JPH02236102A - Laser interferometer - Google Patents

Laser interferometer

Info

Publication number
JPH02236102A
JPH02236102A JP5760689A JP5760689A JPH02236102A JP H02236102 A JPH02236102 A JP H02236102A JP 5760689 A JP5760689 A JP 5760689A JP 5760689 A JP5760689 A JP 5760689A JP H02236102 A JPH02236102 A JP H02236102A
Authority
JP
Japan
Prior art keywords
light
interference
interferometer
monitor
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5760689A
Other languages
Japanese (ja)
Inventor
Chuichi Miyazaki
忠一 宮崎
Hiroyuki Sugawara
弘之 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5760689A priority Critical patent/JPH02236102A/en
Publication of JPH02236102A publication Critical patent/JPH02236102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration of the S/N ratio thereby to reduce factors of errors even when an incident beam is diffused at large angles by rotating an angle of a plane of polarization of said light incident upon an interferometer. CONSTITUTION:An interferometer 6 consists of a polarizing beam splitter (PBS) 6' and a quarter-wave plate 6''. A laser light incident upon the interferometer 6 is divided into two, measuring and reference lights having approximately the same strength of beams by the PBS6'. The components of the reference light and measuring light are further separated by a beam splitter 8 in front of a polarizing plate 17 and detected respectively by photodetectors 10, 11. A differential amplifier 12 detects the difference of the strength of the components and consequently a current controlling circuit 13 is controlled to that the difference becomes zero. An angle of the plane of polarization is thus rotated. Accordingly, the strength of the reference light and that of the measuring light at a photodetector 14 can be made equal to each other, whereby the interference efficiency and visibility are improved, and measuring errors are reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は直交する直線偏光の干渉を利用したレーザ測長
器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser length measuring device that utilizes interference of orthogonal linearly polarized light.

[従来の技術] 従来、この種の測長器においては干渉計を構成する偏光
ビームスプリッタにレーザからの直線偏光を入射させて
,参照光と測定対象に向うべき副定光とに分けるように
なっており、ヘテロダイン方式のもの(例えば日経マイ
クロデバイス, 1985年10月号,頁67〜77参
照)やホモダイン方式のものがある。
[Prior Art] Conventionally, in this type of length measuring instrument, linearly polarized light from a laser is incident on a polarizing beam splitter that constitutes an interferometer, and is divided into a reference light and a sub-constant light that is directed toward the measurement target. There are heterodyne types (for example, see Nikkei Microdevices, October 1985 issue, pages 67-77) and homodyne types.

近年では,レーザ発振器から干渉計へ到る光を光ファイ
バで導くことが行われるようになった。
In recent years, it has become common practice to guide light from a laser oscillator to an interferometer using an optical fiber.

[発明が解決しようとする課題] 前記従来技術は,干渉計への入射直IiA偏光の偏光面
の角度は固定されており、測定対象物の移動に伴なう測
定光と参照光の強度比変動に起因して発生する測定誤差
に関しては考慮されていなかった。
[Problem to be Solved by the Invention] In the prior art, the angle of the plane of polarization of the IiA polarized light directly incident on the interferometer is fixed, and the intensity ratio of the measurement light and reference light changes as the measurement target moves. Measurement errors caused by fluctuations were not taken into account.

