JPH0223638B2 - - Google Patents

Info

Publication number
JPH0223638B2
JPH0223638B2 JP58245081A JP24508183A JPH0223638B2 JP H0223638 B2 JPH0223638 B2 JP H0223638B2 JP 58245081 A JP58245081 A JP 58245081A JP 24508183 A JP24508183 A JP 24508183A JP H0223638 B2 JPH0223638 B2 JP H0223638B2
Authority
JP
Japan
Prior art keywords
acid
water
paper
soluble
cmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58245081A
Other languages
Japanese (ja)
Other versions
JPS60139899A (en
Inventor
Yoshiaki Ishino
Yoshiharu Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Paper Manufacturing Co Ltd
Original Assignee
Mishima Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Paper Manufacturing Co Ltd filed Critical Mishima Paper Manufacturing Co Ltd
Priority to JP24508183A priority Critical patent/JPS60139899A/en
Publication of JPS60139899A publication Critical patent/JPS60139899A/en
Publication of JPH0223638B2 publication Critical patent/JPH0223638B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は繊維状カルボキシメチルセルロースか
ら成り残留アルカリを含有する水溶性シートを酸
処理するに際し、特定条件下で行なうことにより
耐候性と強度の勝れた水溶紙を製造する方法に関
する。 さらに詳しくは従来の水溶紙に一定以上の水中
酸指数を有する酸の溶液を塗布含浸すること、お
よび塗布含浸にあたつて繊維状カルボキシメチル
セルロースの塩基飽和度を一定以上に調節するこ
とにより、従来品に比し勝れた耐候性と強度とを
有する水溶紙を製造する方法に関する。 従来、水溶紙は機密文書用紙、ラベル等の筆
記、印刷用に、また使用後溶解流去させる産業用
資材として、さらに婦人、乳幼児の衛材用として
用いられている。 然しながら、従来の水溶紙はその本質上強度が
弱く、吸放湿性が大きいため加工がしにくいこ
と、該水溶紙中には少量の炭酸ソーダ、苛性ソー
ダ等のアルカリが残留するため、用紙の保存中、
特に夏期高温高湿期の保存、輸送中などに変色
し、又は粘着すること、アルミニウム、亜鉛等の
両性金属を腐蝕するため産業用資材として利用分
野が狭いこと、婦人、乳幼児の肌に対しては中性
〜弱酸性の方が好ましいこと等が指摘されてい
た。 従来の水溶紙は特公昭48−27605号に開示され
ている如く、繊維状セルロースグリコール酸(以
下、CMC−Hという)を抄紙し、プレスパート
以降の湿紙匹に炭酸ソーダ、苛性ソーダなどのア
ルカリ液を塗布含浸し、イオン交換してナトリウ
ム塩(以下、CMC−Naという)とした後脱水し
乾燥して製造される。この際H+とNa+とのイオ
ン交換を完成し、かつ成紙の均一な溶解性を期す
るためアルカリ液は稍々過剰に加えられるので得
られた水溶紙のPHは10〜11程度のアルカリ性と
なつている。 中性の水溶紙を得るために、たとえば塩酸の稀
薄溶液を、そのPHを調節しつゝ水溶紙に塗布す
る方法も考えられるが、紙の構造の不均一性や、
塗布ロールの精度上均一な塗布をなしにくいこと
などのためCMC−NaのCMC−Hへの逆反応が
著しく生じた部域があらわれ、得られた紙は均一
に溶解することはできない。 また強度を改善するために坪量を上げたり、化
学パルプを多量に配合することも考えられるが前
者はコスト高となり後者は溶解液中に不溶性繊維
が多量に混在することになるので使用目的によつ
ては好まれない。 本発明者等は水溶紙の溶解性を害することな
く、かつ前記特性の勝れた水溶紙を得ることを目
的として、水溶紙中のCMC−Naの耐酸性と塩基
飽和度について研究を重ねた結果、これらと溶解
性との間に一定の関係があることを見出し本発明
に到達した。こゝで水溶紙の溶解性とは、後述の
試験法による溶液を肉眼で観察しコロイド状を示
す程度で足りる。また繊維状ゲルを含むものであ
つてもよい。実用上差支えないからである。 本発明の水溶紙は基材たる水溶性シート中の残
留アルカリの中和と水溶紙の耐候性および強度を
向上させるため、特定の酸を中和当量を越えて過
剰に加えるので紙面もしくは溶解液は中性ないし
弱酸性を示す。そして遊離の酸はCMC−Naと部
分的に反応するが、イオン交換により生成したカ
ルボキシル基の量が一定以下であれば、換言すれ
ばCMC−Naの塩基飽和度が一定以上であれば本
発明の水溶紙の溶解性を阻害せず、かつ耐候性お
よび強度が向上する効果が得られる。 かくして本発明によれば、繊維状カルボキシメ
チルセルロース50〜100%と製紙用繊維0〜50%
から成り、残留アルカリを含有する水溶性シート
の酸処理において、水中酸指数が3以上の酸を有
機溶媒と水との混合溶媒に溶解した溶液を、該シ
ート中の残留アルカリの中和当量を越え、かつ該
シート中の繊維状カルボキシメチルセルロースの
塩基飽和度が35%以上となる範囲で塗布含浸して
酸処理することを特徴とする耐候性および強度の
勝れた水溶紙の製造法が提供される。 以下、本発明の構成を実験例を併用しつゝ詳細
に説明する。 実験例 1 CMC−Naの耐酸性と塩基飽和度との関係を知
るために以下の実験を行なつた。 繊維状CMC−H(エーテル化度0.43ニチリン化
学製)を常法により精製した後、苛性ソーダのメ
タノール、水混合溶液中に入れ常法により塩基交
換を行なわせた後精製し塩基飽和度100%のCMC
−Naを調製した。 塩基飽和度100%のCMC−Naを酸溶液で処理
するために、有機酸の種類をかえてそれぞれ1モ
ルの有機酸を含むエタノール:水(1:1重量
部)の混合溶液を8種類調製した。それぞれの有
機酸は水中酸指数(pka)の異なるものである。
各々の有機酸溶液50mlにCMC−Na絶乾1gを浸
し2時間撹拌した後、別し、残渣を常法により
洗浄して残留する有機酸を除去した後60℃で減圧
乾燥した。 次に塩基交換容量および塩基飽和度を測定する
ために精製したCMC−Hおよび前記の酸処理試
料をそれぞれ絶乾0.5gを採り、これに0.5N苛性
ソーダ20mlを加え、2時間撹拌後、純水10mlを加
え0.5N塩酸で電位差滴定し、この滴定値をAml
とした。ブランク試験は試料を用いずに同様の操
作を行ないこの滴定値をBmlとした。 塩基交換容量および塩基飽和度は次式で求め
た。 塩基交換容量(meq/g)= (B−A)×0.5×f/1000×1/W×1000 f:0.5NHClのフアクター W:試料絶乾重量(g) 塩基飽和度(%)= 塩基交換容量−交換性H+量/塩基交換容量×10
0 =交換性塩基量/交換性塩基量+交換性H+量×
100 これらの結果を水中酸指数(pka)とともに第
1表に示した。こゝで水中酸指数とは電解質の水
中における解離定数の逆数の対数である。本発明
では酸の溶解に有機溶媒と水との混合溶媒を用い
ることを必須とするので非水溶媒中でのpkaを指
標とする方が望ましいが、本発明では便宜上水中
酸指数(以下、酸指数という)を用いる。表示し
た酸のうち2塩基酸以上の酸はpka1値を示した。
The present invention relates to a method for producing water-soluble paper with excellent weather resistance and strength by acid-treating a water-soluble sheet made of fibrous carboxymethyl cellulose and containing residual alkali under specific conditions. More specifically, by coating and impregnating conventional water-soluble paper with a solution of an acid having an acid index in water above a certain level, and by adjusting the degree of base saturation of fibrous carboxymethyl cellulose to a certain level or above during coating and impregnation, The present invention relates to a method for producing water-soluble paper having superior weather resistance and strength compared to other products. Conventionally, water-soluble paper has been used for writing and printing confidential documents, labels, etc., as an industrial material that is dissolved and washed away after use, and as a sanitary material for women and infants. However, conventional water-soluble paper inherently has low strength and has high moisture absorption and desorption properties, making it difficult to process.Also, a small amount of alkali such as soda carbonate and caustic soda remains in the water-soluble paper, making it difficult to process during paper storage. ,
In particular, it discolors or sticks during storage and transportation during high temperature and high humidity periods in the summer, it corrodes amphoteric metals such as aluminum and zinc, so its use as an industrial material is limited, and it is harmful to the skin of women and infants. It has been pointed out that neutral to weak acidity is preferable. Conventional water-soluble paper is made from fibrous cellulose glycolic acid (hereinafter referred to as CMC-H), as disclosed in Japanese Patent Publication No. 48-27605, and alkali such as soda carbonate or caustic soda is added to the wet paper after the press part. It is manufactured by applying a liquid, impregnating it, ion-exchanging it to make sodium salt (hereinafter referred to as CMC-Na), dehydrating it, and drying it. At this time, a slightly excessive amount of alkaline solution is added to complete the ion exchange between H + and Na + and to ensure uniform solubility of the paper, so the pH of the resulting water-soluble paper is around 10 to 11. It has become alkaline. In order to obtain neutral water-soluble paper, for example, it is possible to apply a dilute solution of hydrochloric acid to water-soluble paper while adjusting its pH, but this method may cause problems due to non-uniformity of the paper structure,
