JPH02236447A - Counting means for ae signal in ae measuring method - Google Patents

Counting means for ae signal in ae measuring method

Info

Publication number
JPH02236447A
JPH02236447A JP1056480A JP5648089A JPH02236447A JP H02236447 A JPH02236447 A JP H02236447A JP 1056480 A JP1056480 A JP 1056480A JP 5648089 A JP5648089 A JP 5648089A JP H02236447 A JPH02236447 A JP H02236447A
Authority
JP
Japan
Prior art keywords
signal
threshold voltage
value
occurrences
counted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1056480A
Other languages
Japanese (ja)
Other versions
JP2515876B2 (en
Inventor
Takao Yoneyama
米山 隆雄
Kazuya Sato
佐藤 弌也
Koichi Sato
耕一 佐藤
Sosuke Tanaka
田中 聰介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1056480A priority Critical patent/JP2515876B2/en
Publication of JPH02236447A publication Critical patent/JPH02236447A/en
Application granted granted Critical
Publication of JP2515876B2 publication Critical patent/JP2515876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To always count the frequency in generation of an acoustic emission (AE) signal in a stable condition by detecting the envelope of the AE signal to detect the lowest voltage level of the envelope detection signal. CONSTITUTION:The signal outputted from an envelope detecting circuit 4 and a circuit signal are converted by an A/D converter, and signals are transferred to a personal computer 7 through a communication means. The personal computer 7 calculates the value of a lowest voltage level Vmin of the inputted detection signal and uses a value Vth obtained by Vth=k.Vmin ((k) is a threshold voltage coefficient and is a constant to make the value of the threshold voltage Vth slightly higher than a background noise Vbn of an envelope detection signal 10) as the threshold voltage to calculate the frequency in generation of the taken-in AE detection signal. The frequency in generation is counted by an AE signal counting part 5 in accordance with this method; and when the AE signal is generated more than a set value, a message of the occurrence of abnormality is sent from the personal computer 7 to a display part 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被検体より発生するAE信号の計数手段及び装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a means and apparatus for counting AE signals generated from a subject.

(従来の技術〕 被検体のクランク発生や回転機における回転部と静止部
の接触によりアコースティック・エミツション(以下A
Eと略記)信号が発生することが知られている。そこで
検査の対象とする被検体にAEセンサを装着し、該AE
センサにて受信した信号の数を計数し、異常発生の有無
を判定する手法が採られている。ところで、上述したA
E信号の計数手段として、例えば特開昭55−1109
09号が有る.本実施例においては、摺動部材の摩耗に
て発生するAE信号を比較回路に入力し、設定されたし
きい値電圧を越えた信号のみパルスに変換し、該パルス
を計数する手段を採っている。
(Prior art) Acoustic emission (hereinafter referred to as A
It is known that a signal (abbreviated as E) is generated. Therefore, an AE sensor is attached to the subject to be inspected, and the AE
A method is used to count the number of signals received by a sensor and determine whether an abnormality has occurred. By the way, the above-mentioned A
As an E signal counting means, for example, Japanese Patent Application Laid-Open No. 1109-1983
There is No. 09. In this embodiment, the AE signal generated due to the wear of the sliding member is input to a comparison circuit, and only the signal exceeding a set threshold voltage is converted into pulses, and the pulses are counted. There is.

さらに上述したAE計数手段ではAE信号の発生数を正
確に計数できない場合がある。すなわち、バックグラン
ドノイズ(以下BGNと略記)が常に増減する被検体か
ら発生するAE信号を計数する場合である。しきい値電
圧を一定にした場合,たとえばBGNが大きくなりしき
い値電圧を越える.あるいはBGNが小さくなるとBG
Nに対ししきい値電圧レベルが高く,低レベルのAE信
号を検出できない等の問題がある。
Furthermore, the above-mentioned AE counting means may not be able to accurately count the number of AE signals generated. That is, this is a case where AE signals generated from a subject whose background noise (hereinafter abbreviated as BGN) constantly increases or decreases are counted. If the threshold voltage is kept constant, for example, BGN increases and exceeds the threshold voltage. Or, if BGN becomes smaller, BG
The threshold voltage level is higher than that of N, and there are problems such as the inability to detect low-level AE signals.

そこで、上述した問題解決のため,特開昭57−133
24号が提案されている.すなわち、回転機から発生す
るBGMのレベルに合せ、自動的にしきい値電圧レベル
を変化させる手法である.本案では回転機の回転数を検
出し、しきい値電圧を自動変化させる手法であるが、現
在AE信号の計数手段として一般的に用いられている手
法は.AE信号の平均値を求め、それにDC電圧を加え
、しきい値電圧とする手法が多用されている。
Therefore, in order to solve the above-mentioned problem,
No. 24 has been proposed. That is, this is a method of automatically changing the threshold voltage level according to the level of BGM generated from the rotating machine. In this proposal, the number of revolutions of the rotating machine is detected and the threshold voltage is automatically changed. However, the method generally used as a means for counting AE signals at present is as follows. A commonly used method is to obtain the average value of the AE signal and add a DC voltage to it to obtain a threshold voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術を用い、たとえば摺動運動装置の代表とし
てルームエアコンに用いられているロータリ圧縮機の摺
動部診断を実施する場合を想定する。
Assume that the above-mentioned conventional technique is used to diagnose the sliding part of a rotary compressor used in a room air conditioner as a representative example of a sliding motion device.

