JPH02236291A - Method and device for preventing stress corrosion crack and hydrogen crack of metallic member - Google Patents

Method and device for preventing stress corrosion crack and hydrogen crack of metallic member

Info

Publication number
JPH02236291A
JPH02236291A JP1058452A JP5845289A JPH02236291A JP H02236291 A JPH02236291 A JP H02236291A JP 1058452 A JP1058452 A JP 1058452A JP 5845289 A JP5845289 A JP 5845289A JP H02236291 A JPH02236291 A JP H02236291A
Authority
JP
Japan
Prior art keywords
potential
hydrogen
cracking
stress corrosion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058452A
Other languages
Japanese (ja)
Inventor
Eiji Kikuchi
菊池 英二
Masakiyo Izumitani
泉谷 雅清
Masanori Sakai
政則 酒井
Katsumi Mabuchi
勝美 馬渕
Takuya Takahashi
卓也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1058452A priority Critical patent/JPH02236291A/en
Publication of JPH02236291A publication Critical patent/JPH02236291A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To prevent the stress corrosion crack and hydrogen crack of metallic members in contact with a corrosive soln. and to improve the safety and life of in-plant apparatus by holding the boundary potential of the above-mentioned metallic members within a specific range. CONSTITUTION:Zircaloy fuel cladding pipes 31 of a fuel assembly 30 of a boiling water reactor plant, with which pipes the hydrogen crack is anticipated and stainless steel pipes 32 to serve as reference electrodes are electrically insulated via 'Teflon(R) spacers 33 and terminals 12b are connected to the cladding pipes 31 and terminals 12a to the pipings 32 in the case of the above-mentioned assembly 30. The potential thereof is introduced to a potential controller 11 to maintain the potential baser than the potential at which the stress corrosion crack is no longer generated in the cladding pipes 31 and to maintain the potential nobler than the potential at which the hydrogen crack is no longer generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属部材の応力腐食割れ及び水素割れ防止方法
およびその装置に係り、特に原子力プラントの金属部材
の応力腐食割れ及び水素割れ防止方法およびその装置に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and apparatus for preventing stress corrosion cracking and hydrogen cracking in metal members, and particularly to a method and apparatus for preventing stress corrosion cracking and hydrogen cracking in metal members of nuclear power plants. Regarding the device.

〔従来の技術〕[Conventional technology]

応力腐食割れと水素割れは、腐食環境中で応力と電気化
学反応の相互作用によって、ある時間経過した後に金属
材料に起こる破壊である。破壊が主として、金属界面で
のアノード反応による金属溶解に基づく場合を応力腐食
割れ,また主として、カソード反応による腐食で発生し
た水素に基づく場合を水素割れといわれている。
Stress corrosion cracking and hydrogen cracking are fractures that occur in metallic materials after a certain period of time due to the interaction of stress and electrochemical reactions in a corrosive environment. When the fracture is mainly due to metal dissolution due to the anodic reaction at the metal interface, it is called stress corrosion cracking, and when the fracture is mainly due to hydrogen generated by corrosion due to the cathodic reaction, it is called hydrogen cracking.

従来、腐食環境中におかれている金属部材の応力腐食割
れ(以下SCCという)および水素割れを防止すること
が必要となっていた。特に、原子力プラントでは,プラ
ントの安全性確保上、この割れを防止する必要がある。
Conventionally, it has been necessary to prevent stress corrosion cracking (hereinafter referred to as SCC) and hydrogen cracking of metal members placed in a corrosive environment. Particularly in nuclear power plants, it is necessary to prevent this cracking in order to ensure plant safety.

従来、応力腐食割れを防ぐ方法として次のちのが存在す
る。
Conventionally, the following methods exist to prevent stress corrosion cracking.

原子力プラントの炉内構造材のSCC防止方法として、
特開昭57−70499号公報、特開昭57−3086
号公報に示されるように、金属材料の腐食電位を−2 
50 mVsH+:以下になるように溶存酸素濃度を制
御する防食法が知られている。
As a method for preventing SCC in reactor internal structural materials of nuclear power plants,
JP-A-57-70499, JP-A-57-3086
As shown in the publication, the corrosion potential of metal materials is -2
A corrosion prevention method is known in which the dissolved oxygen concentration is controlled to be below 50 mVsH+.

その他ヒドラジン等を注入して金属材料をとりまく環境
を還元性雰囲気にする方法も存在する。これらの各種従
来例は、SCCを制御する方法であり、前者の従来例は
、金属材料の腐食電位を卑側に保持するようにしたもの
である。後者は、ヒドラジン等を添加して溶存酸素濃度
を完全説気に相当する10ppb以下に低減することに
より、前者と同様に腐食電位を卑側に保持するようにし
たものである。
There is also a method of injecting hydrazine or the like to create a reducing atmosphere in the environment surrounding the metal material. These various conventional examples are methods for controlling SCC, and the former conventional example maintains the corrosion potential of the metal material on the base side. In the latter, the corrosion potential is maintained on the less noble side by adding hydrazine or the like to reduce the dissolved oxygen concentration to 10 ppb or less, which corresponds to complete aspiration.

