JPH02236127A - Method and apparatus for measuring color - Google Patents

Method and apparatus for measuring color

Info

Publication number
JPH02236127A
JPH02236127A JP5738089A JP5738089A JPH02236127A JP H02236127 A JPH02236127 A JP H02236127A JP 5738089 A JP5738089 A JP 5738089A JP 5738089 A JP5738089 A JP 5738089A JP H02236127 A JPH02236127 A JP H02236127A
Authority
JP
Japan
Prior art keywords
light
fiber
measured
color
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5738089A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nakanishi
美一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP5738089A priority Critical patent/JPH02236127A/en
Publication of JPH02236127A publication Critical patent/JPH02236127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine a color change accurately by measuring color of a surface layer of an object to be measured based on a ration of outputs of photo detectors built in two photoelectric transducers having a sensitivity peak in a visible light range for different wavelengths of a colored light introduced into a light receiving fiber. CONSTITUTION:A tip face of an optical fiber 30 extending from the tip of a sensor head 20 is put tight on the surface A1 of a leaf A of a plant as object to be measured and a halogen lamp 42 is lit. A white light irradiates the surface A1 through fine-diameter fibers 32a... of a projection fiber 31. A part of the white light returns to a light emitter 40 gain through the fiber 31 as mirror reflected light L1 while the other part thereof advances into a surface layer part A2 of the leaf A and scattered to be turned to a colored light L2, which is incident into a light receiving fiber 32 and received with a photo detector 52 of a light receiver 50 to be converted into electricity. The photo detector 52 produces current outputs with two peaks of 550 and 620nm and a ratio of the two outputs are calculated. The results of the computation are displayed on a voltmeter 62 to measure color of the leaf A. This enables accurate determination of changes in a growth process of a plant or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、植物などの菜の色の変化を測定する
色の測定装置に関するものである.(発明の背景及び発
明が解決しようとするn題)一般に、植物などの被測定
物の色の変化などを測定する場合、植物の粟の表面に白
色光を照射してその表面反射光により植物の色を観察す
るが、植物の菜の表面は様々な形状であるうえ、生体か
らの様々な分泌物等が付着しており、従来の表面反射光
の色を測定する方法では正確な莱自身の色の測定が困難
である. 本発明は、かかる問題に着目してなされたもので、被測
定物の表層部の色をより正確に測定することの出来る色
の測定方法及び装置を提供することを目的とする. (HMを解決するための手段) 上記課題を解決するために、本発明の請求項1にかかる
色の測定方法は、 光が内部に浸透可能な被測定物の色の測定方法において
、 先端部の断面構成が芯偏に受光ファイバを有しこの受光
ファイバを取り囲む表皮側に光を照射する投光ファイバ
を配設する構成とされているセンサヘッドの先端部を前
記被測定物の表面に密着さ前記投光ファイバから前記被
測定物の内部に白色光を注入すると共に、この白色光が
前記被測定物の表層部において拡散反射するときの着色
光を前記受光ファイバによって受光し、 前記受光ファイバに導入された着色光を、可視光域の異
なる波長に感度のピークを持つ、少なくとも2個の光電
変換素子を内蔵した受光素子に導き、 この受光素子の出力jt一二の一一1−嶋一に基づいて
前記被測定物の表層部分の色を測定することを特徴とす
る. 又、本発明の請゛求項2にかかる色の測定装置は,先端
部の断面構成が、芯偏に受光ファイバが配設され表皮側
に光を照射する投光ファイバが配設される構成とされ、
この先端部を被測定物の表面に密着させるセンサヘッド
と、 前記投光ファイバに前記被測定物の内部に注入する白色
光を導入する発光装置と、 可視光域の異なる波長に感度のピークを持つ少なくとも
2個の光電素子を内蔵し、前記被測定物の表層部で拡散
反射した散乱着色光が前記受光ファイバを介して導入さ
れる受光素子と、この受光素子の出力の比に基づいて前
記被測定物の色を測定する演算装置 を具備することを特徴とする. 《作用》 本発明の請求項lにかかる色の測定方法及び請求項2に
かかる色の測定装置では、センサヘッドの先端部が被測
定物の表面に密着させるので、投光ファイバから被測定
物に照射された白色光のうち被測定物の表面で鏡面反射
する鏡面反射光は、直接投光ファイバに進入して受光フ
ァイバには進入しない.一方、白色光のうち被測定物の
表層部分で拡散反射した光は、表層部分により着色され
て着色光となり、被測定物の表面を透過し更に受光ファ
イバを介して受光素子に導かれるため、表面の形状や付
着物の影響を受けていない被測定物そのものの色をより
正確に測定できる. 《実施例》 以下、本発明にかかる色の測定方法及び装置の実施例に
ついて図面を参照にして説明する.第1図は、本発明の
請求項(2》の実施例にかかる測定装置を示している. 測定装置lOは、被測定物としての植物の粟Aの表目に
密着させるセンサヘッド20と、センサヘッド20から
延びる光ファイバ30と、光ファイバ30に対して白色
光を注入する発光装置40と、光ファイバ30からの着
色光を光電変検する受光装置50と、受光装置50から
の出力に基づいて着色光の色を演算算出する演算測定装
@6oとを備えている.センサヘッド20は、第2図に
示すように筒型の筺体2lを備え、筐体21内に光ファ
イバ30が挿通されている.筺体21の先端部には、光
ファイバ30の先端部を保持する小筒部22が形成され
ている.小筒部22の先端開口部に光ファイバ30の投
光ファイバ31と受光ファイバ32とが臨んでいる.光
ファイバ30は、上述のように投光ファイバ3lと受光
ファイバ32とで構成されている.投光ファイバ3lは
、第3図に示すように、細径ファイバ31a,,,,,
と細径ファイバ31a. . , ,を円形状に束ねる
不透光性のチューブ3lbとで構成されている.本実施
例では、細径ファイバ31aの直径は0.2mmとされ
ており、細径ファイバ31aは16本設けられている.
受光ファイバ32は、直径l膳一の一本のファイバ32
aと、このファイバ32aの周囲を光を通さないように
囲むチューブ32bとで構成されている.センサヘッド
20内では受光ファイバ32の周囲に投光ファイバ31
の細径ファイバ31a, , ,が配設されている.投