ルームエアコンに用いられているロータリ圧縮機の機種
は100種類以上もあり、機種により発生するAE信号
のBGNはそれぞれ異なる。また,同じ圧縮機であって
も検査の際の運転条件(回転数やフロンガスの圧縮比率
など)によりBGNのレベルが異なる。そのため,前述
した特開昭55−110909号で提案されている手法
では、摺動部異常によって発生するAE信号を精度良く
検出することは不可能である. 上述した解決案として、前述した実施例におけるAE信
号の平均値にDC電圧を加え、それをしきい値電圧とす
る方法が考えられる。ところが、ロータリ圧縮機の場合
、正常品であっても常に回転搬に同期し,1回転に1発
のAE信号(以下定常AE波と略記)が発生する。しか
も、上記定常AE波の波高値はBGNと同様、機種ある
いは運転条件によって大きく異なる。
There are more than 100 types of rotary compressors used in room air conditioners, and the BGN of the AE signal generated differs depending on the model. Furthermore, even if the compressor is the same, the BGN level will differ depending on the operating conditions (rotation speed, compression ratio of fluorocarbon gas, etc.) during inspection. Therefore, with the method proposed in the above-mentioned Japanese Patent Laid-Open No. 55-110909, it is impossible to accurately detect the AE signal generated by an abnormality in the sliding part. As a possible solution to the above, a method can be considered in which a DC voltage is added to the average value of the AE signal in the embodiment described above, and this is used as the threshold voltage. However, in the case of a rotary compressor, even if it is a normal product, it is always synchronized with rotational movement, and one AE signal (hereinafter abbreviated as stationary AE wave) is generated per rotation. Furthermore, the peak value of the stationary AE wave varies greatly depending on the model or operating conditions, similar to the BGN.

すなわち、定常AE波レベルが低い圧縮機の場合のしき
い値電圧は低レベルとなるが、定常AE波レベルが高い
場合は定常AE波に左右され、おのずと高レベルのしき
い値電圧となってしまう。
In other words, in the case of a compressor with a low level of steady AE waves, the threshold voltage will be a low level, but if the level of steady AE waves is high, the threshold voltage will naturally be at a high level due to the influence of the steady AE waves. Put it away.

この結果、同じ大きさの摺動部欠陥にて発生する同波高
レベルのAE信号であっても、定常AE波が低い圧縮機
の場合は、このAE信号を計数できるが、定常AE波レ
ベルが高い圧縮機では、しきい値電圧が高いため、この
AE信号を計数できない不具合が発生することになる。
As a result, even if the AE signals of the same wave height level are generated by sliding part defects of the same size, in the case of a compressor with low steady AE waves, this AE signal can be counted, but the steady AE wave level is In a high-performance compressor, the threshold voltage is high, resulting in a problem in which the AE signal cannot be counted.

これまた、摺動部損傷によって発生するAE信号の検出
精度を落とす原因になってしまう。
This also causes a drop in the detection accuracy of the AE signal generated due to damage to the sliding part.

上述した不具合を解決する為には、それぞれ圧縮機の運
転条件や機種に合わせ、その都度最良のしきい値電圧に
人間が設定すれば解決できる。また、別の手段として、
圧縮機の機種及び運転条件に対するBGNレベルと定常
AE波レベルを全てコンピュータに記憶(約300万デ
ータ以上)させておき、その都度、各圧縮機の運転条件
に合ったしきい値電圧レベルをコンピュータに選定させ
る手段を用いれば、解決は可能である。
In order to solve the above-mentioned problems, it is possible to solve them by manually setting the best threshold voltage for each compressor according to its operating conditions and model. Also, as another means,
All BGN levels and steady AE wave levels for compressor models and operating conditions are stored in the computer (approximately 3 million or more data), and each time the computer stores the threshold voltage level that matches the operating conditions of each compressor. A solution is possible by using a method that allows selection.

しかし、圧縮機の摺動部診断を実施する場合を考えると
、上記解決案は現実的には不可能である.その一例とし
て、1台/10秒のタクトで別々の機種の圧縮機が流れ
る製造ラインにおける摺動部診断を考える。人間が10
秒以内でしきい値電圧を調整していたのではとても間に
合わない。
However, when considering the case of diagnosing the sliding parts of a compressor, the above solution is not realistically possible. As an example, consider diagnosis of sliding parts in a manufacturing line where different types of compressors flow at a tact time of 1 unit/10 seconds. 10 humans
Adjusting the threshold voltage within seconds is too late.

また、別の案であるコンピュータによるしきい値電圧選
定手法もデータ数から考えると現実的ではないと考えら
れる。
Furthermore, another method of selecting a threshold voltage using a computer is considered to be impractical in view of the amount of data.

本発明の目的は被検体から発生するAE信号の発生形態
にかかわらず、常に安定した条件にてAE信号の発生数
を計数できる手段及び装置を提供することにある。
An object of the present invention is to provide a means and apparatus that can always count the number of AE signals generated under stable conditions, regardless of the form in which the AE signals are generated from a subject.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的はAE信号を包絡線検波し、包絡線検波償号の
最低電圧レベルを検出し、該最低電圧レベルの数倍の電
圧値をしきい値電圧としAE信号の発生数を計数する手
段により達成できる。
The above purpose is to perform envelope detection of the AE signal, detect the lowest voltage level of the envelope detection compensation, and count the number of generated AE signals by setting a voltage value several times the lowest voltage level as a threshold voltage. It can be achieved.