従来の水素割れの防止法に高張力鋼等を用いた化学プラ
ントにおける水素割れ(水素脆化)防止対策に関するも
のが存在する。すなわち、水素割れを抑制するインヒビ
ターとしてN−CoCo・βアミノプロピオン酸を添加
する方法である。一般に、このような薬剤をインヒビタ
ーとして添加すれば水素割れを抑制するのに有効である
ことが知られている. 一方、火力プラントにおける金属材料の電気防食法とし
て対極と基準極と防食される作用極の三電極を用いた方
法が一般に良く知られている。これは、主として全面腐
食を防止することを目的としたものであるが、応力腐食
割れのような局部腐食を防止するものではない。
Conventional methods for preventing hydrogen cracking include measures to prevent hydrogen cracking (hydrogen embrittlement) in chemical plants using high-strength steel and the like. That is, this is a method in which N-CoCo·β-aminopropionic acid is added as an inhibitor to suppress hydrogen cracking. It is generally known that adding such drugs as inhibitors is effective in suppressing hydrogen cracking. On the other hand, a method using three electrodes, a counter electrode, a reference electrode, and a working electrode to be protected against corrosion, is generally well known as a method for cathodic protection of metal materials in thermal power plants. This is mainly aimed at preventing general corrosion, but does not prevent localized corrosion such as stress corrosion cracking.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

水素割れを防止するため化学プラントで用いられた上記
インヒビターは、原子力プラントで用いる場合放射線の
影響により分解し、その分解生成物である各種の有機物
が炉水中に畠現するおそれがあり、このためにかえって
,構造物の腐食を促進し易いというインヒビターとして
相反する面があった。
The above inhibitors used in chemical plants to prevent hydrogen cracking may decompose due to the effects of radiation when used in nuclear plants, and various organic substances that are decomposition products may appear in the reactor water. On the contrary, it has the contradictory aspect of being an inhibitor that tends to promote corrosion of structures.

また、SCCを防止する従来例では、金属部材表面での
水素吸収の懸念が生じていた。すなわち、水素注入によ
り金属材料が置かれた溶液中での溶存酸素濃度が低くな
ると、金属のア二オンが水の酸素と反応して水素が増加
し、また腐食電位が卑側になるほど腐食にともなって発
生する水素が増加する。したがって、SCCを防止せん
とする従来例では、むしろ水素割れ防止という観点から
見れば、かえって水素割れを加速することになっていた
Furthermore, in conventional examples for preventing SCC, there has been concern about hydrogen absorption on the surface of the metal member. In other words, when the dissolved oxygen concentration in the solution containing the metal material decreases due to hydrogen injection, the anions of the metal react with the oxygen in the water, increasing the amount of hydrogen, and as the corrosion potential becomes more base, corrosion increases. As a result, the amount of hydrogen generated increases. Therefore, in the conventional example that attempts to prevent SCC, from the viewpoint of preventing hydrogen cracking, it actually accelerates hydrogen cracking.

したがって、上記従来例では、金属部材のSCCを防止
しつつ、かつ水素割れを防止することができなかった。
Therefore, in the conventional example described above, it was not possible to prevent hydrogen cracking while preventing SCC of the metal member.

本発明はかかる問題点を解決するために、金属部材の応
力腐食割れを防止しつつ、水素割れを防止できる方法と
その装置を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve these problems, it is an object of the present invention to provide a method and apparatus capable of preventing hydrogen cracking while preventing stress corrosion cracking of metal members.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために,本発明の金属部材の応力腐
食割れ及び水素割れ防止方法は、腐食性溶液に接した腐
食合金からなる金属部材の界面電位を前記金属部材に応
力腐食割れが発生しなくなる電位より卑な電位に保ち,
かつ水素割れが発生しなくなる電位よるも貴な電位に保
持する方法である. 前記金属部材がSUS304ステンレス鋼では、前記界
面電位を−1 0 0 〜− 1 0 0 0mVso
p(7)範囲に,SUS316ステンレス鋼では、−1
00〜−1000mVsHaの範囲に、そして、インコ
ネル600では、O〜−1000mVsH2:の範囲に
保持するのが効果的である。
In order to achieve the above object, the method for preventing stress corrosion cracking and hydrogen cracking of a metal member according to the present invention reduces the interfacial potential of a metal member made of a corrosive alloy in contact with a corrosive solution to prevent stress corrosion cracking from occurring in the metal member. Keep the potential less base than the potential that disappears,
This method also maintains the potential at a higher potential than that at which hydrogen cracking will no longer occur. When the metal member is SUS304 stainless steel, the interfacial potential is set to -100 to -1000 mVso.
In the p(7) range, -1 for SUS316 stainless steel
It is effective to maintain it in the range of 0 to -1000 mVsHa, and for Inconel 600, in the range of O to -1000 mVsH2.

そして、金属部材の応力腐食割れ及び水素割れを防止す
る装置としては、腐食性溶液に接した耐食合金からなる
金属部材と少なくとも一方が絶縁された一対の端子と,
該端子間に前記腐食性溶液を通じて流れる電流を制御し
て前記金属部材の界面電位を前記金属部材に応力腐食割
れが発生しなくなる電位より卑な電位で,かつ水素割れ
が発生しなくなる電位よりも貴な電位に保持する定電流
電解装置とを具備した装置である。
A device for preventing stress corrosion cracking and hydrogen cracking of metal members includes a metal member made of a corrosion-resistant alloy that is in contact with a corrosive solution, and a pair of terminals with at least one insulated.
A current flowing through the corrosive solution between the terminals is controlled to set the interfacial potential of the metal member to a potential that is less base than a potential at which stress corrosion cracking will not occur in the metal member, and a potential that is less than a potential at which hydrogen cracking will not occur. This device is equipped with a constant current electrolyzer that maintains a high potential.

そして,この金属部材の応力腐食割れ及び水素割れ防止
装置は、前記金属部材が原子炉内の金属部材である場合
、原子炉一次配管系である場合、またボイラ用主蒸気系
配管である場合に効果的に用いられる。
This device for preventing stress corrosion cracking and hydrogen cracking of metal members is applicable when the metal member is a metal member inside a nuclear reactor, when it is a reactor primary piping system, or when it is a main steam system piping for a boiler. used effectively.

