JPH02236497A - Neutron shielding body of fast breeder - Google Patents

Neutron shielding body of fast breeder

Info

Publication number
JPH02236497A
JPH02236497A JP1056099A JP5609989A JPH02236497A JP H02236497 A JPH02236497 A JP H02236497A JP 1056099 A JP1056099 A JP 1056099A JP 5609989 A JP5609989 A JP 5609989A JP H02236497 A JPH02236497 A JP H02236497A
Authority
JP
Japan
Prior art keywords
shielding
neutron
fast breeder
shielding body
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1056099A
Other languages
Japanese (ja)
Other versions
JPH0658422B2 (en
Inventor
Tsuneyasu Yamanaka
山中 庸靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1056099A priority Critical patent/JPH0658422B2/en
Publication of JPH02236497A publication Critical patent/JPH02236497A/en
Publication of JPH0658422B2 publication Critical patent/JPH0658422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve shielding performance and to reduce the weight and cost of the shielding body by segmenting the inside of a cladding pipe to plural parts axially by partition plates. CONSTITUTION:Neutron shielding materials 2 are packed into the cladding pipe 5 and both ends are hermetically sealed by end plugs 4. The inside of the cladding pipe 5 is segmented axially to the plural parts by the partition plates 3. The generation of nonuniform densities in the powdery shielding materials 2 during use is obviated in this way by planar sintered bodies and the density differences corresponding to the required shielding performance can be provided between the respective partitioned blocks. The weight and cost of the shielding body is thus reduced. The reduced weight and improved economy of not only the single shielding body but the reactor system as well are obtd. by using the shielding body which is provided with the density distribution in the axial direction to optimize the shielding performance.

Description

【発明の詳細な説明】 口産業上の利用分野] 本発明は、高速増殖炉の中性子遮へい体に係り、特に炉
心部摺造の小型化、軽量化を計るのに好適な中性子遮へ
い体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a neutron shield for a fast breeder reactor, and particularly to a neutron shield suitable for reducing the size and weight of a reactor core sliding structure. It is.

[従来の技術] 高速増殖炉の遮へい体用材質としては、特開昭61−1
62790号に記載のように、炭化ボロン等の遮へい性
能の高い材質の使用が考案されている。これらは粉末の
形態をとる事が多いが,粉末を炉内で使用する例として
、沸騰水型軽水炉の制御捧があるが、これを第4図に示
す。第4図に於で粉末状の制御材は被覆管5の中に振動
充填され、両端を端栓4で密封される。充填密度は対理
論密度比で70%程度であるため、使用期間中に微粉末
が下方に移動して密度が不均一化する事を防止するため
に仕切りとして、第4図に示す如く直径3.5厠程度の
鋼球を要所に配している。
[Prior art] As a material for the shield of a fast breeder reactor, Japanese Patent Application Laid-open No. 61-1
As described in No. 62790, the use of materials with high shielding performance, such as boron carbide, has been devised. These are often in the form of powder, and an example of using powder in a reactor is a control shaft for a boiling water type light water reactor, which is shown in Figure 4. In FIG. 4, powdered control material is vibrated and filled into a cladding tube 5, and both ends are sealed with end plugs 4. Since the packing density is about 70% of the theoretical density, in order to prevent the fine powder from moving downward during use and making the density uneven, a partition with a diameter of 3 mm was used as shown in Figure 4. Steel balls of about .5 cm are placed at strategic points.

[発明が解決しようとする課題コ 上記の鋼球を使用する従来技術は、遮へい材の体積率を
高めるために被覆管の直径を1 5 0 mu程度の太
径とする高速増殖炉に対しては、下記の点で適していな
い。
[Problems to be Solved by the Invention] The conventional technology using the above-mentioned steel balls is not suitable for fast breeder reactors where the diameter of the cladding tube is set to a large diameter of about 150 mu to increase the volume fraction of the shielding material. is not suitable for the following reasons.

■鋼の体禎が大きくなり、遮へい性能が低下する。■The bulk of the steel increases and its shielding performance decreases.

■炉内での反応に伴なう発熱によって温度が上昇し,鋼
の溶融をまねくおそれがある。
■The temperature rises due to the heat generated by the reaction in the furnace, which may lead to melting of the steel.