例えば、光源であるレーザ発振器のビーム拡がり角が小
さい場合には,′lls定対象物が変位して測定光の光
路長が長くなっても,受光器の位置において測定光のビ
ーム径はさほど拡がらず、また強度が落ちることもなく
高いビジビリテイーの干渉縞が得られるが,しかしビー
ム拡がり角の大きいレーザ発振器の場合や,又は最近盛
んに行われているように、レーザ発振器から光ファイバ
によって干渉計までレーザ光を導く方式のものにおいて
そのファイバ出口のコリメーションレンズの性能に起因
してビーム拡がりが大きい場合には、測定対象物が干渉
計にある程度近いときは特に問題はないが、対象物が変
位して干渉計からの距離が遠くなり測定光路長が長くな
ると,干渉光を検出する受光器の位置での測定光ビーム
径が大きくなり,ビームのパワー密度減少が起こるとと
もに干渉効率の低下をきたし、干渉光のビジビリテイー
の悪化を招く。この場合、受光器で光電変換したあとの
干渉信号のS/Nが悪くなり,81!定誤差を招くおそ
れがある。
For example, if the beam divergence angle of the laser oscillator that is the light source is small, even if the target object is displaced and the optical path length of the measurement light becomes longer, the beam diameter of the measurement light will not expand much at the receiver position. However, in the case of a laser oscillator with a large beam divergence angle, or as has become popular recently, interference fringes from the laser oscillator via an optical fiber can be obtained. If the beam spread is large due to the performance of the collimation lens at the exit of the fiber in a system that guides the laser beam to the interferometer, there is no particular problem when the object to be measured is close to the interferometer, but if the object is When the distance from the interferometer increases due to displacement, and the measurement optical path length increases, the diameter of the measurement light beam at the position of the receiver that detects the interference light increases, causing a decrease in the power density of the beam and a decrease in interference efficiency. This results in deterioration of the visibility of the interference light. In this case, the S/N of the interference signal after photoelectric conversion by the photoreceiver becomes poor, and 81! This may lead to a fixed error.

本発明の目的は、入射ビームに拡がりがあって、受光器
での測定光ビーム径が変化する場合においても、干渉光
のビジビリティーを良好に保ち、干渉信号のS/N比の
悪化を防止し得るレーザ干渉測長器を提供するにある。
An object of the present invention is to maintain good visibility of interference light and prevent deterioration of the S/N ratio of interference signals even when the incident beam has a spread and the measurement light beam diameter at the receiver changes. The goal is to provide a laser interferometric length measurement device that can be used to obtain laser interferometers.

[課題を解決するための手段] 本発明のレーザ干渉測長器は特許請求の範囲の各謂求項
記載の構成を有する。
[Means for Solving the Problems] The laser interferometric length measuring device of the present invention has the configuration described in each claim of the claims.

[作   用] 請求項1,2,3又は4記載のレーザ干渉測長器におい
ては干渉計への入射光の偏光面の角度を回転させること
により、干渉計で分割される参照光と測定光の強度比を
、また、請求項5記載のレーザ干渉測長器においては,
干渉手段の角度を回転させることにより干渉手段での干
渉生起時の参照光と測定光の強度比を、制御する。この
制御は夫々の請求項記載のようにモニタ光の検出結果に
基づいて行われ,それにより,両先の強度比は干渉を良
好にするように保たれる。
[Function] In the laser interferometric length measuring device according to claim 1, 2, 3, or 4, by rotating the angle of the polarization plane of the light incident on the interferometer, the reference light and measurement light are separated by the interferometer. In the laser interferometric length measuring device according to claim 5, the intensity ratio of
By rotating the angle of the interference means, the intensity ratio of the reference light and measurement light when interference occurs in the interference means is controlled. This control is performed based on the detection result of the monitor light as described in each claim, and thereby the intensity ratio at both ends is maintained so as to improve interference.