〔作用〕[Effect]

前述した包絡線検波信号の最低電圧レベル値はBGMの
変動にほぼ比例し変化する。また、上述したように平均
値レベルが定常波形の波高値レベルの変化に影響される
のに対し、上記最低電圧レベル値は定常波形の波高値変
化の影響をほとんど受けない。
The minimum voltage level value of the envelope detection signal mentioned above changes almost in proportion to the fluctuation of the BGM. Further, as described above, the average value level is affected by changes in the peak value level of the steady waveform, whereas the minimum voltage level value is hardly affected by changes in the peak value of the steady waveform.

本発明は以上述べたように、AE信号を包絡線検波し、
その最低電圧レベルを基準とし,しきい値電圧とすれば
、どのような形態のAE信号であっても,高精度でA.
 E信号の発生数を計数できることを発明した点に特徴
がある。
As described above, the present invention performs envelope detection of the AE signal,
If the lowest voltage level is used as the reference and the threshold voltage, no matter what form of AE signal, A.
The invention is characterized by the ability to count the number of E signals generated.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明する.尚、本実
施例においては、摺動運動装置の代表としてルームエア
コンに用いられているロータリ圧縮機を例に挙げ説明す
る。
Examples of the present invention will be described below with reference to the drawings. In this embodiment, a rotary compressor used in a room air conditioner will be used as an example of a sliding motion device.

第1図は本発明の一実施例に係るAE信号発生数の計数
装置の全体構成図である。ロータリ圧縮機1にAEセン
サ2を装着し、該AEセンサ2の出力は増幅部3で増幅
後に包絡線検波回路4で検波後、AE信号計数部5に入
力される。一方、圧縮機の回転信号も回転信号検出セン
サ9にて検知され、同様に該AE信号計数部5に入力さ
れる。
FIG. 1 is an overall configuration diagram of an apparatus for counting the number of generated AE signals according to an embodiment of the present invention. An AE sensor 2 is attached to the rotary compressor 1, and the output of the AE sensor 2 is amplified by an amplifier 3, detected by an envelope detection circuit 4, and then input to an AE signal counter 5. On the other hand, the rotation signal of the compressor is also detected by the rotation signal detection sensor 9, and is similarly input to the AE signal counting section 5.

該AE信号計数部5はアナログ回路によっても構成でき
るが、ここではデイジタル方式の場合について述べる。
Although the AE signal counting section 5 can be constructed using an analog circuit, a digital system will be described here.

該AE信号計数部5はA/Dコンバータ6及びパソコン
7にて構成される。すなわち、該包絡線検波回路4より
出力された信号及び該回転信号は該A/Dコンバータ6
にてA/D変換され、そ.の信号はGPIB等の通信手
段を介して,パソコン7に転送される。該パソコン7で
は入力された検波信号の内最低電圧レベルV m l 
n値を算比し、次なる計算式にて、求められた値Vth
をしきい値電圧として、取り込んだAE検波信号の発生
数を算出する。
The AE signal counting section 5 is composed of an A/D converter 6 and a personal computer 7. That is, the signal output from the envelope detection circuit 4 and the rotation signal are transmitted to the A/D converter 6.
A/D conversion is performed at the . The signal is transferred to the personal computer 7 via communication means such as GPIB. In the personal computer 7, the lowest voltage level V m l of the input detection signals
Compare the n values and use the following formula to find the value Vth
The number of occurrences of captured AE detection signals is calculated using the threshold voltage as the threshold voltage.

V th = k−V−i−          − 
(1)上式におけるkはしきい値電圧係数であり、第2
図に示すようにVihの値が包絡線検波信号10のバッ
クグランドノイズ■.より若干高い値にするための定数
である。次に上記手法により該AE信号計数部5にて発
生数が計数され、設定値以上のAE信号の発生が有った
場合、該パソコン7より異常発生のメッセ・−ジが表示
部8に送られる。
V th = k-V-i- -
(1) k in the above equation is the threshold voltage coefficient, and the second
As shown in the figure, the value of Vih is the background noise of the envelope detection signal 10. This is a constant to set the value to a slightly higher value. Next, the number of occurrences is counted in the AE signal counting section 5 using the above method, and if an AE signal exceeding the set value is generated, a message indicating that an abnormality has occurred is sent from the personal computer 7 to the display section 8. It will be done.

次にロータリ圧縮機から発生するAE信号を取り挙げ、
上記発明例の効果について、従来例と比較し、具体的に
述べる。第3図はロータリ圧縮機から発生したAE信号
の包絡線検波波形を示したものである。同図に示すよう
にロータリ圧縮機においては一回転に一回定常AE波2
0が発生する。
Next, we will take the AE signal generated from the rotary compressor.
The effects of the above invention example will be specifically described in comparison with the conventional example. FIG. 3 shows the envelope detection waveform of the AE signal generated from the rotary compressor. As shown in the figure, in a rotary compressor, a steady AE wave 2 is generated once per rotation.
0 occurs.

この定常AE波の発生機構について以下述べる。The generation mechanism of this stationary AE wave will be described below.