本発明の目的は、遮へい性能の低下がなく,また炉内で
の反応によっても溶融する事の無い耐熱材で仕切りを行
ない、遮へい性能時に優れた、軽量な遮へい体を提供す
ることにある。
An object of the present invention is to provide a lightweight shielding body that has excellent shielding performance and is partitioned with a heat-resistant material that does not deteriorate shielding performance and does not melt due to reactions in a furnace.

[課題を解決するための手段] 上記課題を解決するための本発明に係る高速増殖炉の中
性子遮へい体の構成は、中性子遮へい材を、被覆管内に
充埴し、両端を端栓で密封してなるものにおいて、該被
覆管の内部を,仕切り阪によって軸方向に複数の部分に
区分するようにしたものである。
[Means for Solving the Problems] In order to solve the above problems, the structure of the neutron shielding body for a fast breeder reactor according to the present invention is such that a neutron shielding material is filled in a cladding tube and both ends are sealed with end plugs. The interior of the cladding tube is divided into a plurality of sections in the axial direction by partitions.

[作用コ 中性子遮へい体の粉末充填部に仕切り板を設けることに
よって、つぎのような種々の有効な作用がある。
[Effects] Providing a partition plate in the powder-filled portion of the neutron shield has various effective effects as follows.

粉末状の遮へい材は、例えば、板状焼結体によって区画
されると、使用中に密度の不均一が生ずることはなくな
る。
For example, if the powder shielding material is partitioned by a plate-shaped sintered body, non-uniform density will not occur during use.

区画毎に充填密度を変える事によって遮へい材の凧を必
要最小とし、軽量化を図ることができる。
By changing the packing density for each section, the number of shielding kites can be minimized and the weight can be reduced.

区画毎に充填密度を変える事によってヘリウl1ガスの
生成量を最小化することができるようになる。
By changing the packing density for each section, it becomes possible to minimize the amount of helium l1 gas produced.

区画毎に充填密度を変える事によって高温部や高発熱部
の中心温度を低減することができる。
By changing the packing density for each section, it is possible to reduce the center temperature of the high temperature section or high heat generation section.

また、板状焼結体として耐熱性セラミクスを用いる事に
よって遮へい体の高温下での使用を可能にすることがで
きる。
Furthermore, by using heat-resistant ceramics as the plate-shaped sintered body, the shield can be used at high temperatures.

さらに、板状焼結体に遮へい材と同材質のホットプレス
板を用いる事により、遮へい性能の局所的な低下を防止
することができる。
Furthermore, by using a hot-pressed plate made of the same material as the shielding material for the plate-shaped sintered body, local deterioration of shielding performance can be prevented.

一方、板状焼結体自体にスリットを設ける事により、被
覆管との強固な相互作用を軽減することができる。
On the other hand, by providing slits in the plate-shaped sintered body itself, strong interaction with the cladding tube can be reduced.

[実施例] 以下本発明の実施例を第1図〜第3図を用いて説明する
[Example] Examples of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は,本発明の1実施例を示す中性子遮へい体の縦
断面略示図である。
FIG. 1 is a schematic vertical cross-sectional view of a neutron shield showing one embodiment of the present invention.

第1図の構成は、2は、粉末状中性子遮へい材、3は,
遮へい材を仕切るための仕切り板、5は、遮へい材2を
充填する被覆管、4は、被覆管5を密封するための端栓
、6は、被覆管内部で生成するヘリウムガスを放出する
ためのベント機構である。
The configuration of FIG. 1 is as follows: 2 is a powdered neutron shielding material, 3 is a
A partition plate for partitioning the shielding material, 5 is a cladding tube filled with the shielding material 2, 4 is an end plug for sealing the cladding tube 5, and 6 is for releasing helium gas generated inside the cladding tube. This is a vent mechanism.

核分裂により炉心部で発生した中性子は、設置された中
性子遮へい体に到達して減衰を受けた後、中間熱交換器
に至り、2次系Na冷却材を放射化するという傾向があ
る。この2次系Naの放射化を防止するために炉心周辺
部にすぐれた性能の中性子遮へい体を設置することが必
要である。
Neutrons generated in the reactor core due to nuclear fission tend to reach the installed neutron shield and undergo attenuation, then reach the intermediate heat exchanger and activate the secondary Na coolant. In order to prevent activation of this secondary Na, it is necessary to install a neutron shield with excellent performance around the core.