Due to the difficulty of uniform coating due to the precision of the coating roll, there appeared areas where the reverse reaction of CMC-Na to CMC-H occurred significantly, and the resulting paper could not be uniformly dissolved. In order to improve the strength, it is also possible to increase the basis weight or incorporate a large amount of chemical pulp, but the former will increase the cost and the latter will result in a large amount of insoluble fibers being mixed in the solution, so it is not suitable for the intended use. I don't really like it. The present inventors conducted repeated research on the acid resistance and base saturation of CMC-Na in water-soluble paper, with the aim of obtaining water-soluble paper with excellent properties as described above without impairing the solubility of water-soluble paper. As a result, it was discovered that there is a certain relationship between these and solubility, and the present invention was achieved. Here, the solubility of water-soluble paper is defined as the extent to which the solution exhibits colloidal form when observed with the naked eye using the test method described below. It may also contain a fibrous gel. This is because there is no practical problem. In the water-soluble paper of the present invention, in order to neutralize the residual alkali in the water-soluble sheet that is the base material and to improve the weather resistance and strength of the water-soluble paper, an excess of a specific acid is added in excess of the neutralization equivalent. is neutral to weakly acidic. The free acid partially reacts with CMC-Na, but if the amount of carboxyl groups generated by ion exchange is below a certain level, in other words, if the base saturation of CMC-Na is above a certain level, the present invention The effect of improving weather resistance and strength without inhibiting the solubility of water-soluble paper can be obtained. Thus, according to the invention, 50-100% fibrous carboxymethylcellulose and 0-50% papermaking fibers
In the acid treatment of a water-soluble sheet containing residual alkali, a solution in which an acid with an acid index in water of 3 or more is dissolved in a mixed solvent of an organic solvent and water is added to the neutralizing equivalent of the residual alkali in the sheet. Provided is a method for producing water-soluble paper with excellent weather resistance and strength, which comprises coating, impregnating, and acid-treating the base saturation of the fibrous carboxymethyl cellulose in the sheet in a range of 35% or more. be done. Hereinafter, the configuration of the present invention will be explained in detail using experimental examples. Experimental Example 1 The following experiment was conducted to find out the relationship between the acid resistance and base saturation of CMC-Na. Fibrous CMC-H (manufactured by Nichirin Chemical Co., Ltd. with a degree of etherification of 0.43) was purified using a conventional method, and then placed in a mixed solution of caustic soda, methanol, and water, and subjected to base exchange using a conventional method. CMC
-Na was prepared. In order to treat CMC-Na with 100% base saturation with an acid solution, we prepared 8 types of mixed solutions of ethanol:water (1:1 parts by weight) each containing 1 mole of organic acid by changing the type of organic acid. did. Each organic acid has a different water acid index (pka).
1 g of bone-dried CMC-Na was immersed in 50 ml of each organic acid solution, stirred for 2 hours, separated, and the residue was washed in a conventional manner to remove residual organic acids, followed by drying under reduced pressure at 60°C. Next, in order to measure the base exchange capacity and base saturation, 0.5 g of the purified CMC-H and the above acid-treated sample were each taken, and 20 ml of 0.5N caustic soda was added thereto. After stirring for 2 hours, pure water Add 10ml and perform potentiometric titration with 0.5N hydrochloric acid, and calculate this titration value as Aml.
And so. In a blank test, the same operation was performed without using a sample, and this titration value was taken as Bml. The base exchange capacity and base saturation were determined using the following formula. Base exchange capacity (meq/g) = (B-A) x 0.5 x f/1000 x 1/W x 1000 f: 0.5NHCl factor W: Sample bone dry weight (g) Base saturation (%) = Base exchange Capacity - exchangeable H + amount / base exchange capacity x 10
0 = Exchangeable base amount / Exchangeable base amount + Exchangeable H + amount ×
100 These results are shown in Table 1 along with the water acid index (pka). The acid index in water is the logarithm of the reciprocal of the dissociation constant of the electrolyte in water. In the present invention, it is essential to use a mixed solvent of an organic solvent and water to dissolve the acid, so it is preferable to use the pka in a non-aqueous solvent as an index. (referred to as an index) is used. Among the acids shown, those with dibasic acids or higher showed a pka value of 1 .