第4図はロータリ圧縮機の構造を示したものである。モ
ータ30,クランクシャフト31,上軸受32,下軸受
33,シリンダ34.ローラ35などの主な部品により
構成される。第5図は第4図におけるA−A’断面を示
したものである。圧縮室(Pa )と吸入室(Ps )
とを区切る為、備けられているベーン36は、同図(a
)に示すフロンガス圧縮行程において、圧力条件がP 
a > P Sとなるため、同図に示す方向に傾き動作
することになる。ところが、圧縮行程が終了し、フロン
ガス吸入行程に入ったと同時に圧力条件がP a < 
P sとなるため,同図(b)で示すようにベーン36
が急激なスピードにてベーンスロット37に衝突するこ
とになる。この衝突のエネルギーが定常AE波を発生さ
せる原因である。
FIG. 4 shows the structure of a rotary compressor. Motor 30, crankshaft 31, upper bearing 32, lower bearing 33, cylinder 34. It is composed of main parts such as rollers 35. FIG. 5 shows a cross section taken along line AA' in FIG. Compression chamber (Pa) and suction chamber (Ps)
The vane 36 provided to separate the
), the pressure condition is P
Since a > P S, the tilting motion will occur in the direction shown in the figure. However, as soon as the compression stroke ends and the fluorocarbon gas suction stroke begins, the pressure condition changes to P a <
As shown in the same figure (b), the vane 36
collides with the vane slot 37 at a rapid speed. The energy of this collision is the cause of generating stationary AE waves.

上述したように、正常品であってもAE信号が発生する
場合、次に述べる問題が生じることになる。第6図は平
均値電圧を基準とし、それの数倍の電圧値をしきい値電
圧Vmeとした場合のAE信号の計数方法を示したもの
である。第6図に示した包絡線検波波形はロータリ圧縮
機の摺動部損傷時に発生した波形例である.定常AE波
20の他摺動部損傷によって異常AE波50が発生する
,同図(a)の定常AE波レベル小においてVmeの値
は該異常AE波50の波高レベルより低いため該異常A
E波5oを計数することは可能である。
As described above, if an AE signal is generated even in a normal product, the following problem will occur. FIG. 6 shows a method for counting AE signals when the average value voltage is used as a reference and a voltage value several times the average value is used as the threshold voltage Vme. The envelope detection waveform shown in Figure 6 is an example of a waveform that occurs when the sliding parts of a rotary compressor are damaged. The abnormal AE wave 50 is generated due to damage to the other sliding parts of the steady AE wave 20, and the value of Vme is lower than the wave height level of the abnormal AE wave 50 when the steady AE wave level is small in FIG.
It is possible to count E waves 5o.

ところが,同図(b)のように,定常AE波20の波高
レベルが大きくなると、その影響によって、おのずとV
meの値が高くなってしまう。その結果、第6図(a)
に示した異常AE波50と同じ波高レベルの異常AE波
50を計数できないことになる. その点本発明によるAE信号計数方式は包絡線検波信号
の最低電圧レベルV wa t nを基準とし、前述し
た(1)式にて、そのしきい値電圧vthを決定するた
め、第6図(a),(b)にVthの値を示すように、
該定常AE波20の影響を受けずに該異常AE波50を
計数できることになる。
However, as shown in the same figure (b), when the wave height level of the stationary AE wave 20 becomes large, V naturally increases due to its influence.
The value of me becomes high. As a result, Figure 6(a)
This means that abnormal AE waves 50 having the same wave height level as the abnormal AE waves 50 shown in Figure 1 cannot be counted. In this regard, the AE signal counting method according to the present invention uses the lowest voltage level V wa t n of the envelope detection signal as a reference and determines its threshold voltage vth using the above-mentioned equation (1). As the values of Vth are shown in a) and (b),
The abnormal AE waves 50 can be counted without being affected by the steady AE waves 20.

第7図は上述したAE信号の計数方式を用いて摺動運動
装置1つである圧縮機の摺動部診断を行なう際のフロー
チャート例である.第1図に示したパソコン7に転送さ
れた包絡線検波信号は同時に転送された回転信号によっ
て回転一周期分の信号が抽出される。次に抽出された信
号の内の最低電圧レベルV m i n を算出し,上
記(1)式の演算を実行し、求められたしきい値電圧v
thにより、AE信号発生数Nが計数される。次に、該
AE発生数Nは設定値Kt と比較され、該Ks を越
えた場合には摺動部に異常有と判断され,第1図に示し
た表示部8にて外部に伝えられる。なお、上記実施例に
ついては、回転1周期分に限定し、説明したが、特に1
周期分のAE信号の発生数に限定する必要はなく、信号
取込み周期を多くすればす,る程精度は向上する。
FIG. 7 is an example of a flowchart when diagnosing the sliding part of a compressor, which is one sliding motion device, using the above-mentioned AE signal counting method. From the envelope detection signal transferred to the personal computer 7 shown in FIG. 1, a signal corresponding to one rotation period is extracted by the rotation signal transferred at the same time. Next, the lowest voltage level V min of the extracted signals is calculated, and the calculation of the above equation (1) is performed to calculate the determined threshold voltage v
The number N of AE signal occurrences is counted by th. Next, the number N of AE occurrences is compared with a set value Kt, and if it exceeds Ks, it is determined that there is an abnormality in the sliding part, and this is communicated to the outside through the display section 8 shown in FIG. Note that although the above embodiment has been explained limited to one rotation period, in particular
There is no need to limit the number of AE signals generated per period, and the accuracy improves as the signal acquisition period increases.