[実 施 例] 第1図は本発明の1実施例を示す。1は直線偏光を発振
する波長安定化レーザ発振器,3は偏波面保存ファイバ
,5は偏光面の角度を制御するフアラデー素子であり、
磁界制御用のコイルl8が巻きつけてある。6は測定対
象7の変位を測定する干渉計、8はビームスプリッタ(
BSと略記する)、9はBS8から取り出されたモニタ
用ビームを参照光成分とall定光成分とに分離する偏
光ビームスプリッタ(PBSと略記する)、10.11
は該両光成分を夫々検出する光検出器、12は両光成分
の強度差を出力する差動アンプ、13はファラデー素子
5に巻いたコイル18への電洸を制御する電流制御回路
である。17は偏光板、14は光検出器,15は位相差
測定装置である。
[Example] FIG. 1 shows an example of the present invention. 1 is a wavelength-stabilized laser oscillator that oscillates linearly polarized light, 3 is a polarization-maintaining fiber, and 5 is a Faraday element that controls the angle of the polarization plane.
A coil l8 for magnetic field control is wound around it. 6 is an interferometer that measures the displacement of the measurement object 7, and 8 is a beam splitter (
9 is a polarizing beam splitter (abbreviated as PBS) that separates the monitoring beam taken out from BS8 into a reference light component and an all constant light component; 10.11
12 is a differential amplifier that outputs the intensity difference between the two optical components, and 13 is a current control circuit that controls the current to the coil 18 wound around the Faraday element 5. . 17 is a polarizing plate, 14 is a photodetector, and 15 is a phase difference measuring device.

以下に動作を説明する。レーザ発振器1からのレーザ光
は、コリメータ2で偏波面保存ファイバ3の入射側端面
に絞り込まれて同ファイバに入射し、出射側コリメータ
4でコリメートされて、その偏光状態(直線偏光)を保
ったままほぼ平行光として出射する。但し,一般にはコ
リメートレンズの特性とそのファイバに対するアライメ
ントの不完全さから,この出射ビームはレーザ発振器自
体のそれよりもいくらか大きい拡がり角を持ち,光路長
が長くなるほどそのビーム径は大きくなる.このレーザ
光は、ファラデー素子5を経て干渉計6に入射する。干
渉計6は偏光ビームスプリッタ(13B S) 6’ 
, 1/,4波長板6#,6“を添着した橘成のもので
あり、この′f渉計6に入射する上記レーザ光の偏光面
は,紙面に対して約45゜程度に設定されており、干渉
計6を41ff成しているPn S 6’でほぼ等強度
のビームに2分割され,それぞれ測定光と参照光になる
。測定光は測定対象7で反射されて再び干渉計6に戻り
,ビームスブリッタ(BS)8を介して偏光板17に至
る。
The operation will be explained below. The laser beam from the laser oscillator 1 is focused by the collimator 2 onto the input side end face of the polarization maintaining fiber 3, enters the same fiber, and is collimated by the output side collimator 4 to maintain its polarization state (linear polarization). The light is emitted as almost parallel light. However, due to the characteristics of the collimating lens and its imperfect alignment with the fiber, this emitted beam generally has a somewhat larger divergence angle than that of the laser oscillator itself, and the longer the optical path length, the larger the beam diameter. This laser light enters an interferometer 6 via a Faraday element 5. Interferometer 6 is a polarizing beam splitter (13BS) 6'
, 1/4 wave plate 6#, 6'' is attached, and the plane of polarization of the laser beam incident on this 'f interferometer 6 is set at approximately 45 degrees with respect to the plane of the paper. The interferometer 6 is divided into two beams of approximately equal intensity by the Pn S 6', which constitutes the 41ff beam, and becomes a measurement beam and a reference beam, respectively.The measurement beam is reflected by the measurement object 7 and passes through the interferometer 6 again. The light then returns to the polarizing plate 17 via the beam splitter (BS) 8.

一方、参照光は干渉計6の一方の174波長板6“端面
に設けた参照面16で反射し同じ<Bs8を介して偏光
板17に至る。偏光板17入射時点では,これら参照光
と測定光は偏光面が互いに直交しているので干渉しない
が、偏光板17においてそれらの共通成分同士が取り出
されて干渉し、この干渉光を光検出器14で受けて光電
変換し,その信号の変化を位相差測定装置15に取り込
んで処理して測定対象変位測定出力Xを得るものである
On the other hand, the reference light is reflected by the reference surface 16 provided on one end face of the 174-wave plate 6 of the interferometer 6 and reaches the polarizing plate 17 via the same <Bs8. Since the planes of polarization of the lights are orthogonal to each other, they do not interfere, but their common components are extracted and interfere with each other in the polarizing plate 17, and this interference light is received by the photodetector 14 and photoelectrically converted, resulting in a change in the signal. is taken into the phase difference measuring device 15 and processed to obtain the measured object displacement measurement output X.