【表】【table】

【表】 第1表から明らかなように有機酸のエタノー
ル、水混合溶液でCMC−Naを処理するとイオン
交換が起り塩基飽和度が低下するが、その割合は
酸指数が高い有機酸ほど小さく、即ち塩基飽和度
は高く、CMC−Naとして残存している割合が多
い傾向が示されている。本発明者等が有機酸の水
溶液を用いて前記と同一条件で酸処理を行つた実
験では、このような傾向は見られず、何れの酸を
用いても塩基飽和度はほゞ5%以下となつた。こ
れらのことから有機溶媒と水との混合溶媒中では
解離が水溶液ほど大きくはなく、イオン交換は抑
えられ前記した傾向が得られたものと判断され
た。 本発明の水溶紙は塩基飽和度に対する酸指数の
上記の関係を1因子として利用しつゝ更に他の因
子を加えて所望の塩基飽和度に調節して得られ
る。 実験例 2 次に酸を一定とし酢酸(pka4.756)の濃度を変
えて基材を処理し、塩基飽和度と酸処理紙の溶解
性との関係を調べて第2表に示した。 基材としては実験例1に用いたのと同じ繊維状
CMC−H100%を用いて抄紙し炭酸ソーダ液を添
加して製造した坪量80g/m2のものを一定量採取
して実験例1に準じて酸処理を行ない、塩基交換
容量および塩基飽和度を測定した。 溶解性は約1gの試験片を300mlの水中に投入
し、マグネチツクスターラーで回転させ試験片が
溶解するまでの秒数を測定した。120秒経過して
も繊維の小塊が残るものを難溶とし、シート形態
が崩れないものを不溶とした。 なお酸処理紙は減圧乾燥後105℃、10分間の熱
処理した後の溶解性も示したが、これは実際の製
造工程では熱風乾燥されることを考慮したゝめで
ある。
[Table] As is clear from Table 1, when CMC-Na is treated with a mixed solution of organic acids in ethanol and water, ion exchange occurs and the degree of base saturation decreases, but the rate of this decreases as the organic acid has a higher acid index. That is, the degree of base saturation is high, and a large proportion of CMC-Na remains as CMC-Na. In experiments conducted by the present inventors in which acid treatment was carried out under the same conditions as above using an aqueous solution of an organic acid, such a tendency was not observed, and the degree of base saturation was approximately 5% or less regardless of which acid was used. It became. From these results, it was determined that in a mixed solvent of an organic solvent and water, dissociation was not as large as in an aqueous solution, and ion exchange was suppressed, resulting in the above-mentioned tendency. The water-soluble paper of the present invention can be obtained by using the above relationship between the acid index and the base saturation as one factor and adding other factors to adjust the base saturation to a desired level. Experimental Example 2 Next, the base material was treated with the acid constant and the concentration of acetic acid (pka 4.756) varied, and the relationship between base saturation and solubility of acid-treated paper was investigated and is shown in Table 2. The base material was the same fibrous material used in Experimental Example 1.
A certain amount of paper with a basis weight of 80 g/m 2 was produced by making paper using 100% CMC-H and adding a sodium carbonate solution, and acid treatment was performed according to Experimental Example 1 to determine the base exchange capacity and base saturation. was measured. Solubility was determined by putting about 1 g of a test piece into 300 ml of water, rotating it with a magnetic stirrer, and measuring the number of seconds it took for the test piece to dissolve. Those with small fiber lumps remaining even after 120 seconds were classified as poorly soluble, and those whose sheet form did not collapse were classified as insoluble. The acid-treated paper also showed solubility after being heat-treated at 105°C for 10 minutes after drying under reduced pressure, but this was done in consideration of the fact that it would be dried with hot air in the actual manufacturing process.