次に他の実施例について説明する。材料のクラックや摺
動部のすり傷等によって発生するAE信号の波高値は、
その異常の程度が太き《なればないる程高くなる。すな
わち、波高値を検出できれば異常の程度を推定すること
が可能である。
Next, other embodiments will be described. The peak value of the AE signal caused by cracks in the material, scratches on the sliding parts, etc.
The greater the degree of abnormality, the higher it becomes. That is, if the peak value can be detected, it is possible to estimate the degree of abnormality.

本発明では、前述したしきい値電圧を数段設けることに
よってA E (g号の発生数を計数するとともに,そ
の波高値も検出できるようにしたものである。第8図は
摺動蓮動装置の1つであるロータリ圧縮機の摺動部診断
を実施するためのフローチャート例である.第7図に実
施した実施例と同様、包絡線検波信号の最低電圧レベル
V m t nを算出し、次に前述した(1)式にて示
したしきい値電圧係数kを数段階設け、それぞれのしき
い値電圧V t h t tVthx, Vthaにて
上記包絡線検波信号における信号の発生数を計数する。
In the present invention, by providing several stages of threshold voltages as described above, it is possible to count the number of occurrences of A E (g) and also detect its peak value. This is an example of a flowchart for diagnosing the sliding parts of a rotary compressor, which is one of the devices.Similar to the embodiment shown in FIG. 7, the minimum voltage level V m t n of the envelope detection signal is calculated. , Next, set the threshold voltage coefficient k shown in the above-mentioned equation (1) in several stages, and calculate the number of signals generated in the envelope detection signal at each threshold voltage V th t tVthx, Vtha. Count.

次に計数されたAE発生数Nl,NZ,Naの平均値N
.を求め、異常の程度を判定する設定値Ktt.K▲2
と比較され、圧縮機摺動部異常の程度が判定される. 第9図は圧縮機から発生したAE信号の包絡線検波波形
例である。比較的程度が軽い同図(a)の異常状態にお
いてのN.は約1.7であるが、異常が進行し、同図(
b)の危険状態に至るとN1は3と増加することが分か
る。
Next, the average value N of the counted number of AE occurrences Nl, NZ, Na
.. A set value Ktt. is determined to determine the degree of abnormality. K▲2
The degree of abnormality in the compressor sliding parts is determined. FIG. 9 is an example of the envelope detection waveform of the AE signal generated from the compressor. N.C. in the abnormal state shown in Fig. 3(a), which is relatively mild in severity. is approximately 1.7, but the abnormality progresses and the figure (
It can be seen that N1 increases to 3 when reaching the dangerous state b).

以上述べたように、包絡線検波信号の最低電圧レベルV
 m t n を基準とし、複数のしきい値電圧にてA
E信号の発生数を計数すれば,ロータリ圧縮機摺動部の
異常程度の判定も可能となる。
As mentioned above, the lowest voltage level V of the envelope detection signal
m t n as a reference, A at multiple threshold voltages
By counting the number of E signals generated, it is possible to determine the degree of abnormality in the sliding parts of the rotary compressor.

尚、前述した実施例においては、しきい値電圧を3段階
設けた例についても述べたが,それ以上のしきい値電圧
を設ければ、さらに高精度で異常程度の判定を行なうこ
とが可能である。また、上記実施例ではN1の算出法と
して、それぞれのしきい値電圧にて計数したA. E信
号発生数の平均値としたが、別にトータル値であっても
一考にさしつかえない。さらに、第7図にて述べた実施
例と同様回転一周期のAE信号に限定する必要はない.
説明の都合上上述した実施例については,全てロータリ
圧縮機を例に挙げて述べているが、特にロータリ圧縮機
のみに限定されるものではなく、正常品であっても常に
AE信号が発生する被検体であれば、AE信号の発生数
を計数するのに、本発明は多大な効果をもたらすもので
ある。
In the above-mentioned embodiment, an example was described in which the threshold voltage was set in three stages, but if a higher threshold voltage is set, it is possible to judge the degree of abnormality with even higher accuracy. It is. In addition, in the above embodiment, as a method of calculating N1, A. Although the average value of the number of E signal occurrences was used, the total value may also be considered. Furthermore, as in the embodiment described in FIG. 7, it is not necessary to limit the AE signal to one period of rotation.
For convenience of explanation, all of the above-mentioned embodiments are described using a rotary compressor as an example, but the invention is not limited to rotary compressors only, and an AE signal is always generated even in a normal product. In the case of an object to be examined, the present invention is highly effective in counting the number of AE signals generated.

以下に述べる発明は前述した実施例におけるAE信号発
生数の計数精度をさらに向上させたものである。説明の
都合上、摺動運動装置の1つであるロータリ圧縮機を例
に挙げる。
The invention described below further improves the accuracy of counting the number of AE signals generated in the embodiment described above. For convenience of explanation, a rotary compressor, which is one type of sliding motion device, will be taken as an example.

ロータリ圧縮機などの摺動運動装置においては、常に摺
動に伴なう音響信号が発生する。これは摺動部間の微細
なパリの接触やフロンガスなどの流体音が原因であり、
異常によって発生するAE信号に対しては、いわゆるノ
イズと呼ばれる。たとえば、第10図に示されるように
、これら摺動ノイズ60が多い場合、摺動部の損傷によ
って発生する異常AE波との区別がしにくい場合が生じ
る。
In sliding motion devices such as rotary compressors, acoustic signals are always generated as a result of sliding motion. This is caused by the minute contact between sliding parts and the noise of fluids such as fluorocarbon gas.
AE signals generated due to abnormalities are called noise. For example, as shown in FIG. 10, when these sliding noises 60 are large, it may be difficult to distinguish them from abnormal AE waves caused by damage to the sliding parts.