また,この金属部材の応力腐食割れ及び水素割れ防止装
置は、前記原子炉内の金属部材が,該原子炉の出力を制
御する制御材B4Cの粉末を充填したSUS304製の
B4Cチューブと、該B4Cチューブを内部に配置した
制御捧シースと、該制御棒シースと前記B4Cチューブ
との間に挿入された絶縁性のテフロンチューブとから構
成された制御捧の前記B.Cである場合、前記定電流電
解装置からの一対の端子の一方はB4Gチューブに接続
し、他方の端子として原子炉の圧力容器を利用するとよ
い.そして原子炉内の金属部材が,前記原子炉の燃料を
装填したジルカロイ燃料被覆管である場合には、前記一
対の端子の一方は前記ジルカロイ燃料被覆管に接続し、
他方の端子として前記ジルカロイ燃料被覆管を電気絶縁
性のテフロンスペーサを介して包被するステンレス鋼管
を利用するとよい. 〔作用〕 上記のように構成された割れ防止方法では、腐食水溶液
なる腐食環境にあって、耐食合金からなる金属部材の界
面電位を、金属部材に応力腐食割れが発生しなくなる電
位より卑な電位に保つので、金属部材の表面が不(ll
態化し、応力腐食割れの発生を防止するとともに水素の
発生を抑制し、また、上記界面電位を、金属部材に水素
割れが発生しなくなる電位よりも貴な電位に保持するの
で、水素割れの起こる下限の水素濃度、すなわち限界水
素濃度となる電位よりアノード側になって安定な不働態
皮膜を形成して、水素の金属への侵入を防ぐとともに金
属表面環境が酸化状態になっているため、腐食環境中の
水素が金属部材中に侵入しようとしても直ちに無害な水
分子に酸化されて水素割れの発生を妨げる。
In addition, in this device for preventing stress corrosion cracking and hydrogen cracking of metal members, the metal members in the nuclear reactor include a B4C tube made of SUS304 filled with powder of control material B4C that controls the output of the reactor, and The B4C control rod consists of a control rod sheath with a tube disposed therein, and an insulating Teflon tube inserted between the control rod sheath and the B4C tube. In case C, one of the pair of terminals from the constant current electrolyzer is connected to the B4G tube, and the other terminal is preferably used as the pressure vessel of the nuclear reactor. and when the metal member in the nuclear reactor is a Zircaloy fuel cladding tube loaded with fuel for the nuclear reactor, one of the pair of terminals is connected to the Zircaloy fuel cladding tube,
As the other terminal, it is preferable to use a stainless steel tube that covers the Zircaloy fuel cladding tube via an electrically insulating Teflon spacer. [Operation] In the crack prevention method configured as described above, in a corrosive environment such as a corrosive aqueous solution, the interfacial potential of a metal member made of a corrosion-resistant alloy is set to a potential lower than the potential at which stress corrosion cracking will not occur in the metal member. Since the surface of the metal member is maintained at
This prevents the occurrence of stress corrosion cracking and suppresses the generation of hydrogen, and also maintains the above-mentioned interfacial potential at a potential higher than the potential at which hydrogen cracking does not occur in metal parts, so hydrogen cracking does not occur. A stable passive film is formed on the anode side of the lower limit hydrogen concentration, that is, the potential that is the critical hydrogen concentration, to prevent hydrogen from penetrating into the metal, and to prevent corrosion because the metal surface environment is in an oxidized state. Even if hydrogen in the environment attempts to enter the metal member, it is immediately oxidized to harmless water molecules, preventing hydrogen cracking from occurring.

上記の理由から、金属部材の界面電位を、SUS304
ステンレス鋼では、−100〜−1000mVsHEの
範囲に、SUS 3 1 6ステンレス鋼では、−1 
0 0〜− 1 0 0 0mVsHpの範囲に、イン
コネル6oOの場合は、O 〜−1 0 0 0mVs
HF!の範囲に保持することにより有効となる。
For the above reasons, the interfacial potential of the metal member is
For stainless steel, -100 to -1000 mVsHE, for SUS 3 1 6 stainless steel, -1
In the range of 0 to -1000 mVsHp, in the case of Inconel 6oO, O to -1000 mVs
HF! It becomes effective by keeping it within the range of .

また、前述の如く構成された割水防止装置は、腐食環境
にあって、耐食合金からなる金属部材の応力腐食割れ又
は、水素割れの発生する可能性のある領域の両端部に接
続された端子により、その端子間の電位を、定電流電解
装置により、金属部材に応力腐食割れが発生しなくなる
電位と卑な電位で、かつ、水素割れが発生しなくなる電
位よりも貴な電位に制御して保持する。
In addition, the water splitting prevention device configured as described above has terminals connected to both ends of a region where stress corrosion cracking or hydrogen cracking of a metal member made of a corrosion-resistant alloy may occur in a corrosive environment. The potential between the terminals is controlled by a constant current electrolyzer to a potential that is base and a potential that does not cause stress corrosion cracking in metal members, and a potential that is nobler than the potential that does not cause hydrogen cracking. Hold.

〔実施例〕〔Example〕

本実施例は、酸素、水素、過酸化水素、硝酸等を含む水
溶液のラジカル(放射線分解生成物)を主成分とする原
子炉等の腐食環境に金属部材が接している場合、その金
属部材の界面電位を応力腐食割れが発生しなくなる電位
より卑な電位で、かつ水素割れが発生しなくなる電位よ
りも貴な電位に保持する方法であり、また、その方法を
利用する装置である。
This example describes how metal members can This is a method of maintaining the interfacial potential at a potential lower than the potential at which stress corrosion cracking no longer occurs and at a potential more noble than the potential at which hydrogen cracking does not occur, and a device utilizing this method.