炉心部から発進する中性子強度は、放射される方位(中
性子の放射角度)によって異なる。したがって、中性子
遮へい体内の各区画毎に遮へい材の充填密度を変えてや
ることができる。中性子放射強度の小さい区画では充填
密度を小さく、すなわち軽量にすることができる。
The intensity of neutrons emitted from the reactor core differs depending on the direction in which they are emitted (neutron emission angle). Therefore, the packing density of the shielding material can be varied for each compartment within the neutron shielding body. In sections where the neutron radiation intensity is low, the packing density can be reduced, that is, the weight can be reduced.

充填する遮へい材は、軽量な耐熱材がよいので、例えば
炭化ボロン(B4C)などを使用するが、この場合は、
中性子照射によってヘリウムガスを生成する。多量のヘ
リウムガスの発生によって、炉の制御および熱除去には
不利となるため、炭化ボロンの充填量は,各区画毎に制
限し,充填密度も各区画毎に変えられるようにするとい
う効果がある。
As the shielding material to be filled, it is best to use a lightweight heat-resistant material, such as boron carbide (B4C), but in this case,
Helium gas is produced by neutron irradiation. Since the generation of a large amount of helium gas is disadvantageous for furnace control and heat removal, it is effective to limit the amount of boron carbide packed in each compartment and to change the packing density for each compartment. be.

さらに本実施例の仕切り板の効果について説明する。Furthermore, the effect of the partition plate of this embodiment will be explained.

遮へい材として炭化ボロン等を使用する場合には中性子
との反応によって発熱する。高速増殖炉の場合には冷却
材温度が400〜600℃と高温であるため,遮へい体
の中心温度も1 0 0 0 ’C以上となる。特に炉
心部の冷却材出口付近即ち上端側では冷却材温度が高い
ため厳しい高旦となる。
When boron carbide or the like is used as a shielding material, it generates heat due to reaction with neutrons. In the case of a fast breeder reactor, the coolant temperature is as high as 400 to 600°C, so the center temperature of the shield is also 1000'C or higher. In particular, near the coolant outlet of the reactor core, that is, on the upper end side, the temperature of the coolant is high, resulting in severe high temperatures.

また中性子強度の高い中央部付近も発熱量が多いため、
温度が上昇し、厳しくなる。粉末状の遮へい材は充填密
度を上げることによって熱伝導率が向上する事を利用し
、中心温度を下げる事が可能である。
In addition, the central region, where neutron intensity is high, also generates a large amount of heat, so
Temperatures rise and become harsher. Powdered shielding materials can lower the center temperature by taking advantage of the fact that thermal conductivity improves by increasing the packing density.

すなわち、各区画毎に充填密度を変えることにより、熱
伝導率を変えて、各区画毎の温度の均一化をはかること
ができる。
That is, by changing the packing density for each section, it is possible to change the thermal conductivity and make the temperature uniform for each section.

仕切り板は、炉内で照射されると体積膨張(スエリング
)し、遮へい材を含む被覆材と機械的相互作用を生ずる
場合がある。この場合には、上記仕切り板にスリットを
設けたものを用いて局部応力の集中を軽減させることが
できる。
When irradiated in the furnace, the partition plate expands in volume (swells) and may mechanically interact with the cladding, including the shielding material. In this case, the concentration of local stress can be reduced by using the partition plate provided with slits.

第2図は,スリット付板状焼結体の仕切り板の斜視図で
ある。板状焼結体の半径方向に放射状に設けたスリノ1
〜の存在によって板状焼結体に蓄えられたエネルギーを
開放し,被覆管に及ぼす応力の影響を緩和するものであ
る。
FIG. 2 is a perspective view of a partition plate of the plate-shaped sintered body with slits. Slino 1 provided radially in the radial direction of the plate-shaped sintered body
The presence of ~ releases the energy stored in the plate-shaped sintered body and alleviates the effect of stress on the cladding tube.

第3図は、スリット付仕切り板の他の実施例の平面図で
ある。
FIG. 3 is a plan view of another embodiment of the partition plate with slits.

スリッI・によって限られた各仕切り板の外周部の曲率
を太きくし、凸形とすることにより、被覆管内面と板状
仕切り材外周部とが点接触で滑りを生じ易くし、被覆管
に無用の応力が発生するのを防止するものである9 板状仕切り材は耐熱性材質のものがよく、汎用のセラミ
ックスを用いることで低価格化がはかれる。 また、遮
へい材と同材質のホットプレス板を用いれば、遮へい性
能の局部的な劣化を防ぐことができることになる。
By increasing the curvature of the outer periphery of each partition plate, which is limited by the slit I, and making it convex, the inner surface of the cladding tube and the outer periphery of the plate-shaped partition material can easily cause slippage due to point contact. This prevents unnecessary stress from being generated.9 The plate-shaped partition material is preferably made of a heat-resistant material, and the cost can be reduced by using general-purpose ceramics. Furthermore, if a hot-pressed plate made of the same material as the shielding material is used, local deterioration of shielding performance can be prevented.