上記状態にてAE信号の発生数を計数すると同図に示し
た波形の場合、一周期当り7発となり、正常品にかかわ
らず、異常品と判定してしまうエラーを生じることにな
る。
When counting the number of AE signals generated in the above state, in the case of the waveform shown in the figure, the number is 7 per cycle, which results in an error in which the product is determined to be abnormal, regardless of whether it is a normal product.

本発明は上記エラーを無くすために考案されたものであ
る。実験の結果、該異常AE波50の一回転に対する発
生位相を見ると、常に同じ位置に発生するのに対し、該
摺動ノイズ60はその発生位置がランダムであることが
分った。すなわち、異常AE波は欠陥の有る位置で発生
し、摺動ノイズはその都度運転の状態により発生位置が
変わるから他ならない。
The present invention has been devised to eliminate the above-mentioned errors. As a result of experiments, it was found that when looking at the generation phase of the abnormal AE wave 50 for one rotation, it always occurs at the same position, whereas the position of the sliding noise 60 is random. That is, the abnormal AE wave is generated at the location of the defect, and the location of the sliding noise changes depending on the operating state each time.

本実施例は上述した摺動ノイズと異常AE波の特徴を考
慮し発明されたものである。第11図は発明を実行する
ための具体的なフローチャートである。同図に示すよう
に、先ず、回転信号をトリガー信号とし、AE信号の包
絡線検波波形を加算平均処理する。上記処理を実行した
後の加算平均処理波形70を第12図に示す。同図に示
すようにランダムな摺動ノイズは消えることになる。異
常AE波50が含まれていれば当然のごとく同図破線で
示すように明瞭に抽出できることになる。
This embodiment was invented in consideration of the characteristics of the above-mentioned sliding noise and abnormal AE waves. FIG. 11 is a specific flowchart for carrying out the invention. As shown in the figure, first, the rotation signal is used as a trigger signal, and the envelope detection waveform of the AE signal is subjected to averaging processing. FIG. 12 shows an average processing waveform 70 after performing the above processing. As shown in the figure, random sliding noise disappears. If the abnormal AE wave 50 is included, it can naturally be extracted clearly as shown by the broken line in the figure.

次に該加算平均処理波形から、一周期分の信,号が抽出
され、次に抽出された信号から最低電圧レベルV m 
s nが算出される。さらに、上述した(1)式の演算
を実行し、求められたしきい値電圧■,,,によりAE
信号発生数Nが計数される。次に設定値Kiと上記Nと
の比較により、正常,異常の判定が行われる。
Next, a signal for one period is extracted from the average processing waveform, and the lowest voltage level V m is obtained from the next extracted signal.
s n is calculated. Furthermore, by executing the calculation of equation (1) above, and using the obtained threshold voltage ■, , , AE
The number N of signal occurrences is counted. Next, by comparing the set value Ki and the above-mentioned N, a determination is made as to whether it is normal or abnormal.

なお、第11図に示す最低電圧レベルV m s nの
算出処理以降、第8図にて示したように、しきい値電圧
を数段設け、同様なフローチャートに従つてAE信号の
発生数を計数すれば、第8図に示した実施例より、さら
に高精度にてAE信号を計数することができ、異常の程
度判定も可能である。
Note that after the calculation process of the lowest voltage level V m s n shown in FIG. 11, as shown in FIG. By counting, the AE signals can be counted with higher precision than the embodiment shown in FIG. 8, and the degree of abnormality can also be determined.

また、前述した実施例では、回転一周期分について説明
したが,その周期が増える程AE信号の計数精度は向上
するため、とくに一周期分に限定する必要はない.さら
に、加算平均処理に用いた1・リガー信号として、上記
実施例では回転信号としたが、被検体の運転に同期ある
いは同調している信号であれば何でも良い。
Further, in the above-mentioned embodiment, the explanation was given for one period of rotation, but the counting accuracy of the AE signal improves as the period increases, so it is not particularly necessary to limit it to one period. Furthermore, although the rotation signal was used as the 1.rigger signal used in the averaging process in the above embodiment, any signal may be used as long as it is synchronized or synchronized with the driving of the subject.

以上述べたように、包絡線検波信号を加算平均処理し、
その波形の最低電圧レベルV m l n を算出し、
これを基準としてAE信号を計数すれば、他のノイズに
影響されずに、異常によって発生するA E 4M号の
みを高精度で検出することが可能となる。
As mentioned above, the envelope detection signal is subjected to averaging processing,
Calculate the lowest voltage level V m l n of the waveform,
If the AE signals are counted based on this, it becomes possible to detect only the AE 4M signal generated due to an abnormality with high precision without being affected by other noises.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、正常品であっても常にAE信号(定常
AE信号)が発生するような被検体において、異常にて
発生するAE信号を計数するのに該定常AE信号の影響
を受けることなく異常AE信号を高精度にて計数できる
According to the present invention, in a test object in which an AE signal (stationary AE signal) is always generated even in a normal product, counting the AE signal generated due to an abnormality is not affected by the stationary AE signal. Abnormal AE signals can be counted with high precision without any problems.

従って、従来では困難であった上記被検体の異常診断が
可能になるなど、工業上その効果は極めて大きい.
Therefore, it has an extremely large industrial effect, such as making it possible to diagnose abnormalities in the above-mentioned specimens, which was difficult in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図から第6図
は第1図に示した実施例を解説するための説明図、第7
図は第1図の動作を説明するためのフローチャート、第
8図は本発明の他の実施例を説明するためのフローチャ
ート、第9図は第8図に示した実施例を解説するための
説明図、第11図は本発明の他の実施例を説明するため
のフローチャート、第10図,第12図は第11図に示
した実施例を解説するための説明図である.1・・・ロ
ータリ圧縮機,2・・・AEセンサ、3・・・増幅部、
4・・・包絡線検波回路、5・・・AE信号計数部,6
・・・A/Dコンバータ、7・・・パソコン、8・・・
表示部、9・・・回転信号検出センサ、10・・・包絡
線検波信号,20・・・定常AE波、50・・・異常A
E波,60・・・摺ノイズ、 70・・・加算平均処理波形。 第 図 ! 第3区 第4図 第 図 第5因 +L:Ll 力゛スf已,刊11テ孝!(しE拘゛ス枚
出一〇及夕NイテIF!第6図 fbl E宇AE浪い゛ル大 第8図 第7図 第9図 α}圧癩引gml傾和\も fbli購リ輯院k状悪
FIG. 1 is a diagram showing one embodiment of the present invention, FIGS. 2 to 6 are explanatory diagrams for explaining the embodiment shown in FIG. 1, and FIG.
The figure is a flowchart for explaining the operation of FIG. 1, FIG. 8 is a flowchart for explaining another embodiment of the present invention, and FIG. 9 is an explanation for explaining the embodiment shown in FIG. 8. 11 are flowcharts for explaining another embodiment of the present invention, and FIGS. 10 and 12 are explanatory diagrams for explaining the embodiment shown in FIG. 1... Rotary compressor, 2... AE sensor, 3... Amplification section,
4... Envelope detection circuit, 5... AE signal counting section, 6
...A/D converter, 7...PC, 8...
Display unit, 9... Rotation signal detection sensor, 10... Envelope detection signal, 20... Steady AE wave, 50... Abnormal A
E wave, 60... Sliding noise, 70... Addition average processing waveform. Diagram! Ward 3 Figure 4 Figure 5 Cause +L:Ll Force f, Published 11th Takahiro! (The E control sheet is printed 10 and the evening N iteIF! Fig. 6 fbl E U AE wave size Fig. 8 Fig. 7 Fig. 9 α) congenital disorder

Claims (1)

【特許請求の範囲】 1、被検体から発生するAE信号を計数する装置におい
て、該被検体より発生するAE信号を包絡線検波し、該
包絡線検波信号における最低電圧レベルを検出し、該最
低電圧レベルに設定された電圧を重畳した値をしきい値
電圧として、該AE信号の発生数を計数することを特徴
とするAE計測法におけるAE信号の計数手段。 2、特許請求の範囲第1項において、該しきい値電圧を
数段設け、各しきい値電圧にて計数したAE信号発生数
の平均値をAE信号の発生数とすることを特徴とするA
E計測法におけるAE信号の計数手段。 3、特許請求の範囲第2項における平均値をトータル値
としたことを特徴とするAE計測法におけるAE信号の
計数手段。 4、被検体から発生するAE信号を計数する装置におい
て、該被検体から発生するAE信号を包絡線検波し、該
被検体の運動に同期あるいは同調する信号をトリガ信号
として、該包絡線検波信号を加算平均処理し、該加算平
均処理後の波形における最低電圧レベルを検出し、該最
低電圧レベルに、設定された電圧を重畳した値をしきい
値電圧として、該AE信号の発生数を計数することを特
徴とするAE計測法におけるAE信号の計数手段。 5、特許請求の範囲第4項における、該しきい値電圧を
数段設け、各しきい値電圧にて計数したAE信号発生数
の平均値をAE信号の発生数とすることを特徴とするA
E計測法におけるAE信号の計数手段。 6、特許請求の範囲第5項における平均値をトータル値
としたことを特徴とするAE計測法におけるAE信号の
計数手段。 7、AE信号の発生数を特許請求の範囲第1項から第6
項の計数手段にて計数する方法。 8、特許請求の範囲第1項または第4項におけるAE信
号の計数手段にて計数したAE信号発生数と基準値とを
比較することにより、摺動部の異常状態を診断すること
を特徴とする摺動運動装置の異常診断装置。 9、特許請求の範囲第2項、第3項、第5項、第6項に
おけるAE信号の計数手段にて計数したAE信号の発生
数と複数の基準値とを比較することにより摺動部の異常
の程度を診断することを特徴とする摺動運動装置の異常
診断装置。 10、摺動運動装置の摺動部の異常診断を特許請求の範
囲第8項または第9項にて実施する方法。
[Claims] 1. In a device for counting AE signals generated from a subject, the AE signal generated from the subject is envelope-detected, the lowest voltage level in the envelope detected signal is detected, and the lowest voltage level is detected. AE signal counting means in an AE measurement method, characterized in that a value obtained by superimposing a voltage set on a voltage level is used as a threshold voltage, and the number of occurrences of the AE signal is counted. 2. In claim 1, the threshold voltage is provided in several stages, and the average value of the number of AE signal occurrences counted at each threshold voltage is taken as the number of AE signal occurrences. A
AE signal counting means in the E measurement method. 3. An AE signal counting means in an AE measurement method, characterized in that the average value in claim 2 is taken as a total value. 4. In a device that counts AE signals generated from a subject, the AE signal generated from the subject is envelope-detected, and a signal that is synchronized or synchronized with the movement of the subject is used as a trigger signal to calculate the envelope detection signal. is averaged, the lowest voltage level in the waveform after the averaging process is detected, and the value obtained by superimposing the set voltage on the lowest voltage level is set as the threshold voltage, and the number of occurrences of the AE signal is counted. AE signal counting means in an AE measurement method, characterized in that: 5. The threshold voltage as set forth in claim 4 is provided in several stages, and the average value of the number of AE signal occurrences counted at each threshold voltage is taken as the number of AE signal occurrences. A
AE signal counting means in the E measurement method. 6. An AE signal counting means in an AE measurement method, characterized in that the average value in claim 5 is taken as a total value. 7. The number of AE signals generated is determined from claims 1 to 6.
A method of counting using a term counting method. 8. An abnormal state of the sliding part is diagnosed by comparing the number of AE signal occurrences counted by the AE signal counting means in claim 1 or 4 with a reference value. Abnormality diagnosis device for sliding motion equipment. 9. By comparing the number of occurrences of AE signals counted by the AE signal counting means in Claims 2, 3, 5, and 6 with a plurality of reference values, An abnormality diagnosing device for a sliding motion device, characterized by diagnosing the degree of abnormality in a sliding motion device. 10. A method for diagnosing an abnormality in a sliding part of a sliding motion device according to claim 8 or 9.
JP1056480A 1989-03-10 1989-03-10 AE diagnostic device for subject Expired - Lifetime JP2515876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056480A JP2515876B2 (en) 1989-03-10 1989-03-10 AE diagnostic device for subject

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056480A JP2515876B2 (en) 1989-03-10 1989-03-10 AE diagnostic device for subject

Publications (2)

Publication Number Publication Date
JPH02236447A true JPH02236447A (en) 1990-09-19
JP2515876B2 JP2515876B2 (en) 1996-07-10

Family

ID=13028259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056480A Expired - Lifetime JP2515876B2 (en) 1989-03-10 1989-03-10 AE diagnostic device for subject

Country Status (1)

Country Link
JP (1) JP2515876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180558A (en) * 2007-01-23 2008-08-07 National Univ Corp Shizuoka Univ Damage state detection method, damage state detection program and damage state detector
JP2012078288A (en) * 2010-10-05 2012-04-19 Asahi Kasei Engineering Kk Method for diagnosing roller bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55854A (en) * 1978-06-19 1980-01-07 Taada:Kk Heating cooking instrument
JPS5713324A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Abnormal sound monitor for rotary machine
JPS58176545A (en) * 1982-03-22 1983-10-17 ゼネラル・エレクトリツク・カンパニイ Acoustic type defect detection system
JPS63304132A (en) * 1987-06-03 1988-12-12 Kawasaki Steel Corp Detecting method for abnormality of bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55854A (en) * 1978-06-19 1980-01-07 Taada:Kk Heating cooking instrument
JPS5713324A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Abnormal sound monitor for rotary machine
JPS58176545A (en) * 1982-03-22 1983-10-17 ゼネラル・エレクトリツク・カンパニイ Acoustic type defect detection system
JPS63304132A (en) * 1987-06-03 1988-12-12 Kawasaki Steel Corp Detecting method for abnormality of bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180558A (en) * 2007-01-23 2008-08-07 National Univ Corp Shizuoka Univ Damage state detection method, damage state detection program and damage state detector
JP2012078288A (en) * 2010-10-05 2012-04-19 Asahi Kasei Engineering Kk Method for diagnosing roller bearing

Also Published As

Publication number Publication date
JP2515876B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US11561127B2 (en) Apparatus for analysing the condition of a machine having a rotating part
EP2732251B1 (en) A method and a system for analysing the condition of a rotating machine part
JP3609982B2 (en) Fault diagnosis method and apparatus
JP3254624B2 (en) Stick-slip detection method and detection device
KR101482509B1 (en) Diagnosis System and Method of Bearing Defect
CN111649886B (en) Abnormality detection device, rotating machine, abnormality detection method, and computer-readable storage medium
JP2000171291A (en) Fault diagnosis method and device
KR101946631B1 (en) System and method for monitoring state of structure based compressive sensing
JPH02236447A (en) Counting means for ae signal in ae measuring method
US20200116554A1 (en) Method for detecting a defect in a vibration sensor, associated device and computer program
CN110411730B (en) Fault judgment method and system for rotating equipment and readable storage medium
JP2002188411A (en) Abnormality diagnosing apparatus
KR20200137295A (en) Apparatus for detecting combustor instability and method thereof
JPH01101418A (en) Diagnosing device for rotary machine
WO2022224631A1 (en) Rotating machine system and diagnostic method for same
JPH02205728A (en) Apparatus and method for diagnosing abnormality in sliding motion part
JPH02242149A (en) Reliability evaluation system for sliding section
CN111599033B (en) Processing method for diagnosing cigarette machine fault
JP3121488B2 (en) Bearing diagnostic device and escalator
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JPH0569461B2 (en)
KR101482511B1 (en) Diagnosis System and Method of Bearing Defect by Phase Lag and Data Dispersion Shape Factor
JP2685513B2 (en) Abnormality diagnosis device for machine sliding parts by AE
JP7486672B2 (en) Inspection device, inspection system, inspection method, and inspection program
JPH08122142A (en) Device and method for discrimination