【表】 つた。
第2表によれば塩基飽和度が35.3%以上では溶
解性に著しい変化が認められないことが判つた。
なお、前述の如く溶解性は120秒以内を限度とし
ているのでこの条件を満たす塩基飽和度は35%以
上としてよいことが判明した。 実験例 3 次に実際の製造においては、基材たる水溶性シ
ートの酸処理は、浸漬によらずロールコーターに
より塗布含浸するものであること、及び塗布含浸
時間は数秒であることから現場の条件に近い条件
で各種の酸を塗布含浸して得た試料につき溶解
性、溶解液のPH、白色度等を測定した。白色度
についても105℃、10分間の熱処理を併め行なつ
た。経日変化を知るためである。なお、酸として
は固体酸のみについて試験したがこれは固体酸は
その溶液を塗布、乾燥後は固体酸の塩および遊離
の固体酸として存在し、事実上吸湿性、潮解性が
ない限りイオン交換反応は抑制されるので本発明
の目的達成のためには一層好ましいからである。
実験例2で用いたのと同一のCMC−Hを100%用
いて製造した140g/m2の水溶性シートを基材と
し、酸の溶液は酸指数の異なる固体酸をエタノー
ル50重量%混合した水に溶解して調製した。なお
酸溶液の濃度は10重量%を基準としたが酸処理紙
の溶解液のPHがほゞ5になるように各酸ごとに
調整した。 一定量の水溶性シートをそれぞれの酸溶液に2
〜3秒間浸漬して引上げ、加圧脱水し80℃で乾燥
して供試々料とした。測定項目および試験結果は
第3表のとおりであつた。
[Table] Ivy.
According to Table 2, it was found that no significant change in solubility was observed when the base saturation was 35.3% or higher.
Note that, as mentioned above, the solubility is limited to within 120 seconds, so it has been found that the base saturation that satisfies this condition may be 35% or more. Experimental Example 3 Next, in actual manufacturing, the acid treatment of the water-soluble sheet that is the base material is performed by coating and impregnating with a roll coater rather than by dipping, and the coating and impregnating time is several seconds, so the on-site conditions The solubility, pH of the solution, whiteness, etc. were measured for samples obtained by coating and impregnating various acids under conditions similar to those described above. For whiteness, heat treatment at 105°C for 10 minutes was also performed. This is to know the changes over time. In addition, only solid acids were tested as acids, but solid acids exist as solid acid salts and free solid acids after the solution is applied and dried, and as long as they are not hygroscopic or deliquescent, ion exchange is not possible. This is because the reaction is suppressed, which is more preferable for achieving the object of the present invention.
A 140 g/m 2 water-soluble sheet manufactured using 100% of the same CMC-H used in Experimental Example 2 was used as the base material, and the acid solution was a mixture of 50% by weight of solid acids with different acid indices in ethanol. It was prepared by dissolving it in water. The concentration of the acid solution was based on 10% by weight, but it was adjusted for each acid so that the pH of the acid-treated paper solution was approximately 5. Add a certain amount of water-soluble sheets to each acid solution.
The sample was immersed for ~3 seconds, pulled out, dehydrated under pressure, and dried at 80°C to obtain a test sample. The measurement items and test results are as shown in Table 3.