前記電位を上記特定の電位域に保持するには、対極と作
用極の2電極からなる電気防食を用いる.すなわち、原
子炉内の金属部材または一次系配管材の水に接した金属
表面の電位が、水素割れが発生しなくなる電位よりも責
側で、且つ応力腐食割れが発生しなくなる電位よりも卑
側に保持し、しかも金属表面に耐食耐割れ性に優れた酸
化皮膜を形成させるものである。ここで、金属部材はオ
ーステナイト系ステンレス鋼、ニッケル基合金、ジルカ
ロイ等の合金からなる耐食合金であって、応力腐食割れ
または水素割れの発生する可能性のある金属である。
To maintain the potential in the specific potential range, electrolytic protection consisting of two electrodes, a counter electrode and a working electrode, is used. In other words, the potential of the metal surface of the metal parts or primary piping materials in the reactor that is in contact with water is on the positive side of the potential at which hydrogen cracking no longer occurs, and on the base side of the potential at which stress corrosion cracking does not occur. In addition, it forms an oxide film with excellent corrosion and cracking resistance on the metal surface. Here, the metal member is a corrosion-resistant alloy made of an alloy such as austenitic stainless steel, nickel-based alloy, or zircaloy, and is a metal that may cause stress corrosion cracking or hydrogen cracking.

さらに詳述すると以下のようになる。More detailed information is as follows.

金属の界面電位をアノード分極すると,金属表面は不働
態領域となり、不働態被膜が金属表面に形成される。不
働態領域では金属表面が溶液中に溶けにくい状態となっ
ており、一改には金属表面にち密な酸化被膜が形成され
ている状態を言う。
When the interfacial potential of the metal is anodically polarized, the metal surface becomes a passive region and a passive film is formed on the metal surface. In the passive region, the metal surface is difficult to dissolve in a solution, and in other words, a dense oxide film is formed on the metal surface.

このような状態にある被膜を不働態被膜と言う。A film in this state is called a passive film.

しかし、金属表面が不働態領域にある場合に,内部応力
あるいは外部応力により被膜の破損が生じ、SCCの発
生へとつながるおそれがある。一方,金属表面を自然電
位からカソード側に大きく分極すると水素が発生し、そ
の水素が金属部材中に侵入して水素ぜい性を起こし、水
素割れの原因となる。そこで本発明者らは、金属表面の
電位と表面状態について種々の検討をおこなった結果、
不働態領域に着目したものである。ここで、活性領域と
は、金属表面が溶けやすい状態になっていることを言い
、金属の素地または酸化被膜自体が溶ける場合を意味す
る。
However, when the metal surface is in the passive region, internal or external stress may cause damage to the coating, which may lead to the occurrence of SCC. On the other hand, when the metal surface is significantly polarized from its natural potential toward the cathode side, hydrogen is generated, which enters the metal member and causes hydrogen brittleness, causing hydrogen cracking. Therefore, the present inventors conducted various studies on the potential and surface condition of metal surfaces, and found that
It focuses on the passive region. Here, the active region refers to a state in which the metal surface is easily melted, and refers to a state in which the metal base or oxide film itself is melted.

上記不働態領域で金属表面に不働態被膜が形成されてお
り、この不働態領域の低電位側では、SCCを防止でき
る。また不働態領域では水素は若干発生しても水素割れ
には至らない。
A passive film is formed on the metal surface in the passive region, and SCC can be prevented on the low potential side of this passive region. Further, in the passive region, even if a small amount of hydrogen is generated, hydrogen cracking does not occur.

したがって、このように不働態領域に金属部材の界面電
位を保持することにより、SCCを防止しつつ水素割れ
を防ぐことができる。また、この不働態領域には、安定
な不働態被膜が存在する。
Therefore, by maintaining the interfacial potential of the metal member in the passive region in this way, it is possible to prevent hydrogen cracking while preventing SCC. Moreover, a stable passive film exists in this passive region.

すなわち、一般には酸化被膜が存在すると、金属中への
水素の侵入が阻止されるため水素割れ防止上有効である
。また、水溶液中の水素が金属中に侵入しようとしても
,環境が酸化状態(アノード)にあるためただちに無害
な水分子に酸化されるので、水素割れを防止することが
できる。
That is, the presence of an oxide film is generally effective in preventing hydrogen cracking because it prevents hydrogen from penetrating into the metal. Furthermore, even if hydrogen in the aqueous solution attempts to enter the metal, since the environment is in an oxidized state (anode), it is immediately oxidized to harmless water molecules, thereby preventing hydrogen cracking.

すなわち、金属部材の表面状態が不働態領域になるよう
にこの金属表面の電位を保持し、かつこの界面電位を、
水素割れの起こる下限の水素濃度、すなわち限界水素濃
度となる電位よりアノード側になるように保持すること
を特徴とする金属部材の水素割れの防止である。
In other words, the potential of the metal surface is maintained so that the surface state of the metal member becomes a passive region, and this interfacial potential is
This method is to prevent hydrogen cracking in a metal member by maintaining the hydrogen concentration at the lower limit at which hydrogen cracking occurs, that is, to be closer to the anode than the potential at which the limit hydrogen concentration occurs.

以下に、本発明の実施例の詳細について、第1図〜第6
図により説明する。
Below, details of the embodiments of the present invention will be explained in Figures 1 to 6.
This will be explained using figures.

実施例1 本実施例では、金属表面のカソード分極による水素割れ
抑制効果を調べるため、オーステナイト系ステンレス鋼
の一例として、SUS304の水素割れの電位依存性を
検討した. 電位を測定する場合、予め基準となる電極電位をその系
で測定しておく必要がある。基準電位を測定する基準電
極には、銀一塩化銀極、水素電極等の他、白金をはじめ
とする貴金属、鉄、二ツケル等の卑金属あるいはステン
レス鋼、ニッケル基合金、鉄基等がある。
Example 1 In this example, in order to investigate the effect of suppressing hydrogen cracking due to cathodic polarization on the metal surface, the potential dependence of hydrogen cracking in SUS304 as an example of austenitic stainless steel was investigated. When measuring the potential, it is necessary to measure the reference electrode potential in advance in the system. Reference electrodes for measuring the reference potential include, in addition to silver monochloride electrodes and hydrogen electrodes, precious metals such as platinum, base metals such as iron and silver, stainless steel, nickel-based alloys, iron-based metals, and the like.