光ファイバ3lの基端部ほ、発光装it40の筺体41
内に延在しており、ハロゲンランプ42に臨んでいる.
受光ファイバ32の基端部は、受光装W150の筐体5
1内に延在しており、受光装5150の受光素子52に
臨んでいる. 発光装置40は、第1図に示すように、筺体41と光源
としてのハロゲンランブ52と、図示しない電源回路と
で構成され、電源回路からハロゲンランプ52に対して
電力供給されると、ハロゲンランプ52が点灯して白色
光が投光ファイバ31の細径ファイバ3111++.+
に注入されるようになっている.受光装置50は、第4
図に示すように、不透光性のシールドフイルム51と、
受光ファイバ32からの着色光を光電変換する受光素子
52と、受光ファイバ32の終末端を保持して受光索子
52に臨ませる筒型のホルダー53とを備えている.シ
ールドフイルム51の一端部には、受光ファイバ32を
引き抜き不能に保持する小筒部51が形成されている.
シールドフィルム5lの中間部は大径岡部5lbとされ
ている.この太径筒部5lb内部には、シールドフイル
ム51を筒状に保持するカラー51cが内蔵され、この
カラー51c内には受光索子52の014 m 5 2
 aが装着されている.シールドフィルム51の他端部
には、円随台形状の筒部51dが形成され、この筒部5
1d部受光素子52の端子52b,52c,52dを固
定する保持筒54が装着されている.保持筒54は光を
通さない材質で構成されている.受光索子52は、55
0n一とf520nmの波長光に感度のピークがある2
個のフォトダイオードを1チップ化したもので、受光素
子5lの端子52bは550n■に感度のピークを持つ
フォトダイオードの光電電流を出力する端子である.又
、端子62cは、620na+に感度のピークを持つフ
ォトダイオードの光電電流を出力する端子である.端子
52dはアースである.演算測定装1160は、受光索
子52の端子52b,52cからの出力電流をアナログ
演算して受光索子52が検出した着色光の平均波長を算
出するアナログ演算器6lとアナログ演算器6lの演算
結果に基づいてその測定値を表示する電圧計62とで構
成されている.本実施例では、アナログ演算@61とし
て、受光索子52から出力された2組の電流の比をアナ
ログ演算(光の平均波長を求め)し、その結果を電圧と
して出力するアナログ電子回路を設けたが、2組の電流
を個別に測定し、後でコンピュータなどでその比を演算
する方法でも良い.又、測定値を表示する装置として電
圧計62を設けたが、^/D変換装置を備えたコンピュ
ータ等でも良い. 次に本発明の請求項(1)の実施例にかかる色の測定方
法を上述の測定装置10を用いて説明する.第5図は、
この測定方法の実施例を示したもので、被測定物として
の植物の葉Aの表面^1に、センサヘッド20先端部か
ら延びる光ファイバ30の先端面を密着させる.葉Aの
表面A+に光ファイバ30の先端面を密着させた状態で
ハロゲンランプ42を点灯させると、投稿ファイバ31
の細径ファイバ32a,,,,,を介して白色光が菓A
の表面AIに照射される.葉Aの表面A重に照射された
白色光の一部は鏡面反射光L1として再び投光ファイバ
3lを介して発光装il!40に戻る.  MAの表f
IA+に照射された白色光の一部は葉Aの表層部A2に
進入して散乱し、表層部A2で着色されて肴色光L2と
なり、受光ファイバ32に入射する.受光ファイバ32
に入射した着色光Ltは受光装置50の受光素子52に
受光され、光電変換される.受光索子52では550n
一と62on一の波長光に感度のピークを持つ2組の電
流出力があるので、その比を演算算出し、この算出結果
を電圧計62に表示させると、粟Aの色が測定される. (発明の効果) 本発明は、以上説明した構成から明らかなように、例え
ば植物の粟等のような被測定物の生育過程で生ずる大き
な色の変化を連続測定することが出来ると共に、受光素
子で色を検知するので、僅かな色の変化をより正確に測
定することが出来る.従って、植物等の生育過程に於け
る変化を正確に把握できるという効果を奏する.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a color measuring device for measuring, for example, changes in the color of rapeseed, such as plants. (Background of the invention and problems to be solved by the invention) Generally, when measuring changes in the color of an object to be measured such as a plant, white light is irradiated onto the surface of millet of the plant, and the light reflected from the surface is used to However, since the surface of a plant's rape has a variety of shapes and is covered with various secretions from living organisms, the conventional method of measuring the color of light reflected from the surface cannot accurately measure the color of the rape itself. It is difficult to measure the color of The present invention has been made in view of this problem, and it is an object of the present invention to provide a color measuring method and apparatus that can more accurately measure the color of the surface layer of an object to be measured. (Means for Solving HM) In order to solve the above problem, the color measuring method according to claim 1 of the present invention includes: A method for measuring the color of an object to be measured into which light can penetrate. The tip of the sensor head is closely attached to the surface of the object to be measured. Injecting white light into the object to be measured from the light emitting fiber, and receiving colored light when the white light is diffusely reflected on the surface layer of the object to be measured, by the light receiving fiber; The colored light introduced into the light is guided to a light-receiving element containing at least two photoelectric conversion elements that have sensitivity peaks at different wavelengths in the visible light range, and the output of this light-receiving element is The method is characterized in that the color of the surface layer of the object to be measured is measured based on Further, in the color measuring device according to claim 2 of the present invention, the cross-sectional configuration of the tip portion is such that a light receiving fiber is disposed at an offset center and a light emitting fiber for irradiating light to the epidermis side is disposed. It is said that
A sensor head that brings this tip into close contact with the surface of the object to be measured, a light emitting device that introduces white light into the light projecting fiber to be injected into the object to be measured, and a sensor head that has sensitivity peaks at different wavelengths in the visible light range. The light-receiving element includes at least two photoelectric elements having a built-in photoelectric element, and the scattered colored light diffusely reflected on the surface layer of the object to be measured is introduced via the light-receiving fiber, and the It is characterized by being equipped with a calculation device that measures the color of the object to be measured. <<Operation>> In the color measuring method according to claim 1 and the color measuring apparatus according to claim 2 of the present invention, the tip of the sensor head is brought into close contact with the surface of the object to be measured, so that the light emitting fiber can be connected to the object to be measured. Among the white light irradiated on the object, the specularly reflected light that is specularly reflected on the surface of the object to be measured directly enters the transmitting fiber and does not enter the receiving fiber. On the other hand, the white light that is diffusely reflected by the surface layer of the object to be measured is colored by the surface layer and becomes colored light, which is transmitted through the surface of the object to be measured and further guided to the light-receiving element via the light-receiving fiber. It is possible to more accurately measure the color of the object itself, which is not affected by the surface shape or deposits. <<Example>> Hereinafter, an example of the color measuring method and apparatus according to the present invention will be described with reference to the drawings. FIG. 1 shows a measuring device according to an embodiment of claim (2) of the present invention. The measuring device IO includes a sensor head 20 that is brought into close contact with the surface of millet A of a plant as an object to be measured, An optical fiber 30 extending from the sensor head 20, a light emitting device 40 that injects white light into the optical fiber 30, a light receiving device 50 that photoelectrically converts the colored light from the optical fiber 30, and an output from the light receiving device 50. The sensor head 20 has a cylindrical housing 2l as shown in FIG. 2, and an optical fiber 30 is installed in the housing 21. A small cylindrical part 22 that holds the distal end of the optical fiber 30 is formed at the distal end of the housing 21.The light emitting fiber 31 of the optical fiber 30 is inserted into the distal opening of the small cylindrical part 22. As described above, the optical fiber 30 is composed of the light emitting fiber 3l and the light receiving fiber 32.The light emitting fiber 3l is a small diameter fiber as shown in FIG. 31a,,,,,
and small diameter fiber 31a. .. It consists of a 3 lb. opaque tube that bundles , , into a circular shape. In this embodiment, the diameter of the small diameter fiber 31a is 0.2 mm, and 16 small diameter fibers 31a are provided.
The receiving fiber 32 is a single fiber 32 with a diameter of l.
a, and a tube 32b that surrounds the fiber 32a so as not to transmit light. Inside the sensor head 20, a light emitting fiber 31 is arranged around the light receiving fiber 32.
Small diameter fibers 31a, , , are arranged. The base end of the light emitting fiber 3l is connected to the housing 41 of the light emitting device it40.
It extends inside and faces the halogen lamp 42.
The base end of the light receiving fiber 32 is connected to the housing 5 of the light receiving device W150.
1 and faces the light receiving element 52 of the light receiving device 5150. As shown in FIG. 1, the light emitting device 40 is composed of a housing 41, a halogen lamp 52 as a light source, and a power supply circuit (not shown). When power is supplied from the power supply circuit to the halogen lamp 52, the halogen lamp 52 lights up and white light is emitted from the small diameter fiber 3111++. +
It is designed to be injected into The light receiving device 50 is a fourth
As shown in the figure, an opaque shield film 51,
It includes a light receiving element 52 that photoelectrically converts colored light from the light receiving fiber 32, and a cylindrical holder 53 that holds the terminal end of the light receiving fiber 32 and makes it face the light receiving cable 52. A small cylindrical portion 51 is formed at one end of the shield film 51 to hold the light receiving fiber 32 so that it cannot be pulled out.
The middle part of the shield film 5L has a large diameter 5lb. A collar 51c for holding the shield film 51 in a cylindrical shape is built into the large-diameter cylindrical portion 5lb, and a 014 m 5 2 of the light-receiving cable 52 is contained within this collar 51c.
A is attached. A trapezoidal cylindrical portion 51d is formed at the other end of the shield film 51, and this cylindrical portion 5
A holding tube 54 for fixing the terminals 52b, 52c, and 52d of the 1d portion light receiving element 52 is attached. The holding cylinder 54 is made of a material that does not transmit light. The light receiving cable 52 is 55
There is a sensitivity peak at wavelength light of 0n1 and f520nm2.
The terminal 52b of the light receiving element 5l is a terminal that outputs the photoelectric current of the photodiode, which has a sensitivity peak at 550 nm. Further, the terminal 62c is a terminal for outputting a photoelectric current of a photodiode having a sensitivity peak at 620 na+. Terminal 52d is grounded. The calculation and measurement device 1160 performs analog calculations on the output currents from the terminals 52b and 52c of the light receiving probe 52 to calculate the average wavelength of the colored light detected by the light receiving probe 52, and an analog computing device 6l. It consists of a voltmeter 62 that displays the measured value based on the result. In this embodiment, as analog calculation @61, an analog electronic circuit is provided which performs analog calculation (calculates the average wavelength of light) on the ratio of two sets of currents output from the light receiving probe 52 and outputs the result as a voltage. However, it is also possible to measure the two sets of currents individually and calculate the ratio later using a computer or the like. Further, although a voltmeter 62 is provided as a device for displaying measured values, a computer or the like equipped with a ^/D conversion device may also be used. Next, a color measuring method according to an embodiment of claim (1) of the present invention will be explained using the above-mentioned measuring device 10. Figure 5 shows
This is an example of this measurement method, in which the tip surface of an optical fiber 30 extending from the tip of the sensor head 20 is brought into close contact with the surface ^1 of a leaf A of a plant as an object to be measured. When the halogen lamp 42 is turned on with the tip end of the optical fiber 30 in close contact with the surface A+ of the leaf A, the posted fiber 31
The white light is transmitted to A through the small diameter fibers 32a, , , .
The surface AI is irradiated. A part of the white light irradiated onto the surface A of the leaf A is transmitted to the light emitting device il again via the light projection fiber 3l as specularly reflected light L1! Return to 40. MA table f
A part of the white light irradiated to IA+ enters the surface layer A2 of the leaf A, is scattered, is colored in the surface layer A2, becomes dark-colored light L2, and enters the light-receiving fiber 32. Receiving fiber 32
The incident colored light Lt is received by the light receiving element 52 of the light receiving device 50 and photoelectrically converted. 550n for light receiving cable 52
There are two sets of current outputs that have sensitivity peaks at wavelengths of 1 and 62 on, so when the ratio is calculated and the calculation result is displayed on the voltmeter 62, the color of millet A is measured. (Effects of the Invention) As is clear from the configuration described above, the present invention is capable of continuously measuring large color changes that occur during the growth process of an object to be measured, such as plant millet, and Because it detects color, it is possible to more accurately measure slight color changes. Therefore, it is possible to accurately grasp changes in the growth process of plants, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の請求項(2)にかかる測定装置の実施
例を示す説明図 第2図は第1図の測定装置のセンサヘッドの拡大図第3
図は第1図の光ファイバの断面図 第4図は第1図の受光装置の構成図 第6図は本発明の請求項(2)の実施例を示す説明図で
ある.
FIG. 1 is an explanatory diagram showing an embodiment of the measuring device according to claim (2) of the present invention. FIG. 2 is an enlarged view of the sensor head of the measuring device shown in FIG. 1.
1. The figure is a cross-sectional view of the optical fiber shown in FIG. 1. FIG. 4 is a configuration diagram of the light receiving device shown in FIG. 1. FIG. 6 is an explanatory diagram showing an embodiment of claim (2) of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)光が内部に浸透可能な被測定物の色の測定方法に
おいて、 先端部の断面構成が芯側に受光ファイバを有しこの受光
ファイバを取り囲む表皮側に光を照射する投光ファイバ
を配設する構成とされているセンサヘッドの先端部を前
記被測定物の表面に密着させ、 前記投光ファイバから前記被測定物の内部に白色光を注
入すると共に、この白色光が前記被測定物の表層部にお
いて拡散反射するときの着色光を前記受光ファイバによ
って受光し、 前記受光ファイバに導入された着色光を、可視光域の異
なる波長に感度のピークを持つ、少なくとも2個の光電
変換素子を内蔵した受光素子に導き、 この受光素子の出力の比に基づいて前 記被測定物の表層部分の色を測定することを特徴とする
色の測定方法。
(1) In a method for measuring the color of an object to be measured through which light can penetrate, the cross-sectional configuration of the tip is a light-emitting fiber that has a light-receiving fiber on the core side and irradiates light to the outer skin side surrounding the light-receiving fiber. The distal end of the sensor head configured to be disposed is brought into close contact with the surface of the object to be measured, white light is injected into the object to be measured from the light emitting fiber, and this white light is transmitted to the object to be measured. Colored light that is diffusely reflected on the surface of an object is received by the light-receiving fiber, and the colored light introduced into the light-receiving fiber is converted into at least two photoelectric converters having sensitivity peaks at different wavelengths in the visible light region. A method for measuring color, characterized in that the color of the surface layer of the object to be measured is measured based on the ratio of the outputs of the light receiving element.
(2)先端部の断面構成が、芯側に受光ファイバが配設
され表皮側に光を照射する投光ファイバが配設される構
成とされ、この先端部を被測定物の表面に密着させるセ
ンサヘッドと、 前記投光ファイバに前記被測定物の内部に注入する白色
光を導入する発光装置と、 可視光域の異なる波長に感度のピークを持つ少なくとも
2個の光電素子を内蔵し、前記被測定物の表層部で拡散
反射した散乱着色光が前記受光ファイバを介して導入さ
れる受光素子と、 この受光素子の出力の比に基づいて前記被測定物の色を
測定する演算装置 を具備することを特徴とする色の測定装置。
(2) The cross-sectional configuration of the tip is such that the light-receiving fiber is placed on the core side and the light-emitting fiber that irradiates light on the epidermis side, and this tip is brought into close contact with the surface of the object to be measured. a sensor head; a light emitting device for introducing white light into the object to be measured into the light emitting fiber; and at least two photoelectric elements having sensitivity peaks at different wavelengths in the visible light range; A light-receiving element into which scattered colored light diffusely reflected by the surface layer of the object to be measured is introduced through the light-receiving fiber, and a calculation device that measures the color of the object to be measured based on a ratio of outputs of the light-receiving element. A color measuring device characterized by:
JP5738089A 1989-03-09 1989-03-09 Method and apparatus for measuring color Pending JPH02236127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5738089A JPH02236127A (en) 1989-03-09 1989-03-09 Method and apparatus for measuring color

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5738089A JPH02236127A (en) 1989-03-09 1989-03-09 Method and apparatus for measuring color

Publications (1)

Publication Number Publication Date
JPH02236127A true JPH02236127A (en) 1990-09-19

Family

ID=13053998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5738089A Pending JPH02236127A (en) 1989-03-09 1989-03-09 Method and apparatus for measuring color

Country Status (1)

Country Link
JP (1) JPH02236127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998613B2 (en) 1997-01-02 2015-04-07 511 Innovations Inc. Apparatus and method for measuring optical characteristics using a camera and a calibration chart imaged with the camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292043A (en) * 1985-06-19 1986-12-22 Anritsu Corp Photodetecting probe for spectocolorimeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292043A (en) * 1985-06-19 1986-12-22 Anritsu Corp Photodetecting probe for spectocolorimeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998613B2 (en) 1997-01-02 2015-04-07 511 Innovations Inc. Apparatus and method for measuring optical characteristics using a camera and a calibration chart imaged with the camera

Similar Documents

Publication Publication Date Title
US6045502A (en) Analyzing system with disposable calibration device
EP0868881B1 (en) Measuring condition setting fixture
Goldstein et al. A miniature fiber optic pH sensor for physiological use
US3740155A (en) Colorimeter probe
JPH0433456B2 (en)
JPH0327206B2 (en)
DE3429541C2 (en)
EP0335192A3 (en) Combined gloss and color measuring instrument
US20090114844A1 (en) Light measuring device
US20030109773A1 (en) Method and system for determining bilirubin concentration
JPH0654293B2 (en) Optical fiber device and parameter measuring method by the device
US6276933B1 (en) Dental translucency analyzer and method
US4883425A (en) Dental probe assembly
WO1984003143A1 (en) Optical probe to measure the depth of a cavity
JPH02236127A (en) Method and apparatus for measuring color
US5300769A (en) Method and system of compensating for signal artifacts in a fiber-optic sensing system
JPS6314616B2 (en)
WO1997010496A1 (en) A device for measuring the concentration of carbon dioxide in a gas
JPH023460B2 (en)
EP4276430A3 (en) Integrated active fiber optic temperature measuring device
JPS5796203A (en) Contactless displacement detector employing optical fiber
JPS5740658A (en) Measuring apparatus for electric field
JP2851322B2 (en) Surface roughness measuring device
JPS646834A (en) Instrument for measuring light emission spectrum
JPS5629146A (en) Photometric sensor of immersion type