ここで、参照光と測定光の光路長は、干渉計6と測定対
象7との間の距離デッドパスの2倍だけ差があり.測定
対象7が変位してデッドパスが長くなると、先にも述べ
たようにビーム拡がりのために光検出器14の位置での
測定光のビーム径だけが大きくなり、従って、当然この
位置での測定光のビーム内のパワー密度も小さくなり,
結果として干渉光の干渉効率が悪化し、ビジビリティー
が低下する。この状態では、位相差測定装置15への入
力である干渉信号のS/N比が悪くなり,変位測定出力
Xの誤差要因となる。
Here, the optical path lengths of the reference light and measurement light differ by twice the distance dead path between the interferometer 6 and the measurement object 7. When the measurement object 7 is displaced and the dead path becomes longer, only the beam diameter of the measurement light at the position of the photodetector 14 increases due to the beam spreading as described above, and therefore, it is natural that the measurement at this position will not be possible. The power density within the beam of light also decreases,
As a result, the interference efficiency of the interference light deteriorates, and visibility decreases. In this state, the S/N ratio of the interference signal that is input to the phase difference measuring device 15 deteriorates, which becomes a cause of error in the displacement measurement output X.

そこで本発明では,干渉計6への入射光の偏光面の角度
をコントロールすることにより、参照光と測定光の分割
強度比を適宜調整し、常にビジビリティーの高い干渉縞
が得られるようにしている。
Therefore, in the present invention, by controlling the angle of the polarization plane of the light incident on the interferometer 6, the split intensity ratio of the reference light and measurement light is adjusted appropriately, so that highly visible interference fringes are always obtained. .

これを次に説明する。第1図の場合、干渉計6への入射
光の偏光面が紙面となす角をθとすると、干渉計6のP
B96’で分けられる参照光と測定光の強度比はsin
θ: cos Oである.O=45″のとき該両イは等
しくなるが、偏光板17の前に置いたBS8によって強
度比モニタ用のビームを取り出し、r’ns9によって
このモニタ用ビームの参照光成分と』り定光成分を再分
離し、それぞれを光検出器10及び11で検出すると、
そこでは前記デッドパスの分のビーム拡がりのため、測
定光成分の強度が参照光成分の強度よりも低下する。
This will be explained next. In the case of Fig. 1, if the angle between the plane of polarization of the light incident on the interferometer 6 and the plane of the paper is θ, then the P of the interferometer 6 is
The intensity ratio of the reference light and measurement light divided by B96' is sin
θ: cos O. When O=45'', the two are equal, but the beam for intensity ratio monitoring is taken out by BS8 placed in front of the polarizing plate 17, and the reference light component of this monitoring beam is converted by r'ns9 to the constant light component. When reseparated and detected by photodetectors 10 and 11,
There, the intensity of the measurement light component is lower than the intensity of the reference light component due to the beam expansion due to the dead path.

よってこの強度の差を差動アンプ12で検出して、この
差が零,つまり上記光検出器10およびI1で検出され
る21+’l定光成分と参照光成分の強度が等しくなる
ように0を変化させて干渉計6で分けられる参照光と測
定光の強度比を調整する。このようにすることにより、
光検出器14での参照光と測定光の強度を等しくするよ
うにすることができ、その結果,得られる干渉光の干渉
効率が良くなり,ビジビリティが向上する。θを変化さ
せる手段としては、この実施例の場合は例えばファラデ
ー索子5を用いている。これは印加される磁界の強度に
よって、その内部を伝わる直線偏光の偏光面の角度を変
化させることができる素子であり、この実施例の場合に
は、電流制御回路13によってコイル18に流れる電流
を制御し,結果的にファラデー素子内部の磁界を制御す
る閉ループ系を組むことにより、上記の強度比調整を行
わせる楕成としている。
Therefore, this difference in intensity is detected by the differential amplifier 12 and set to 0 so that this difference becomes zero, that is, the intensity of the 21+'l constant light component detected by the photodetector 10 and I1 and the reference light component are equal. The intensity ratio of the reference light and measurement light separated by the interferometer 6 is adjusted by changing the intensity ratio. By doing this,
The intensity of the reference light and the measurement light at the photodetector 14 can be made equal, and as a result, the interference efficiency of the resulting interference light improves, and the visibility improves. In this embodiment, for example, a Faraday cable 5 is used as a means for changing θ. This is an element that can change the angle of the plane of polarization of linearly polarized light traveling inside it depending on the strength of the applied magnetic field.In the case of this embodiment, the current flowing through the coil 18 is controlled by the current control circuit 13. By constructing a closed-loop system that controls the magnetic field inside the Faraday element, the above-mentioned intensity ratio adjustment is achieved.