第1図に溶体化処理を行なったステンレス鋼SUS30
4 (JIS規格)を溶存酸素濃度0.01ppm以下
に鋭気した288℃の純水中に浸漬した場合のSUS3
04鋼の腐食形態と電位との関係を示す。図の横軸は応
力腐食割れ又は水素割れにより試験片が破断する時間を
、縦軸は金属表面の電位として、水素電極を基準とする
基準電極電位: VS}IEを示した。図中のX印はそ
の時間で破断したこと、O印はその時間までに破断しな
かったことを示す。−1000mVsoE以下の電位域
では水素割れが認められた。また、O m VSHE以
上の電位域ではSCCが認められた。しかし,−100
〜− 1 0 0 0 mVsopの範囲では1 0,
0 0 0時間経過後も割れは認められなかった。
Stainless steel SUS30 subjected to solution treatment shown in Figure 1
4 SUS3 (JIS standard) when immersed in pure water at 288°C with a dissolved oxygen concentration of 0.01 ppm or less
The relationship between the corrosion form and potential of 04 steel is shown. The horizontal axis of the figure shows the time until the test piece breaks due to stress corrosion cracking or hydrogen cracking, and the vertical axis shows the potential of the metal surface, which is the reference electrode potential with respect to the hydrogen electrode: VS}IE. In the figure, an X mark indicates that the breakage occurred at that time, and an O mark indicates that the breakage did not occur by that time. Hydrogen cracking was observed in the potential range below -1000 mVsoE. Furthermore, SCC was observed in the potential range of O m VSHE or higher. However, -100
10 in the range of ~-1000 mVsop,
No cracks were observed even after 000 hours had passed.

SUS304の界面電位がO m VSHEより大きい
と,SUS304の表面は不働態領域にある故、SCC
が発生する。一方、− 1 1 0 0mVsoE以下
であると,限界水素濃度を越えて水素が発生するため、
水素割れが生じる。よって,本実施例によれば、SCC
及び水素割れが両方共起きない特定の電位領域(以下遷
移領域という)に保持すれば、SCCを防ぎつつ水素割
れの発生を防止することができることが明らかとなった
When the interfacial potential of SUS304 is greater than O m VSHE, the surface of SUS304 is in the passive region, so SCC
occurs. On the other hand, if it is below -1100mVsoE, hydrogen will be generated exceeding the limit hydrogen concentration, so
Hydrogen cracking occurs. Therefore, according to this embodiment, SCC
It has become clear that by maintaining the potential in a specific potential region (hereinafter referred to as a transition region) in which neither hydrogen cracking nor hydrogen cracking occurs, it is possible to prevent the occurrence of hydrogen cracking while preventing SCC.

実施例2 次に、オーステナイト系ステンレス鋼の他の例として、
SUS316のSCC及び水素割れの電位依存性を検討
した。
Example 2 Next, as another example of austenitic stainless steel,
The potential dependence of SCC and hydrogen cracking on SUS316 was investigated.

第2図に、溶存酸素を脱気した288℃の純水中におけ
るSUS 3 1 6ステンレス鋼溶体化処理材の腐食
形態と電位との関係を示す。図から明らかなように、−
 1 1 0 0 mVsoE以下の電位域では水素割
れがみられるが、−100〜−1000mVsoEの範
囲では1 0,0 0 0時間経過後も割れは認められ
なかった。また、QmVsHE以上ではSCCがみられ
た。したがって、本実施例によれば、SCCを防ぎつつ
水素割れを防止するための電位域−1 0 0〜− 1
 0 0 0 mVsHI:であることが明らかとなっ
た。
FIG. 2 shows the relationship between the corrosion form and potential of a solution-treated SUS 316 stainless steel material in pure water at 288° C. from which dissolved oxygen has been degassed. As is clear from the figure, −
Hydrogen cracking was observed in the potential range of 1100 mVsoE or lower, but no cracking was observed in the range of -100 to -1000 mVsoE even after 10,000 hours. Further, SCC was observed at QmVsHE or higher. Therefore, according to this embodiment, the potential range for preventing hydrogen cracking while preventing SCC is -100 to -1.
0 0 0 mVsHI:.

実施例3 次に、ニッケル基合金の一例として、インコネル600
のSCC及び水素割れの電位依存性を検討した。
Example 3 Next, as an example of a nickel-based alloy, Inconel 600
The potential dependence of SCC and hydrogen cracking was investigated.

第3図は、脱気した288゜Cの純水中におけるインコ
ネル600の溶体化処理材の腐食形態と電位との関係を
示す。図から明らかなように、−1000mVsHp以
下の電位域では水素割れがみられたが、0〜−900m
Vso+:の範囲では10,000時間経過後も割れは
認められなかった。また、1 0 0 mVsoE以上
ではSCCがみられた。したがって、本実施例によれば
、SCCを防止しつつ水素割れを防止するための電位域
は0〜−900mVsHaであることが明らかとなった
.実施例4 本発明方法を沸騰水型原子力プラントに応用した場合の
実施例について説明する。
FIG. 3 shows the relationship between the corrosion form and potential of a solution-treated Inconel 600 material in deaerated pure water at 288°C. As is clear from the figure, hydrogen cracking was observed in the potential range below -1000 mVsHp;
No cracking was observed in the range of Vso+: even after 10,000 hours. Furthermore, SCC was observed at 100 mVsoE or higher. Therefore, according to this example, it was revealed that the potential range for preventing hydrogen cracking while preventing SCC is 0 to -900 mVsHa. Example 4 An example in which the method of the present invention is applied to a boiling water nuclear power plant will be described.

沸騰水型原子炉(以下BWRという)は、一般的に沸騰
する軽水を冷却材として使用する動力炉であり、本発明
が適用されるBWRの全体構成を第4図に示す。再循環
ポンプ3の味動により、原子炉1から吸収された冷却水
が再循環系配管4を経由して原子炉1内のジェットポン
プに導かれ、そのジェットポンプ2から噴出される冷却
水は,炉内上部の水を吸収して炉心下部に分配される。
A boiling water reactor (hereinafter referred to as BWR) is a power reactor that generally uses boiling light water as a coolant, and the overall configuration of the BWR to which the present invention is applied is shown in FIG. Due to the operation of the recirculation pump 3, the cooling water absorbed from the reactor 1 is guided to the jet pump in the reactor 1 via the recirculation system piping 4, and the cooling water spouted from the jet pump 2 is , absorbs water from the upper part of the reactor and distributes it to the lower part of the reactor core.

この冷却水は炉心5に収納されている燃料集合体内で加
熱されて気水混合物となり、上方の気水分離器6で分離
されて、蒸気分はされに上方の蒸気乾燥器7を経て主蒸
気系配管8へ導かれ、タービンに送られる。なお,ジェ
ットポンプ2に吸収される炉内上部の水には、主給水系
配管9から給水された水が含まれ、その水には必要によ
って水素注入装置10から水素が注入される。原子炉1
の出力を調整する時、又は炉を停止する時には、炉心5
の下方から制御捧20が炉心5に挿入される。
This cooling water is heated in the fuel assembly housed in the reactor core 5 and becomes a steam-water mixture, which is separated by an upper steam-water separator 6, and the steam is separated from the main steam by passing through an upper steam dryer 7. It is guided to the system piping 8 and sent to the turbine. Note that the water in the upper part of the reactor that is absorbed by the jet pump 2 includes water supplied from the main water supply system piping 9, and hydrogen is injected into the water from the hydrogen injection device 10 as necessary. reactor 1
When adjusting the output of the reactor or stopping the reactor, the reactor core 5
The control rod 20 is inserted into the core 5 from below.

制御棒20は第5図で示すように、制御材B.Cの粉末
を細いSUS304管に充填したB4Cチューブ21を
、十字形SUS304製シース23の内側に配置してい
る。B4Cチューブ21と制御捧シース23との間には
、テフロンチューブ22が挿入されており、B4Cチュ
ーブ21と制御捧シース23と電気的に絶縁している.
端子の取付けは、第4図に示すように、一方の端子12
ati−原子炉1の圧力容器に接続し、他方の端子12
bを水素割れが懸念されるSUS304製のB4Cチュ
ーブ21に接続して、その電位を電位制御装置11に導
き,端子間の電位を本装置により制御する。
As shown in FIG. 5, the control rod 20 includes a control member B. A B4C tube 21, which is a thin SUS304 tube filled with C powder, is placed inside a cross-shaped SUS304 sheath 23. A Teflon tube 22 is inserted between the B4C tube 21 and the control sheath 23, and electrically insulates the B4C tube 21 and the control sheath 23.
To attach the terminals, attach one terminal 12 as shown in Figure 4.
ati - connected to the pressure vessel of the reactor 1, the other terminal 12
b is connected to the B4C tube 21 made of SUS304, which is concerned about hydrogen cracking, and its potential is led to the potential control device 11, and the potential between the terminals is controlled by this device.

本実施例では、予めSUS304製制御捧シース23の
腐食電位を測定しておくことにより、この制御棒シース
23の電位を基準にとって、B4Cチューブ21の電位
を、実施例1で述べた好適な値である−310〜−10
QmVsoEの値に保持することができる。よって、B
.Cチューブ21のSCCを生ずることなく、水素割れ
を防止することができる。
In this embodiment, by measuring the corrosion potential of the control rod sheath 23 made of SUS304 in advance, the potential of the B4C tube 21 is adjusted to the preferable value described in the first embodiment using the potential of the control rod sheath 23 as a reference. -310 to -10
It can be held at the value of QmVsoE. Therefore, B
.. Hydrogen cracking can be prevented without causing SCC of the C tube 21.

実施例5 本発明方法をBWRプラントの燃料被覆管に適用した場
合の実施例を第6図に示す。
Example 5 FIG. 6 shows an example in which the method of the present invention is applied to a fuel cladding tube of a BWR plant.

本実施例は、水素割れが懸念される燃料集合体30のジ
ルカロイ燃料被覆管31と、基準電極となるステンレス
鋼配管32とを、テフロンスペーサ33を介して電気的
に絶縁し,一方の端子12bを燃料被覆管31に接続し
、他方の端子12aをステンレス鋼配管32に接続して
、その電位を電位制御装置11に導く。燃料被覆管31
の電位は、電位制御装置11により、遷移領域にある電
位に保持できる。
In this embodiment, the Zircaloy fuel cladding tube 31 of the fuel assembly 30 where hydrogen cracking is a concern and the stainless steel pipe 32 serving as the reference electrode are electrically insulated via a Teflon spacer 33, and one terminal 12b is connected to the fuel cladding tube 31, the other terminal 12a is connected to the stainless steel pipe 32, and its potential is guided to the potential control device 11. Fuel cladding tube 31
The potential can be maintained at a potential in the transition region by the potential control device 11.

本実施例において、燃料被覆管31を分極しながら核加
熱を開始し、288℃(定常運転温度)で100時間保
持したのち、室温まで降温した。
In this example, nuclear heating was started while polarizing the fuel cladding tube 31, and after being maintained at 288° C. (steady operating temperature) for 100 hours, the temperature was lowered to room temperature.

その後、ただちに、燃料被覆管31を取り出した後、燃
料被覆管に吸収された水素量を測定した。
Thereafter, the fuel cladding tube 31 was immediately taken out, and the amount of hydrogen absorbed into the fuel cladding tube was measured.

その結果を表1に、分極なしの結果との比較で示す。The results are shown in Table 1 in comparison with the results without polarization.

この結果から、分極を施したジルカロイ燃料被覆管中に
は水素はほとんど含まれていないが,処表  1 水温288℃、D O 200ppb、保持電位−〇.
2Vshe理のものには水素20PPIl1含まれてい
ることがわかる。よって,燃料被覆管31を特定電位に
保持することにより、母材中に水素が侵入するのを防ぐ
ことができる。
From this result, the polarized Zircaloy fuel cladding tube contains almost no hydrogen, but the water temperature is 288°C, DO is 200ppb, and the holding potential is -0.
It can be seen that the 2Vshe principle contains 20PPI11 of hydrogen. Therefore, by maintaining the fuel cladding tube 31 at a specific potential, it is possible to prevent hydrogen from penetrating into the base material.

上記実施例4及び実施例5で述べたように、本発明は原
子力発電プラントの炉内構造材の水素割れ防止に有効で
ある。火力発電プラントにおいても同様である。これら
の発電プラントのうち、特に水素割れが発生し易い部分
を選んで本発明方法を適用することができる。火力発電
プラントの場合は、ボイラ用主蒸気系配管に有効である
As described in Examples 4 and 5 above, the present invention is effective in preventing hydrogen cracking in reactor internal structural materials of nuclear power plants. The same applies to thermal power plants. Of these power plants, the method of the present invention can be applied to selected parts where hydrogen cracking is particularly likely to occur. In the case of thermal power plants, it is effective for main steam system piping for boilers.

〔発明の効果〕〔Effect of the invention〕

本発明は,以上説明したように構成されているので,以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

腐食性溶液に接した耐食合金からなる金属部分材の界面
電位を、金属部材に応力腐食割れが発生しなくなる電位
より卑な電位に保ち、かつ、水素割れが発生しなくなる
電位よりも貴な電位に保持するので、金属部材の腐食に
伴なう水素の発生を抑制し、また腐食環境中の水素が金
属部材へ侵入するのを防止でき、その結果、応力腐食割
れを防止しつつ水素割れを防ぐことができる。
Maintaining the interfacial potential of a metal component made of a corrosion-resistant alloy in contact with a corrosive solution at a potential less noble than the potential at which stress corrosion cracking will no longer occur in the metal member, and at a potential more noble than the potential at which hydrogen cracking will no longer occur. This suppresses the generation of hydrogen that accompanies corrosion of metal parts, and also prevents hydrogen in a corrosive environment from penetrating into metal parts.As a result, stress corrosion cracking is prevented while hydrogen cracking is prevented. It can be prevented.

さらに,金属部材がSUS304ステンレス鋼ではその
界面電位を−100〜−1000mVs+u:に、SU
S 3 1 6ステンレス鋼では−100〜− 1 0
 0 0 mVsHEに、インコネル600では0〜−
9 0 0 mVsoEに、それぞれ保持することによ
って有効に応力腐食割れと水素割れを防止することが出
来る。
Furthermore, if the metal member is SUS304 stainless steel, the interfacial potential is -100 to -1000 mVs+u:
-100 to -10 for S316 stainless steel
0 0 mVsHE, Inconel 600 has 0 to -
By maintaining each at 900 mVsoE, stress corrosion cracking and hydrogen cracking can be effectively prevented.

そして、応力腐食割れ及び水素割れ防止装置が応力腐食
割れ又は水素割れ発生の可能性のある領域の両端に接続
した端子と、この端子を通じて金属部材の界面電位を、
金属部材に応力腐食割れが発生しなくなる電位より卑な
電位で、かつ,水素割れが発生しなくなる電位よりも貴
な電位に保持する電位制御装置とからなるので、金属部
材の界面電位を容易に制御し、上記の適当な電位範囲内
に保持することができる。また、本装置を原子炉内の金
属部材、原子炉一次系配管、ボイラ用主蒸気配管に適用
しても上記効果が得られる。
Then, the stress corrosion cracking and hydrogen cracking prevention device connects the terminals connected to both ends of the area where stress corrosion cracking or hydrogen cracking may occur, and the interfacial potential of the metal member through these terminals.
It is equipped with a potential control device that maintains the potential at a potential lower than the potential at which stress corrosion cracking does not occur in the metal member and more noble than the potential at which hydrogen cracking does not occur, making it easy to control the interfacial potential of the metal member. can be controlled and maintained within the appropriate potential ranges mentioned above. Furthermore, the above effects can be obtained even when this device is applied to metal members in a nuclear reactor, reactor primary system piping, and main steam piping for a boiler.

本発明方法と装置を各種プラントに適用した場合には、
プラント内機器の安全性と寿命が向上し、かつ、プラン
トにおける不慮の事故を防止できる。
When the method and device of the present invention are applied to various plants,
This improves the safety and lifespan of equipment within the plant, and prevents unexpected accidents in the plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はステンレスt[sUs304の応力腐食割れ及
び水素割れの電位依存性を示す図、第2図はステンレス
IIIsUs 3 1 6の応力腐食割れ及び水素割れ
の電位依存性を示す図、第3図はニッケル基合金なるイ
ンコネル600の応力腐食割れ及び水素割れの電位依存
性を示す図、第4図は本発明方法をBWRプラントに使
用した実施例におけるBWR[子炉の全体構成図、第5
図は第4図のBWR原子炉に用いられる制御捧の全体斜
視図,第6図は本発明の装置をBWR型原子炉の燃料集
合体に使用した実施例を示す斜視図である。 1・・・原子炉、 11・・・電位制御装置、 12・・・端子、 20・・・制御棒、 21・・・B4Cチューブ, 22・・・テフロンチューブ、 23・・・制御棒シース、 31・・・燃料被覆管、 32・・・対極用ステンレス鋼管、 33・・・テフロンスベーサ・
Figure 1 shows the potential dependence of stress corrosion cracking and hydrogen cracking in stainless steel T[sUs304, Figure 2 shows the potential dependence of stress corrosion cracking and hydrogen cracking in stainless steel IIIsUs 3 1 6, and Figure 3 4 is a diagram showing the potential dependence of stress corrosion cracking and hydrogen cracking in Inconel 600, which is a nickel-based alloy, and FIG.
This figure is an overall perspective view of the control shaft used in the BWR nuclear reactor shown in FIG. 4, and FIG. 6 is a perspective view showing an embodiment in which the device of the present invention is used in a fuel assembly of a BWR type nuclear reactor. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 11... Potential control device, 12... Terminal, 20... Control rod, 21... B4C tube, 22... Teflon tube, 23... Control rod sheath, 31...Fuel cladding tube, 32...Stainless steel tube for counter electrode, 33...Teflon baser

Claims (1)

【特許請求の範囲】 1、腐食性溶液に接する腐食合金からなる金属部材の界
面電位を前記金属部材に応力腐食割れが発生しなくなる
電位よるも卑な電位を保ち、かつ水素割れが発生しなく
なる電位よりも貴な電位に保持する金属部材の応力腐食
割れ及び水素割れ防止方法。 2、腐食溶液に接する耐食合金からなる金属部材には少
なくとも一方が絶縁された一対の端子と、該端子間に前
記腐食溶液を通じて流れる電流を制御して、前記金属部
材の界面電位を前記金属部材に応力腐食割れが発生しな
くなる電位より卑な電位でかつ水素割れが発生しなくな
る電位よりも貴な電位に保持する定電流電解装置とを具
備する金属部材の応力腐食割れ及び水素割れ防止装置。
[Claims] 1. Maintaining the interfacial potential of a metal member made of a corrosive alloy in contact with a corrosive solution at a potential lower than the potential at which stress corrosion cracking will not occur in the metal member, and hydrogen cracking will no longer occur. A method for preventing stress corrosion cracking and hydrogen cracking of metal members by maintaining them at a potential nobler than the electric potential. 2. A metal member made of a corrosion-resistant alloy that is in contact with a corrosive solution has a pair of terminals, at least one of which is insulated, and a current flowing between the terminals through the corrosive solution is controlled to adjust the interfacial potential of the metal member. A device for preventing stress corrosion cracking and hydrogen cracking of metal members, comprising a constant current electrolyzer that maintains the potential at a potential lower than that at which stress corrosion cracking does not occur and more noble than a potential at which hydrogen cracking does not occur.
JP1058452A 1989-03-10 1989-03-10 Method and device for preventing stress corrosion crack and hydrogen crack of metallic member Pending JPH02236291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058452A JPH02236291A (en) 1989-03-10 1989-03-10 Method and device for preventing stress corrosion crack and hydrogen crack of metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058452A JPH02236291A (en) 1989-03-10 1989-03-10 Method and device for preventing stress corrosion crack and hydrogen crack of metallic member

Publications (1)

Publication Number Publication Date
JPH02236291A true JPH02236291A (en) 1990-09-19

Family

ID=13084817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058452A Pending JPH02236291A (en) 1989-03-10 1989-03-10 Method and device for preventing stress corrosion crack and hydrogen crack of metallic member

Country Status (1)

Country Link
JP (1) JPH02236291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283181A (en) * 2004-03-29 2005-10-13 Hitachi Ltd Operation method of residual heat removal system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283181A (en) * 2004-03-29 2005-10-13 Hitachi Ltd Operation method of residual heat removal system

Similar Documents

Publication Publication Date Title
Indig et al. High temperature electrochemical studies of the stress corrosion of type 304 stainless steel
US5581588A (en) Insulated protective coating doped with a noble metal for mitigation of stress corrosion cracking
US5793830A (en) Metal alloy coating for mitigation of stress corrosion cracking of metal components in high-temperature water
KR20020050742A (en) Chemical decontamination method and treatment method and apparatus of chemical decontamination solution
Niedrach Effect of palladium coatings on the corrosion potential of stainless steel in high-temperature water containing dissolved hydrogen and oxygen
US5465281A (en) Insulated protective coating for mitigation of stress corrosion cracking of metal components in high-temperature water
Fukaya et al. Corrosion mitigation activities performed after the Fukushima Daiichi accident
KR20020050741A (en) Noble metal catalysis for mitigation of corrosion, erosion and stress corrosion cracking in pressurized water reactor and related high temperature water environments
US6024805A (en) Metal hydride addition for reducing corrosion potential of structural steel
Jones Potential and chloride effects in the stress corrosion cracking of type 304 stainless steel in 290 C water
JPH02236291A (en) Method and device for preventing stress corrosion crack and hydrogen crack of metallic member
Congleton et al. Stress corrosion cracking of sensitized type 304 stainless steel in doped high-temperature water
JP4363163B2 (en) Corrosion potential sensor
Chang et al. Pitting corrosion of Inconel 600 in chloride and sulfate solutions at low temperature
JPH01212785A (en) Method and device for preventing stress corrosion cracking and hydrogen embrittlement of metallic member
JPS63179085A (en) Method for preventing hydrogen embrittlement crack of metal member
US6548178B2 (en) Method of reducing corrosion potential and stress corrosion cracking susceptibility in nickel-base alloys
JPH08254594A (en) Prevention method for stress corrosion cracking and hydrogen induced cracking of metal part
JPH03113397A (en) Method for preventing stress corrosion cracking and hydrogen cracking of metallic member
Ljungberg et al. Effects of some seldom noticed water impurities on stress corrosion cracking of BWR construction materials
JPS62182290A (en) Method for preventing hydrogen embrittlement of member
JP2517723B2 (en) How to prevent hydrogen cracking of metal parts
JP6450387B2 (en) Internal contour passivation method for steel surface of nuclear reactor
JP2005291815A (en) Corrosion thinning prevention method of carbon steel
JP2003035798A (en) Method for preventing corrosion of reactor