【表】 第3表によれば溶解性は酸指数の序列と関係し
酸指数が3.460のリンゴ酸から酸指数の低下につ
れて溶解時間が長くなり、酸指数が3.036の酒石
酸以下になるとPHが5付近において熱処理後の
酸処理紙は、難溶もしくは不溶化することが判つ
た。また酸指数が3.128のクエン酸の処理紙は熱
処理後の溶解時間が稍々長くなつているがその塩
基飽和度は35%以上とした限界値内にはあると考
えられた。 また酸処理をすれば耐変色性が著しく改善され
ることも対照品との比較において判明した。な
お、酸処理紙が難溶もしくは不溶化する酸指数の
分岐点は、この表によれば3.036であるが、水溶
紙には通常エーテル化度0.25〜0.65のCMC−Hを
用いること、この実験には0.43のCMC−Hを用
いたこと、エーテル化度が大きいほど耐酸性が増
すこと等から本発明に用いうる酸は酸指数が3以
上の酸であり、さらに3.5以上の固体酸が好まし
い。 第3表に例示した酸のほか、アジピン酸
(pka4.430)、グルタル酸(pka4.343)等の固体
酸、酪酸(pka4.820)、乳酸(pka3.858)等の液
体酸も好適なものとして例示できる。 なお、無機酸についても本発明の要件を満たす
限り、本発明の技術的範囲に含まれる。また塗布
含浸する酸のナトリウム塩などをPH緩衝剤とし
て酸溶液に加えてもよい。 次に本発明の基材として用いる水溶性シートに
ついて説明する。 繊維状カルボキシメチルセルロースはセルロー
スグリコール酸のナトリウム、カリウム等の1価
金属塩の短繊維であり、通常はナトリウム塩が用
いられる。CMC−Naから成る水溶性シートは公
知の他の繊維原料が配合されていてもよく、公知
の方法により製造される。たとえば特公昭48−
27605号開示の発明方法を略記するとCMC−
H100%又はCMC−Hと40重量%以下の晒クラフ
トパルプとの混合紙料を抄紙しプレスフエルト上
の湿紙匹にアルカリ水溶液を添加してCMC−H
をCMC−Naした後、脱水、乾燥して製造する。
CMC−Hのエーテル化度は0.2〜1.0の範囲のもの
を用いうるが、通常は0.25〜0.65のものを用い抄
紙性、成紙の溶解性、強度等の点から0.40〜0.60
のものが最もよく用いられる。0.65以上になると
繊維の膨潤が著しくなり抄造し難くなるが、本発
明の基材としては処理すべき酸の種類によつては
耐酸性を増すため0.65〜1.0のものを用いる。0.25
以下のCMC−Hは抄造し易いが製品の溶解性が
劣る。CMC−H以外の製紙用繊維としては、そ
の種類に特に制限はなく、一般のセルロースパル
プ、レーヨンなどの半合成繊維、ポリエチレンな
どの合成パルプ、ポリアクリルニトリルなどの合
成繊維等を使用目的により選定すれば良いが通常
は晒クラフトパルプ、晒サルフアイトパルプ、溶
解パルプ等の化学パルプ及びレーヨンが用いられ
る。またその使用割合はCMC−Hの50重量%以
下が好ましい。50重量%以上になると水中で繊維
の結束を生じやすいからである。 本発明に用いる酸溶液の調製には、該酸が固体
酸の場合には水と相溶性のある有機溶媒と水との
混合溶媒に所定量を溶解する。水と相溶性のある
有機溶媒としてはメチルアルコール、エチルアル
コール、ブチルアルコール、プロピルアルコール
の如きアルコール類、アセトン、エチルメチルケ
トン、メチルプロピルケトンの如きケトン類を用
いることができる。 酸がpka値の比較的低い固体酸、または液体酸
である場合にはその解離を抑制し所望の塩基飽和
度の水溶紙をうるために有機溶媒の混合比率の高
い水溶媒を用いることが好ましい。通常は製造コ
ストの点も加味して各々50重量%の混合溶媒を用
いる。 有機溶媒の混合比率はCMC−Hのエーテル化
度他の繊維原料の種類と配合割合、酸の種類、水
溶紙の坪量等を考慮して決定するが30重量%以上
が必要である。酸の溶解濃度は固体酸、液体酸と
も基材たる水溶性シートに塗布含浸される該酸の
量が、該水溶性シート中の残留アルカリの中和当
量を越え、かつCMC−Naの塩基飽和度が35%以
上となる範囲にすることが必要で、通常0.3〜10
重量%の範囲から、上記要件を満たす濃度が選択
される。本発明水溶紙中のCMC−Naの塩基飽和
度の変動因子はCMC−Naのエーテル化度、酸の
種類、酸指数、溶媒の組成、溶液中の酸濃度、塗
布速度等であるが、一定の材料を用い塗布速度が
同一であれば、酸濃度により決定される。酸溶液
の塗布含浸は、抄紙機上で乾燥後の基材にサイズ
プレスを用いて塗布するか、抄紙後、塗工機のロ
ールコーターなどで塗布し、80〜120℃で乾燥す
る。乾燥により有機溶媒はすべて蒸発する。 本発明により製造される水溶紙は上記の手段に
より中性ないし弱酸性となり耐変色性が改善さ
れ、強度も10%以上向上した。その理由として
は、本発明においては通常、基材に残留するアル
カリの中和当量を越えた過剰量の酸を塗布含浸す
るのでCMC−Naの一部が水溶性を害しない程度
にCMC−Hとなり、これが乾燥時に水素結合を
形成し、シートの乾燥強度を高めたものと思われ
る。同様の理由により紙水分(20℃、65%RH)
も減少したので紙強度の増加と併せて加工適性の
向上に寄与できると考えられた。 以上、説明した如く、本発明方法によれば、従
来の水溶紙に比べ紙強度の増加、変色の防止、紙
水分の低下等の改善効果が得られるとともに、ア
ルミニウム、亜鉛等の両性金属の腐触が防止で
き、婦人や乳幼児の肌に好ましい中性〜弱酸性を
示すので前記した水溶紙に関する問題点を解決し
産業界に寄与しうるものである。 以下、実施例により本発明を具体的に説明する
が実施例1では、溶解残渣が残らないことが要望
される機密文書用水溶紙を目的としたゝめCMC
−Na100%から成る水溶性シートを基材とした。
また実施例2,3ではそれぞれ産業用資材、衛材
用を目的としたので、それらの加工適性、商品特
性等を満足させるために木材パルプを配合した紙
料から成る水溶性シートを基材とした。従つて実
施例2,3の本発明水溶紙の溶解性は溶解分散性
として表わした。なお、本発明はこれらの実施例
に限定されるものではない。 実施例 1 エーテル化度0.43の繊維状CMC−H(ニチリン
化学製)100部から成る紙料を抄紙し、抄紙機上
の湿紙匹に10%濃度の炭酸ソーダ水溶液を塗布、
含浸し乾燥して約120g/m2の水溶性シートを製
造した。この水溶性シートの紙面PHは10.6、溶
解液のPHは10.2であつた。酸溶液はコハク酸お
よび緩衝剤としてコハク酸ナトリウムをエタノー
ル、水混合液(1:1重量部)に溶解して調製し
た。コハク酸濃度1.5%、コハク酸ナトリウム濃
度1.2%であつた。 ロールコーターを用いて基材に酸溶液を塗布含
浸し80℃で熱風乾燥し本発明の水溶紙を製造し
た。この紙面にブロムクレゾールパープルPH指
示薬を塗布したところ全面むらなくPH6.0前後呈
色を示し、残留炭酸ソーダが存在しないことを確
認した。基材の塩基交換容量は2.49meq/gであ
つた。また本発明水溶紙からコハク酸およびコハ
ク酸ナトリウムを除いて塩基飽和度を測定したと
ころ75.5%であつた。従来の水溶紙と本発明の水
溶紙につき特に白色度、紙力の点に注目して試験
を行ない結果を第4表に示した。なお、加熱処理
試験は製品の長期在庫、高温期の輸送等を考慮し
かなり厳しい条件で行なつた。
[Table] According to Table 3, solubility is related to the ranking of acid index; from malic acid with an acid index of 3.460, dissolution time increases as the acid index decreases, and when the acid index falls below tartaric acid with an acid index of 3.036, the PH increases to 5. It was found that the acid-treated paper after heat treatment becomes poorly soluble or insolubilized in the vicinity. In addition, although the dissolution time of citric acid-treated paper with an acid index of 3.128 after heat treatment was slightly longer, its base saturation was considered to be within the limit value of 35% or more. It was also found in comparison with a control product that the color fastness was significantly improved by acid treatment. According to this table, the acid index branching point at which acid-treated paper becomes poorly soluble or insoluble is 3.036, but CMC-H with an etherification degree of 0.25 to 0.65 is normally used for water-soluble paper, and in this experiment. The acids that can be used in the present invention are acids with an acid index of 3 or more, and solid acids with an acid index of 3.5 or more are preferable because CMC-H with an index of 0.43 is used and acid resistance increases as the degree of etherification increases. In addition to the acids listed in Table 3, solid acids such as adipic acid (pka 4.430) and glutaric acid (pka 4.343), and liquid acids such as butyric acid (pka 4.820) and lactic acid (pka 3.858) are also suitable. This can be exemplified as an example. Note that inorganic acids are also included within the technical scope of the present invention as long as they meet the requirements of the present invention. Further, a sodium salt of the acid to be coated and impregnated may be added to the acid solution as a PH buffer. Next, the water-soluble sheet used as the base material of the present invention will be explained. Fibrous carboxymethyl cellulose is a short fiber of a monovalent metal salt such as sodium or potassium of cellulose glycolate, and the sodium salt is usually used. The water-soluble sheet made of CMC-Na may contain other known fiber raw materials and is produced by a known method. For example, special public relations
The inventive method disclosed in No. 27605 is abbreviated as CMC-
Paper is made from a mixed paper stock of 100% H or CMC-H and 40% by weight or less of bleached kraft pulp, and an alkaline aqueous solution is added to the wet paper web on the press felt to produce CMC-H.
It is manufactured by converting it into CMC-Na, dehydrating it, and drying it.
The degree of etherification of CMC-H can be in the range of 0.2 to 1.0, but it is usually 0.25 to 0.65, and 0.40 to 0.65 from the viewpoint of paper making properties, paper solubility, strength, etc.
are most commonly used. If the value is 0.65 or more, the fibers will swell significantly and become difficult to form into paper, but depending on the type of acid to be treated, the base material used in the present invention may have a value of 0.65 to 1.0 to increase acid resistance. 0.25