通常はB4Cのようなボロン炭化物が用いられる。Usually boron carbide such as B4C is used.

また、充填密度については以下のようなことがわかって
いる。
In addition, the following is known about the packing density.

単一粒径の粉末を充填する場合の理想最高密度は、約7
4%である。粒径を異にする複数種の粉末を混合すれば
、さらに高密度化が可能となる.例えば、3種類の粉末
を用いて充填試験を実施した結果、粒度配合の組合せを
変えることにより、対理論密度比を70〜90%の範囲
内で任意に選択できることがわかった。この方法を、本
実施例に適用すれば、よりすぐれた遮へい体を得ること
ができる。
The ideal maximum density when packing powder with a single particle size is approximately 7
It is 4%. By mixing multiple types of powders with different particle sizes, even higher densities can be achieved. For example, as a result of carrying out a filling test using three types of powder, it was found that by changing the combination of particle size composition, the theoretical density ratio could be arbitrarily selected within the range of 70 to 90%. If this method is applied to this example, a more excellent shielding body can be obtained.

[発明の効果] 本発明によれば、粉末状の遮へい材は、板状焼結体によ
り使用中に密度の不均−を生ずることがなく,各仕切り
区間の間に所要遮へい性能に応じた密度差を持たせるこ
とができるようになり、遮へい体の軽量化および低廉化
が達成できる。
[Effects of the Invention] According to the present invention, the powder-like shielding material does not cause unevenness in density during use due to the plate-shaped sintered body, and the powder shielding material can be distributed between each partition section according to the required shielding performance. It is now possible to have a density difference, making it possible to reduce the weight and cost of the shielding body.

また、軸方向に密度分布を持たせて、遮へい性能の最適
化をはかった遮へい体を使用することにより、遮へい体
単体のみならず、原子炉システムとしても軽量化効果お
よび経済性の向上に寄与することができる。
In addition, by using a shield that has a density distribution in the axial direction and optimizes shielding performance, it contributes to weight reduction and economic efficiency not only for the shield alone but also for the reactor system. can do.

また、仕切り板をセラミックスにすることにより、高温
度まで使用可能となり、遮へい材と同材質の仕切り板に
より、遮へい性能を一定に保てる。
In addition, by using ceramic for the partition plates, it can be used at high temperatures, and by using the partition plates made of the same material as the shielding material, shielding performance can be maintained at a constant level.

さらに,スリット状仕切り板により,被覆管との機械的
相互作用を低減することができる。
Furthermore, the slit-like partition plate can reduce mechanical interaction with the cladding tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1実施例の遮へい体縦断面略示図、
第2図は、本発明の1実施例の仕切り板の斜視図,第3
図は,本発明の他の実施例の仕切り板平面図、第4図は
、従来例の沸騰水型軽水炉用制御棒の縦断面略示図であ
る。 く符号の説明〉 1・・・鋼球、2遮へい材、3 仕切り板、4・・・端
栓、5・・・被覆管、6・・・ベント機枯,7 ・スリ
ット、8・・・凸部。
FIG. 1 is a schematic vertical cross-sectional view of a shield according to an embodiment of the present invention;
FIG. 2 is a perspective view of a partition plate according to one embodiment of the present invention, and FIG.
FIG. 4 is a plan view of a partition plate according to another embodiment of the present invention, and FIG. 4 is a schematic vertical cross-sectional view of a conventional control rod for a boiling water type light water reactor. Explanation of symbols> 1... steel ball, 2 shielding material, 3 partition plate, 4... end plug, 5... cladding tube, 6... vent machine dryer, 7 - slit, 8... Convex part.