第2図は本発明の別の実施例を示す。この図において第
1図と同一部分には同一符号を用いている。本実施例の
構成は先の実施例とほぼ同様であり,異なるのはf渉計
6への入射直線偏光の偏光面角度0を変化させる手段だ
けである。本実施例ではθを変化させる手段として2/
1波長板20を用いており,これを例えばステンピング
モータなどのモータ21でその設置角度を調整するよう
になっている。その制御は第1図の場合とほぼ同様に光
検出信号10.11で受ける測定光成分と参照光成分の
強度差を差動アンプ12で検出しこの差信号が零になる
ようにモータ制御回路19により閉ループ制御系を構成
している。
FIG. 2 shows another embodiment of the invention. In this figure, the same parts as in FIG. 1 are designated by the same reference numerals. The configuration of this embodiment is almost the same as the previous embodiment, and the only difference is the means for changing the polarization plane angle 0 of the linearly polarized light incident on the f-intermeter 6. In this embodiment, the means for changing θ is 2/
A one-wavelength plate 20 is used, and its installation angle is adjusted by a motor 21 such as a stamping motor. The control is carried out in almost the same way as in the case of Fig. 1, by detecting the difference in intensity between the measurement light component and the reference light component received by the photodetection signal 10 and 11 using the differential amplifier 12, and controlling the motor control circuit so that this difference signal becomes zero. 19 constitutes a closed loop control system.

次に第3図より本発明の更に別の実施例を説明する。こ
の図においても前出の図と同一部分には同一符号を用い
ている。本実施例が前記実施例と異なるのは、干渉計6
の入射側にはその入射光の偏光面角度を変化させる手段
を設けず,偏光板17で干渉したあとの干渉光の一部を
モニタ用として分割し,この干渉信号の振幅が最大にな
るように偏光板17を回動させてその透過軸の角度を制
御する点である。すなわち、偏光板17において干渉し
た干渉光は,ビームスプリッタ8で2分割される。この
一方をモニタ用ビームとし、これを光検出器10で光電
変換し、その振幅が最大になる点を干渉信号最大振幅検
出回路24で検出し、常に該振幅が最大となるようにモ
ータ制御回路19及びモータ21で偏光板17の透過軸
の角度を制御することにより、先の実施例と同様の効果
が得られる。
Next, another embodiment of the present invention will be described with reference to FIG. In this figure as well, the same reference numerals are used for the same parts as in the previous figure. This embodiment differs from the previous embodiments in that the interferometer 6
No means for changing the angle of polarization plane of the incident light is provided on the incident side of the polarizing plate 17, and a part of the interference light after interference with the polarizing plate 17 is divided for monitoring purposes, so that the amplitude of this interference signal is maximized. The point is to rotate the polarizing plate 17 to control the angle of its transmission axis. That is, the interference light that has interfered at the polarizing plate 17 is split into two by the beam splitter 8. One of these beams is used as a monitoring beam, which is photoelectrically converted by the photodetector 10, the point where the amplitude becomes maximum is detected by the interference signal maximum amplitude detection circuit 24, and the motor control circuit is configured so that the amplitude is always the maximum. 19 and the motor 21 to control the angle of the transmission axis of the polarizing plate 17, the same effects as in the previous embodiment can be obtained.

また,第4図に第1図の変形実施例として示すように、
干渉信号最大振幅検出回路24へ第3図と同様に干渉信
号を取り込んで,その振幅が常に最大になるようにファ
ラデー素子5に巻いたコイル18への印加電流を電流制
御回路13により制御し、干渉計6へ入射する直線偏光
の回転角度を調整してもよい。
In addition, as shown in FIG. 4 as a modified example of FIG. 1,
The interference signal is taken into the interference signal maximum amplitude detection circuit 24 in the same manner as shown in FIG. 3, and the current control circuit 13 controls the current applied to the coil 18 wound around the Faraday element 5 so that the amplitude is always the maximum The rotation angle of the linearly polarized light incident on the interferometer 6 may be adjusted.

またこの場合、偏光面回転手段はファラデー素子の代り
に第2図の如くl/2波長板を用いてもよい。
In this case, the polarization plane rotating means may use a l/2 wavelength plate as shown in FIG. 2 instead of the Faraday element.

以上、いずれの実施例による方法も、先に本出願人の出
願している特願昭63−027025及び同昭63−1
44183に示したような,測定光および参照光が各々
2ビームより成るレーザ干渉測長器にも適用可能であっ
て,これにおいても前記効果と同様の効果を期待できる
As mentioned above, the method according to any of the embodiments is applicable to the patent application No. 63-027025 and No.
The present invention can also be applied to a laser interferometric length measuring device such as that shown in No. 44183, in which the measurement light and the reference light each consist of two beams, and the same effects as those described above can be expected in this case as well.

また、前記の各実施例はホモダイン方式の干渉di!I
長器について開示したが,ヘテロダイン方式の干渉測長
器にも適用し得る。
Furthermore, each of the above embodiments uses homodyne interference di! I
Although a long instrument has been disclosed, it can also be applied to a heterodyne type interferometric length measuring instrument.

[発明の効果] 本発明によれば、T−渉計への入射ビームの拡がり角が
大きい場合でも,干渉光の検出位置における測定光と参
照光の強度が常に等しくなり,最大のビジビリティーが
得られるので、干渉光強度から位相差,つまり変位を測
定する装置においてS/Nが向上し、誤差要因が低減で
きる効果がある。
[Effects of the Invention] According to the present invention, even when the divergence angle of the incident beam to the T-intermeter is large, the intensity of the measurement light and the reference light at the detection position of the interference light are always equal, and maximum visibility can be obtained. Therefore, in a device that measures phase difference, that is, displacement from interference light intensity, the S/N ratio is improved and error factors can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図は、夫々本発明の異な
る実施例の構成図である。 1・・・レーザ発振器  3・・・光ファイバ5・・・
ファラデー素子 6・・・干渉計7・・・測定対象  
  8・・・BS9・・・PBS      10,1
1・・・光検出器12・・・差動アンプ  13・・・
電流制御回路14・・・光検出器   15・・・位相
差fll’l定装置17・・・偏光板    19・・
・モータ制御回路20・・・l/2波長板   21・
・・モータ24・・・干渉信号最大振幅検出回路 第 図 第 図 変位測定出力X 第 図 変イぶ(屓リW二出力X 第 図 変位測定出力X
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are block diagrams of different embodiments of the present invention, respectively. 1... Laser oscillator 3... Optical fiber 5...
Faraday element 6...Interferometer 7...Measurement target
8...BS9...PBS 10,1
1... Photodetector 12... Differential amplifier 13...
Current control circuit 14...Photodetector 15...Phase difference fll'l constant device 17...Polarizing plate 19...
・Motor control circuit 20...l/2 wavelength plate 21・
...Motor 24...Interference signal maximum amplitude detection circuit Fig. Fig. Displacement measurement output

Claims (1)

【特許請求の範囲】 1 レーザ発振器からの直線偏光を偏光ビームスプリッ
タ機能を有する干渉計に入射させて測定光および参照光
に分割し、測定光用光路および参照光用光路を経た両光
の干渉計からの出力光を干渉手段に導入し、干渉手段を
経た干渉光を受光する受光測定手段から測長出力を得る
様に構成したレーザ干渉測長器において、干渉計からの
出力光の一部を前記干渉手段よりも前段においてモニタ
光として取り出す手段と、この取り出されたモニタ光を
測定光成分と参照光成分とに分離してそれらの強度関係
を検出するモニタ手段と、このモニタ手段で検出した該
強度関係を所定に保つ様に前記干渉計への入射直線偏光
の偏光面の角度を回転させる制御手段とを備えたことを
特徴とするレーザ干渉測長器。 2 レーザ発振器からの直線偏光を偏光ビームスプリッ
タ機能を有する干渉計に入射させて測定光および参照光
に分割し、測定光用光路および参照光用光路を経た両光
の干渉計からの出力光を干渉手段に導入し、干渉手段を
経た干渉光を受光する受光測定手段から測長出力を得る
様に構成したレーザ干渉測長器において、前記干渉手段
を経た干渉光の一部をモニタ光として取り出す手段と、
この取り出されたモニタ光としての干渉光を受光してそ
の干渉信号の振幅を検知するモニタ手段と、このモニタ
手段で検知した干渉信号の振幅が最大になる様に前記干
渉計への入射直線偏光の偏光面の角度を回転させる制御
手段とを備えたことを特徴とするレーザ干渉測長器。 3 干渉計への入射直線偏光の偏光面の角度を回転させ
るための光学的手段としてファラデー素子を用いた請求
項1又は2記載のレーザ干渉測長器。 4 干渉計への入射直線偏光の偏光面の角度を回転させ
るための光学的手段として、回転可能に支持された1/
2波長板を用いた請求項1又は2記載のレーザ干渉測長
器。 5 レーザ発振器からの直線偏光を偏光ビームスプリッ
タ機能を有する干渉計に入射させて測定光および参照光
に分割し、測定光用光路および参照光用光路を経た両光
の干渉計からの出力光を干渉手段に導入し、干渉手段を
経た干渉光を受光する受光測定手段から測定出力を得る
様に構成したレーザ干渉測長器において、前記干渉手段
を経た干渉光の一部をモニタ光として取り出す手段と、
この取り出されたモニタ光としての干渉光を受光してそ
の干渉信号の振幅を検知するモニタ手段と、このモニタ
手段で検知した干渉信号の振幅が最大になる様に前記干
渉手段の角度を回転させる制御手段とを備えたことを特
徴とするレーザ干渉測長器。
[Claims] 1. Linearly polarized light from a laser oscillator is made incident on an interferometer having a polarization beam splitter function, where it is split into a measurement beam and a reference beam, and the two beams pass through an optical path for the measurement beam and an optical path for the reference beam, causing interference between the two beams. In a laser interferometric length measuring instrument configured to introduce the output light from the interferometer into the interference means and obtain the length measurement output from the light receiving measuring means that receives the interference light after passing through the interference means, a part of the output light from the interferometer is used. means for extracting the extracted monitor light as a monitor light at a stage before the interference means, a monitor means for separating the extracted monitor light into a measurement light component and a reference light component and detecting the intensity relationship between them; and control means for rotating the angle of the plane of polarization of the linearly polarized light incident on the interferometer so as to maintain the intensity relationship at a predetermined value. 2. The linearly polarized light from the laser oscillator is input into an interferometer with a polarization beam splitter function to split it into a measurement beam and a reference beam, and the output light from the interferometer for both beams passes through the measurement beam optical path and the reference beam optical path. In a laser interferometric length measuring device configured to obtain a length measurement output from a light receiving measuring means that is introduced into an interference means and receives the interference light that has passed through the interference means, a part of the interference light that has passed through the interference means is taken out as monitor light. means and
a monitor means for receiving the extracted interference light as the monitor light and detecting the amplitude of the interference signal; and a linearly polarized light input to the interferometer so as to maximize the amplitude of the interference signal detected by the monitor means. A laser interferometric length measuring device comprising: control means for rotating the angle of the plane of polarization. 3. The laser interferometric length measuring device according to claim 1 or 2, wherein a Faraday element is used as the optical means for rotating the angle of the polarization plane of the linearly polarized light incident on the interferometer. 4. A rotatably supported 1/
3. The laser interferometric length measuring device according to claim 1, which uses a two-wavelength plate. 5 Linearly polarized light from a laser oscillator is input into an interferometer with a polarization beam splitter function to split it into a measurement beam and a reference beam, and the output light from the interferometer for both beams passes through the measurement beam optical path and the reference beam optical path. In a laser interferometric length measuring device configured to obtain a measurement output from a light reception measuring means that is introduced into an interference means and receives the interference light that has passed through the interference means, means for extracting a part of the interference light that has passed through the interference means as monitor light. and,
A monitor means for receiving the interference light as the extracted monitor light and detecting the amplitude of the interference signal, and rotating the angle of the interference means so that the amplitude of the interference signal detected by the monitor means is maximized. A laser interferometric length measuring device characterized by comprising a control means.
JP5760689A 1989-03-09 1989-03-09 Laser interferometer Pending JPH02236102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5760689A JPH02236102A (en) 1989-03-09 1989-03-09 Laser interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5760689A JPH02236102A (en) 1989-03-09 1989-03-09 Laser interferometer

Publications (1)

Publication Number Publication Date
JPH02236102A true JPH02236102A (en) 1990-09-19

Family

ID=13060522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5760689A Pending JPH02236102A (en) 1989-03-09 1989-03-09 Laser interferometer

Country Status (1)

Country Link
JP (1) JPH02236102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232667A (en) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp Method of measuring optical heterodyne interference, and measuring instrument therefor
JP2008014935A (en) * 2006-06-05 2008-01-24 Hitachi High-Technologies Corp Surface inspection device and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232667A (en) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp Method of measuring optical heterodyne interference, and measuring instrument therefor
JP4673770B2 (en) * 2006-03-03 2011-04-20 株式会社日立ハイテクノロジーズ Optical heterodyne interference measurement method and measurement apparatus therefor
JP2008014935A (en) * 2006-06-05 2008-01-24 Hitachi High-Technologies Corp Surface inspection device and method thereof

Similar Documents

Publication Publication Date Title
CN101430190B (en) Interferometer
JP2006275654A (en) Displacement detector, displacement measuring apparatus, and fixed-point detector
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
WO2018045735A1 (en) Apparatus used for laser-measurement signal correction
CN102175430A (en) Device and method for measuring 1/8 wave plate phase retardation and fast axis azimuth angle
JP4499924B2 (en) Light beam generation guide device
CN202033175U (en) Measuring device of phase retardation and fast axis azimuth of one-eighth wave plate
JPH01167607U (en)
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
JPH11211571A (en) Wavelength measuring apparatus
CN113465722A (en) Low-cost vibration measurement system and vibration measurement method
US5760903A (en) Light measuring apparatus
JPH0712576A (en) Optical fiber ring interferometer
JPH02236102A (en) Laser interferometer
US3717404A (en) Apparatus for determining the position of an object in an arbitrary cross-section of a beam of radiation
JPS6355035B2 (en)
JPH0222503A (en) Laser interference measuring instrument
JPH03118477A (en) Laser doppler vibrometer using beam branching optical system
JPH0755571A (en) Plarization dispersion measuring instrument
JP2736105B2 (en) Semiconductor laser device
CN210953094U (en) Polarization laser Doppler vibration measurement system
JPH06307858A (en) Optical displacement meter
JPH02298804A (en) Interferometer
JP2000121322A (en) Laser length measuring machine
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device