The following CMC-H is easy to make into paper, but the solubility of the product is poor. There are no particular restrictions on the types of papermaking fibers other than CMC-H, and general cellulose pulp, semi-synthetic fibers such as rayon, synthetic pulps such as polyethylene, synthetic fibers such as polyacrylonitrile, etc. are selected depending on the purpose of use. Chemical pulp such as bleached kraft pulp, bleached sulfite pulp, dissolving pulp, and rayon are usually used. Further, its usage ratio is preferably 50% by weight or less of CMC-H. This is because if the content exceeds 50% by weight, fibers tend to bunch together in water. In preparing the acid solution used in the present invention, when the acid is a solid acid, a predetermined amount is dissolved in a mixed solvent of water and an organic solvent that is compatible with water. As organic solvents that are compatible with water, alcohols such as methyl alcohol, ethyl alcohol, butyl alcohol, and propyl alcohol, and ketones such as acetone, ethyl methyl ketone, and methyl propyl ketone can be used. When the acid is a solid acid or liquid acid with a relatively low pka value, it is preferable to use an aqueous solvent with a high mixing ratio of organic solvent in order to suppress its dissociation and obtain a water-soluble paper with the desired base saturation. . Usually, a mixed solvent of 50% by weight is used in consideration of production costs. The mixing ratio of the organic solvent is determined in consideration of the degree of etherification of CMC-H, the type and blending ratio of fiber raw materials, the type of acid, the basis weight of the water-soluble paper, etc., but it must be at least 30% by weight. The dissolved concentration of acid, both solid acid and liquid acid, is such that the amount of the acid coated and impregnated on the water-soluble sheet as a base material exceeds the neutralization equivalent of the residual alkali in the water-soluble sheet, and the base saturation of CMC-Na is determined. It is necessary to set the degree to 35% or more, usually 0.3 to 10
From the weight percent range, a concentration is selected that satisfies the above requirements. The factors that vary the base saturation of CMC-Na in the water-soluble paper of the present invention include the degree of etherification of CMC-Na, the type of acid, the acid index, the composition of the solvent, the acid concentration in the solution, the coating speed, etc., but are constant. If the same material is used and the coating speed is the same, it is determined by the acid concentration. For coating and impregnation with an acid solution, the acid solution is applied to the base material after drying on the paper machine using a size press, or after paper making, it is applied using a roll coater of a coating machine, and then dried at 80 to 120°C. All organic solvents are evaporated by drying. The water-soluble paper produced according to the present invention became neutral to weakly acidic by the above-mentioned means, improved in color fastness, and improved in strength by more than 10%. The reason for this is that in the present invention, usually an excess amount of acid exceeding the neutralization equivalent of the alkali remaining in the base material is coated and impregnated, so that a portion of CMC-Na is absorbed into CMC-Na to the extent that it does not impair water solubility. This is thought to form hydrogen bonds during drying, increasing the dry strength of the sheet. Due to the same reason, paper moisture (20℃, 65%RH)
It was thought that this could contribute to the improvement of processability as well as the increase in paper strength. As explained above, according to the method of the present invention, improvements such as an increase in paper strength, prevention of discoloration, and decrease in paper moisture can be obtained compared to conventional water-soluble paper, as well as corrosion of amphoteric metals such as aluminum and zinc. Since it is neutral to weakly acidic and is suitable for the skin of women and infants, it can contribute to industry by solving the problems associated with water-soluble paper. Hereinafter, the present invention will be explained in detail with reference to examples.
-A water-soluble sheet made of 100% Na was used as the base material.
In addition, since Examples 2 and 3 were intended for use as industrial materials and sanitary materials, respectively, a water-soluble sheet made of paper stock mixed with wood pulp was used as the base material in order to satisfy the processing suitability and product characteristics. did. Therefore, the solubility of the water-soluble papers of the present invention in Examples 2 and 3 was expressed as dissolution and dispersion properties. Note that the present invention is not limited to these examples. Example 1 A paper stock consisting of 100 parts of fibrous CMC-H (manufactured by Nichirin Chemical Co., Ltd.) with a degree of etherification of 0.43 was made into paper, and a 10% concentration sodium carbonate aqueous solution was applied to the wet paper web on the paper machine.
A water-soluble sheet of approximately 120 g/m 2 was produced by impregnation and drying. The surface pH of this water-soluble sheet was 10.6, and the pH of the solution was 10.2. The acid solution was prepared by dissolving succinic acid and sodium succinate as a buffer in a mixed solution of ethanol and water (1:1 parts by weight). The succinic acid concentration was 1.5% and the sodium succinate concentration was 1.2%. A water-soluble paper of the present invention was produced by coating and impregnating a base material with an acid solution using a roll coater and drying with hot air at 80°C. When a bromcresol purple PH indicator was applied to the surface of this paper, the entire surface showed an even coloration of around PH6.0, confirming that there was no residual sodium carbonate. The base exchange capacity of the base material was 2.49meq/g. Furthermore, when succinic acid and sodium succinate were removed from the water-soluble paper of the present invention, the base saturation was measured and found to be 75.5%. Tests were conducted on the conventional water-soluble paper and the water-soluble paper of the present invention, paying special attention to whiteness and paper strength, and the results are shown in Table 4. The heat treatment test was conducted under fairly severe conditions, taking into account long-term product inventory and transportation during high-temperature periods.

【表】 第4表によれば製品シートの各強度は少なくと
も10%は向上している。特に経日変化を見るため
に行なつた加熱試験の結果によると従来の水溶紙
に存在した折り曲げ(耐折強さ)の脆さが著しく
改善された。白色度の低下は完全には防ぎ得ない
が数値の示す如く従来の水溶紙は加熱処理により
褐色となり商品価値を失なつたが本発明によれば
十分に白さを保有している。この水溶紙は溶解後
残渣を残さないから機密文書用の筆記、印刷用紙
として好適であつた。なお、従来の水溶紙におい
て本発明程度の耐折強さを保有させるには晒クラ
フトパルプを10〜20%配合する必要があるので、
きれいな溶解液は得られない。また、水分(20
℃,65%RH)も16.3%から13.4%に減少したか
ら湿潤期、乾燥期における吸放湿の幅が小さくな
ることが期待されこの点加工適性の向上に寄与す
ると考えられる。 実施例 2 アルミニウムを腐食しない水溶紙の製造を目的
とした。エーテル化度0.54の繊維状CMC−H(ニ
チリン化学製)80部と晒クラフトパルプ20部とか
ら成る湿紙に抄紙機上で10%濃度の炭酸ソーダ水
溶液を塗布して坪量120g/m2の水溶性シートを
製造した。酸としては酢酸とクエン酸を2:3の
重量比で混合し、メタノール、水混合溶媒(1:
1重量部)に溶解し1.25重量%濃度の溶液を調製
した。ロールコーターを用いて基材に塗布含浸し
80℃で熱風乾燥し水溶紙を製造した。酸の付着量
は1.9g/m2であり、紙面PH5.8,溶解分散液の
PHは7.2,溶解分散時間は基材の6秒に対し13秒
であつた。基材の塩基交換容量は2.79meq/g
(計算値)、本発明水溶紙の塩基飽和度は65.1%で
あつた。 アルミニウムの腐蝕テストは従来の水溶紙、本
発明水溶紙、参考として試薬1級CMCについて
行つた。いずれも1重量%濃度の溶解分散液(溶
解液)中にアルミニウム線を浸漬し、7日後に表
面状態を肉眼で判定した。その結果、従来の水溶
紙の溶解分散液に浸漬したアルミニウム線はかな
り黒く変色したが、本発明水溶紙、試薬1級
CMCの場合には何れも変色は殆んど認められな
かつた。従つて本発明水溶紙をテープ状にしてア
ルミニウム線を巻いて用いた後溶解流去させる用
途に好適である。 実施例 3 衛材用の水溶紙を製造することを目的とした。
エーテル化度0.65の繊維状CMC−H(ニチリン化
学製)80部、溶解用パルプ20部とから成る紙料を
実施例2と同様にして坪量40g/m2の水溶性シー
トを製造しこれを基材とした。 酸としては乳酸をエタノール、水混合溶媒
(2:1重量部)に溶解し濃度1.5重量%の溶液を
調製した。ロールコーターを用いて塗布含浸し、
80℃で熱風乾燥し、水溶紙を製造した。乳酸の塗
布量は0.7g/m2、紙面PH6.3,溶解分散液の
PH7.4であり、溶解分散性は規格内にあり良好で
あつた。 基材の塩基交換容量は3.25meq/g(計算値)、
本発明水溶紙の塩基飽和度は74.6%であつた。こ
の水溶紙はしつとりとした柔かい風合いをもち、
乳酸により酸処理されているので婦人、乳幼児の
肌に刺戟を与えることなく衛材用として好適であ
つた。
[Table] According to Table 4, each strength of the product sheet was improved by at least 10%. In particular, the results of a heating test conducted to observe changes over time showed that the brittleness of bending (folding strength) that existed in conventional water-soluble paper was significantly improved. Although the reduction in whiteness cannot be completely prevented, as shown by the numerical values, conventional water-soluble papers turn brown due to heat treatment and lose their commercial value, but the present invention retains sufficient whiteness. This water-soluble paper did not leave any residue after dissolution, so it was suitable as writing and printing paper for confidential documents. In addition, in order for conventional water-soluble paper to have the folding strength of the present invention, it is necessary to mix 10 to 20% of bleached kraft pulp.
A clean solution cannot be obtained. In addition, water (20
℃, 65% RH) decreased from 16.3% to 13.4%, so it is expected that the range of moisture absorption and release during the wet and dry periods will become smaller, and this is thought to contribute to improving processing suitability. Example 2 The purpose was to produce water-soluble paper that does not corrode aluminum. Wet paper consisting of 80 parts of fibrous CMC-H (manufactured by Nichirin Chemical Co., Ltd.) with a degree of etherification of 0.54 and 20 parts of bleached kraft pulp was coated with a 10% sodium carbonate aqueous solution on a paper machine to produce a basis weight of 120 g/ m2. A water-soluble sheet was produced. As the acid, acetic acid and citric acid were mixed at a weight ratio of 2:3, and a mixed solvent of methanol and water (1:3) was used.
1 part by weight) to prepare a solution with a concentration of 1.25% by weight. Coat and impregnate the base material using a roll coater.
Water-soluble paper was produced by drying with hot air at 80°C. The amount of acid attached was 1.9g/ m2 , the pH of the paper surface was 5.8, and the amount of acid attached was 1.9g/m2.
The pH was 7.2, and the dissolution and dispersion time was 13 seconds, compared to 6 seconds for the base material. The base exchange capacity of the base material is 2.79meq/g
(Calculated value) The base saturation of the water-soluble paper of the present invention was 65.1%. The aluminum corrosion test was conducted on conventional water-soluble paper, water-soluble paper of the present invention, and reagent grade 1 CMC as a reference. In each case, an aluminum wire was immersed in a dissolution dispersion (solution) having a concentration of 1% by weight, and the surface condition was visually judged after 7 days. As a result, the aluminum wire immersed in the dissolved dispersion liquid of the conventional water-soluble paper turned considerably black, but the water-soluble paper of the present invention, with a grade 1 reagent.
In all cases of CMC, almost no discoloration was observed. Therefore, it is suitable for applications in which the water-soluble paper of the present invention is made into a tape, wound around an aluminum wire, and then dissolved and washed away. Example 3 The purpose was to produce water-soluble paper for sanitary materials.
A water-soluble sheet with a basis weight of 40 g/m 2 was produced in the same manner as in Example 2 using a paper stock consisting of 80 parts of fibrous CMC-H (manufactured by Nichirin Chemical Co., Ltd.) with a degree of etherification of 0.65 and 20 parts of dissolving pulp. was used as the base material. As the acid, lactic acid was dissolved in a mixed solvent of ethanol and water (2:1 parts by weight) to prepare a solution having a concentration of 1.5% by weight. Coating and impregnating using a roll coater,
It was dried with hot air at 80°C to produce water-soluble paper. The amount of lactic acid applied was 0.7 g/m 2 , the paper surface pH was 6.3, and the amount of lactic acid applied was 0.7 g/m 2 .
The pH was 7.4, and the dissolution and dispersibility was within specifications and good. The base exchange capacity of the base material is 3.25meq/g (calculated value),
The base saturation of the water-soluble paper of the present invention was 74.6%. This water-soluble paper has a moist and soft texture,
Since it was acid-treated with lactic acid, it did not irritate the skin of women and infants and was suitable for use as a sanitary material.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維状カルボキシメチルセルロース50〜100
%と製紙用繊維0〜50%から成り、残留アルカリ
を含有する水溶性シートの酸処理において、水中
酸指数が3以上の酸を有機溶媒と水との混合溶媒
に溶解した溶液を、該シート中の残留アルカリの
中和当量を越え、かつ該シート中の繊維状カルボ
キシメチルセルロースの塩基飽和度が35%以上と
なる範囲で塗布含浸して酸処理することを特徴と
する耐候性および強度の勝れた水溶紙の製造法。
1 Fibrous carboxymethyl cellulose 50-100
In acid treatment of a water-soluble sheet consisting of 0% to 50% of papermaking fibers and containing residual alkali, a solution of an acid with an acid-in-water index of 3 or more dissolved in a mixed solvent of an organic solvent and water is Excellent weather resistance and strength, characterized by coating and impregnating and acid treatment in a range that exceeds the neutralization equivalent of residual alkali in the sheet and that the base saturation of the fibrous carboxymethyl cellulose in the sheet is 35% or more. A method for producing water-soluble paper.
JP24508183A 1983-12-28 1983-12-28 Production of water soluble paper excellent in weatherability and strength Granted JPS60139899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24508183A JPS60139899A (en) 1983-12-28 1983-12-28 Production of water soluble paper excellent in weatherability and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24508183A JPS60139899A (en) 1983-12-28 1983-12-28 Production of water soluble paper excellent in weatherability and strength

Publications (2)

Publication Number Publication Date
JPS60139899A JPS60139899A (en) 1985-07-24
JPH0223638B2 true JPH0223638B2 (en) 1990-05-24

Family

ID=17128313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24508183A Granted JPS60139899A (en) 1983-12-28 1983-12-28 Production of water soluble paper excellent in weatherability and strength

Country Status (1)

Country Link
JP (1) JPS60139899A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153954U (en) * 1987-03-30 1988-10-11
WO1991002249A1 (en) * 1989-08-10 1991-02-21 Dai Nippon Insatsu Kabushiki Kaisha Water-disintegrable material and testing member for bodily fluid prepared therefrom
JPH07116679B2 (en) * 1991-05-14 1995-12-13 石塚硝子株式会社 Water-soluble paper with antibacterial and antifungal properties
EP2280099A1 (en) 2009-07-31 2011-02-02 Kelheim Fibres GmbH Regenerated cellulose staple fibre

Also Published As

Publication number Publication date
JPS60139899A (en) 1985-07-24

Similar Documents

Publication Publication Date Title
US3953283A (en) Paperboard having improved oil resistance
JP2947735B2 (en) Water dispersible sheet and tobacco using the same
US5667637A (en) Paper and paper-like products including water insoluble fibrous carboxyalkyl cellulose
KR0159921B1 (en) A composition comprising cathionic and anionic polymer process thereof
JP4112797B2 (en) Degraded hydrophobic particulate starch and their use in paper sizing
WO2000039398A1 (en) Process for improving cellulosic material
CA2019481C (en) Gellan gum sizing
WO1997016597A1 (en) Process for preparing hydrolyzable sheet
US3795527A (en) Dry powder paper size having improved resistance to caking
Baker Methylcellulose and sodium carboxymethylcellulose: An evaluation for use in paper conservation through accelerated aging
JPH0223638B2 (en)
JP2501534B2 (en) Hydrolyzed paper
US1998758A (en) Treatment of paper pulp
US6114471A (en) Strengthening compositions and treatments for lignocellulosic materials
US3236721A (en) Reaction product of a dialdehyde polysaccharide with a metal salt and preparing paper containing same
EP4058631B1 (en) Method of producing a sheet comprising chemically modified cellulose fibres
JPH02478B2 (en)
JPS6215397A (en) Papermaking size composition
US2184312A (en) Manufacture of paper
EP0356531B1 (en) Water-resistant photographic-paper support
US6855198B2 (en) Hydroxyethyl starch composition and use in paper products
JPH0311831B2 (en)
JP2000027092A (en) Neutralized paper
WO2004081284A1 (en) Process for producing paper
Human et al. Characteristics of Hydroxypropyl Starch of Sorghum Mutant Line ZH-30 and its Potential use in Paper Industry