Claims (1)

【特許請求の範囲】 1、中性子遮へい材を、被覆管内に充填し、両端を端栓
で密封してなるものにおいて、該被覆管の内部を、仕切
り板によって軸方向に複数の部分に区分したことを特徴
とする高速増殖炉の中性子遮へい体。 2、区分された複数部分の各々における中性子遮へい材
粉末の充填密度を、任意なものとすることを特徴とする
請求項1記載の高速増殖炉の中性子遮へい体。 3、遮へい材粉末の粒径が異なった粉末を混合させるこ
とにより、充填密度を任意なものとすることを特徴とす
る請求項2記載の高速増殖炉の中性子遮へい体。 4、仕切り板がセラミックスであることを特徴とする請
求項1記載の高速増殖炉の中性子遮へい体。 5、仕切り板が充填材と同じ材質のものを熱圧縮したも
のであることを特徴とする請求項1記載の高速増殖炉の
中性子遮へい体。 6、仕切り板に半径方向のスリットを形成したことを特
徴とする請求項1ないし5記載の高速増殖炉の中性子遮
へい体。
[Claims] 1. A cladding tube filled with a neutron shielding material and sealed at both ends with end plugs, in which the interior of the cladding tube is divided into a plurality of sections in the axial direction by partition plates. A neutron shield for fast breeder reactors characterized by: 2. The neutron shield for a fast breeder reactor according to claim 1, wherein the packing density of the neutron shielding material powder in each of the plurality of divided sections is set to an arbitrary value. 3. The neutron shield for a fast breeder reactor according to claim 2, wherein the packing density can be made arbitrary by mixing shielding material powders with different particle sizes. 4. The neutron shield for a fast breeder reactor according to claim 1, wherein the partition plate is made of ceramics. 5. The neutron shield for a fast breeder reactor according to claim 1, wherein the partition plate is made of the same material as the filler and thermally compressed. 6. A neutron shield for a fast breeder reactor according to any one of claims 1 to 5, characterized in that a radial slit is formed in the partition plate.
JP1056099A 1989-03-10 1989-03-10 Fast breeder reactor neutron shield Expired - Fee Related JPH0658422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056099A JPH0658422B2 (en) 1989-03-10 1989-03-10 Fast breeder reactor neutron shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056099A JPH0658422B2 (en) 1989-03-10 1989-03-10 Fast breeder reactor neutron shield

Publications (2)

Publication Number Publication Date
JPH02236497A true JPH02236497A (en) 1990-09-19
JPH0658422B2 JPH0658422B2 (en) 1994-08-03

Family

ID=13017659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056099A Expired - Fee Related JPH0658422B2 (en) 1989-03-10 1989-03-10 Fast breeder reactor neutron shield

Country Status (1)

Country Link
JP (1) JPH0658422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019793A (en) * 2008-07-14 2010-01-28 Toshiba Corp Neutron shield, nuclear reactor, and neutron shielding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019793A (en) * 2008-07-14 2010-01-28 Toshiba Corp Neutron shield, nuclear reactor, and neutron shielding method
US8462910B2 (en) 2008-07-14 2013-06-11 Kabushiki Kaisha Toshiba Neutron shield

Also Published As

Publication number Publication date
JPH0658422B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
US5015863A (en) Radiation shield and shielding material with excellent heat-transferring property
US8331523B2 (en) Liquid cooled nuclear reactor with annular steam generator
US2832733A (en) Heavy water moderated neutronic reactor
US4752437A (en) Packaging of radioactive materials
US3727060A (en) Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material
US5019322A (en) Gas cooled nuclear reactor with a pebble bed of spherical operating elements
JPH1039091A (en) Container for radioactive substance and radiation shielding material
JP2022552596A (en) Integrated in-vessel neutron shield
WO2004032150A1 (en) Guide ring to control granular mixing in a pebble-bed nuclear reactor
CA2502389C (en) Multi-core fuel rod for research reactor and manufacturing method thereof
US3413195A (en) Fuel or fertile element for nuclear reactors
KR102104711B1 (en) Sintered nuclear fuel pellet with localized burnable absorber
JPH02236497A (en) Neutron shielding body of fast breeder
JP5318312B2 (en) Monolithic fuel element and fast spectrum boiling water reactor using the element
JP2001318187A (en) Cask
US3725663A (en) Internally moderated heat sources and method of production
JPH0660945B2 (en) Reactor
CN115019992A (en) Target piece and target piece assembly for isotope production
US3212987A (en) Neutronic reactor with interlocking diffuser end grid
US4274922A (en) Nuclear reactor shield including magnesium oxide
US2892765A (en) Neutron density control in a neutronic reactor
JP6415966B2 (en) Reactor structure
JP3358932B2 (en) Vacuum container for fusion device
JP2001235583A (en) Spent fuel cask
JPS5819594A (en) Control rod element for reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees