
bには第3図に示すようにHレベルとLレベルに切換え
られる信号lを供給する.Hはワード線WLの選択レベ
ルであり、Lはワード線WLの非選択レベルである.さ
らに第3の入力端子Cには第3図に示すように周期T、
デューティ50%で反転するスイッチ切替信号2を供給
する.残る接地端子dはアースに接続する.この回路で
駆動信号2をHにするとトランジスタQN.がオンにな
って電流iでビットlIiBLが充電され、Lにすると
トランジスタQP.がオン?なってビット線は放電する
。このとき信号lがHレベルであればセルMCも充放電
し、セルを含む総容量 ΣCB+ΣCM が被測定容量Cとなる。これに対し信号1がLレベルで
あればビット線BLだけの充放電であるので、ビット線
の総容量ΣC.だけが被測定容量Cとなる。
All terminals a to d in this example are connected to the measurement system.
First, the first input terminal a is connected to the power source (2) through the average current measuring device A shown in FIG. Further, the second input terminal b is supplied with a signal l which can be switched between H level and L level as shown in FIG. H is the selection level of the word line WL, and L is the non-selection level of the word line WL. Furthermore, the third input terminal C has a period T, as shown in FIG.
Supply switch switching signal 2 that is inverted with a duty of 50%. Connect the remaining ground terminal d to earth. In this circuit, when drive signal 2 is set to H, transistor QN. turns on, bit lIiBL is charged with current i, and when set to L, transistor QP. Is it on? As a result, the bit line is discharged. At this time, if the signal l is at H level, the cell MC is also charged and discharged, and the total capacitance ΣCB+ΣCM including the cell becomes the capacitance C to be measured. On the other hand, if the signal 1 is at L level, only the bit line BL is being charged or discharged, so the total capacitance of the bit line ΣC. Only this becomes the capacitance C to be measured.

従って、ビット線BLだけの平均電流Ilとセルを含む
平均電流1■との差l。はセルMCだけの総容量ΣCl
4によるものなので、セル数をNとすれば下弐で1セル
当りの容量C。を算出できる.■ 第4図は本発明のスイッチSの他の構成例である。本例
は第2図のPチャネルMOS}ランジスタQ P rを
NチャネノレMOS}ランジスタQN1に代え、2つの
入力端子c.,c.から逆位相のスイッチ切替信号21
.22を(第5図参照)直列接続された2つのNチャネ
ルトMOS}ランジスタQNz .QN+のゲートに与
えるようにしたものである。この場合、平均電流測定器
Aを接続する第1の入力端子aやアースに接続する接地
端子d、さらにワード線WLに接続する第2の入力端子
Cは図面上省略されている. トランジスタQN+ .QN!は半周期T/2毎に一方
がオン、他方がオフという関係を入れ替えるので、容量
Cは第2図と同様に充放電を繰り返す。
Therefore, the difference l between the average current Il of only the bit line BL and the average current 1■ including the cell. is the total capacity ΣCl of only cell MC
4, so if the number of cells is N, then the capacity per cell is C. can be calculated. (2) FIG. 4 shows another example of the configuration of the switch S of the present invention. In this example, the P-channel MOS transistor QPr in FIG. 2 is replaced with an N-channel MOS transistor QN1, and two input terminals c. ,c. Switch switching signal 21 with opposite phase from
.. 22 (see FIG. 5) are two N-channel MOS transistors connected in series (see FIG. 5). This is given to the gate of QN+. In this case, the first input terminal a to which the average current measuring device A is connected, the grounding terminal d to be connected to earth, and the second input terminal C to be connected to the word line WL are omitted in the drawing. Transistor QN+. QN! The relationship between the capacitors C and C is switched such that one is on and the other is off every half cycle T/2, so the capacitor C repeats charging and discharging in the same manner as in FIG.

尚、以上はMOS}ランジスタを例としたがバイボーラ
トランジスタにも適用できる.〔発明の効果〕 以上述べたように本発明によれば、容量測定器を使用し
て行なってきたDRAMのセル容量測定を、被測定容量
にスイッチング機能を付加して充放電可能とすることで
、その充放電電流を測定して間接的に容量が算出でき、
DRAMの1次試験等で使用しているウエハプローバ・
メモリテスタ等を含む測定システムを利用してセル容量
を測定することができ、大量のセル容量データを自動的
に安価に得ることができる利点がある.
Although the above example uses a MOS transistor, it can also be applied to a bibolar transistor. [Effects of the Invention] As described above, according to the present invention, DRAM cell capacitance measurement, which has been performed using a capacitance measuring device, can be performed by adding a switching function to the capacitance to be measured to enable charging and discharging. , the capacity can be calculated indirectly by measuring the charging and discharging current,
Wafer prober used in DRAM primary testing, etc.
Cell capacitance can be measured using a measurement system that includes a memory tester, etc., and has the advantage of automatically obtaining large amounts of cell capacitance data at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の一実施例を示す構成図、第3図は第2
図の動作波形図、 第4図は本発明のスイッチの他の例を示す構成図、 第5図は第4図の信号波形図、
Fig. 1 is a diagram showing the principle of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, and Fig. 3 is a diagram showing the principle of the present invention.
FIG. 4 is a configuration diagram showing another example of the switch of the present invention; FIG. 5 is a signal waveform diagram of FIG. 4;

Claims (1)

【特許請求の範囲】 1、被測定容量に対し充放電を行なわせる電源(V)及
びスイッチ回路(S)を備え、 その充放電電流を測定してセル容量を算出できるように
してなることを特徴とするMOSDRAM型のセル容量
測定機能付き半導体装置。
[Claims] 1. A power supply (V) and a switch circuit (S) for charging and discharging the capacitance to be measured are provided, and the cell capacitance can be calculated by measuring the charging and discharging current. A featured MOSDRAM type semiconductor device with a cell capacitance measurement function.
JP1057495A 1989-03-09 1989-03-09 Mos dram type semiconductor device with cell capacity measuring function Pending JPH02236894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057495A JPH02236894A (en) 1989-03-09 1989-03-09 Mos dram type semiconductor device with cell capacity measuring function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057495A JPH02236894A (en) 1989-03-09 1989-03-09 Mos dram type semiconductor device with cell capacity measuring function

Publications (1)

Publication Number Publication Date
JPH02236894A true JPH02236894A (en) 1990-09-19

Family

ID=13057307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057495A Pending JPH02236894A (en) 1989-03-09 1989-03-09 Mos dram type semiconductor device with cell capacity measuring function

Country Status (1)

Country Link
JP (1) JPH02236894A (en)

Similar Documents

Publication Publication Date Title
US3795859A (en) Method and apparatus for determining the electrical characteristics of a memory cell having field effect transistors
JP3076606B2 (en) Semiconductor memory device and inspection method thereof
US6008664A (en) Parametric test system and method
KR19990062640A (en) An on-chip test circuit that measures an on-chip signal using an external test signal
US20050099866A1 (en) Method and circuit for determining sense amplifier sensitivity
US6870373B2 (en) Circuit configuration and method for assessing capacitances in matrices
JPS5960800A (en) Digital semiconductor circuit
US20030142565A1 (en) Circuit and method for testing a ferroelectric memory device
US7480841B2 (en) Semiconductor integrated circuit which properly executes an operational test of a circuit under test in the semiconductor integrated circuit
US5212454A (en) Method and apparatus for selecting and measuring a capacitance from a plurality of interconnected capacitances
US20030057987A1 (en) Integrated circuit having a current measuring unit
EP1220230A2 (en) Circuit and method for testing a ferroelectric memory device
KR100252052B1 (en) Evaluation method of ferroelectric memory device using cell test pattern
US8779796B2 (en) Method and apparatus for device parameter measurement
US6731129B1 (en) Apparatus for measuring capacitance of a semiconductor device
JPH02236894A (en) Mos dram type semiconductor device with cell capacity measuring function
US8233341B2 (en) Method and structure for SRAM cell trip voltage measurement
JP3815982B2 (en) Semiconductor memory device
JP2818546B2 (en) Semiconductor integrated circuit
US20240027504A1 (en) System and method of measuring capacitance of device-under-test
JP3057847B2 (en) Semiconductor integrated circuit
JP2881825B2 (en) Test circuit
US6055195A (en) Delay circuit and delay chain circuit for measurement of the charge/discharge period of dynamic random access memory
JP3151315B2 (en) Semiconductor integrated circuit device
JP2616678B2 (en) Dynamic ROM data read circuit