JPH02235874A - Production of dioxazine derivative - Google Patents

Production of dioxazine derivative

Info

Publication number
JPH02235874A
JPH02235874A JP5502289A JP5502289A JPH02235874A JP H02235874 A JPH02235874 A JP H02235874A JP 5502289 A JP5502289 A JP 5502289A JP 5502289 A JP5502289 A JP 5502289A JP H02235874 A JPH02235874 A JP H02235874A
Authority
JP
Japan
Prior art keywords
group
formula
alkyl
compound
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5502289A
Other languages
Japanese (ja)
Inventor
Hiroshi Oyama
大山 廣志
Takeshi Morita
健 森田
Shiro Niitsuma
新妻 史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Original Assignee
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd filed Critical Hokko Chemical Industry Co Ltd
Priority to JP5502289A priority Critical patent/JPH02235874A/en
Publication of JPH02235874A publication Critical patent/JPH02235874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NEW MATERIAL:The dioxazine derivative of formula IV (R1 is H, alkyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, alkylthioalkyl, aryl, arylalkyl, aryloxyalkyl, etc.; R2 is H, lower alkyl, aryl or arylalkyl; R3 is OH, lower alkoxy, lower alkylthio or NR4R5; R4 and R5 are H, alkyl, cycloalkyl, alkoxyalkyl, aryl, arylalkyl, etc.). EXAMPLE:3-tert-Butyl-5-(2,6-diethylphenylaminocarbonyl)1,4,2-dioxazine. USE:A herbicide and an intermediate for agricultural chemicals, pharmaceuticals, etc. PREPARATION:The objective compound of formula IV can be produced by reducing a compound of formula I by electrolytic reduction and reacting the produced anion with a compound of formula II-III (X-Z are halogen).

Description

【発明の詳細な説明】 上の    》 本発明は,新規なジオキサジン誘導体の製造方法に関す
る.より詳しくは,ヒトロキシルアミン化合物を電解還
元し、生成したアニオン種を、α、β−ジ八口カルボン
酸誘導体もしくは、α一八口アクリル酸誘導体と反応さ
せることによるジオキサジン誘導体の製造方法に関する
ものである. 本発明の方法によって製造されるジオキサジン誘導体は
除草剤として有用であり、また農薬、医薬などの生理性
物質の合成中間体としても有用である.したがって,本
発明の製造方法は化学工業、特に農業、医薬製造業分野
で利用できる.工え米二韮遣工 これまで、5,6−ジヒトロ−1.4.2−ジオキサジ
ン骨格を有する化合物については若干の文献的記載があ
り,またそれらの通常の有機合成法による合成もあわせ
て述べられている.それによると、ジャーナル オブ 
オルガニック ケミストリー 第36巻第2号第284
頁(1971年)には、ペンズヒドロキザム酸と,l,
2−ジブロモエタンとの反応により,3−フェニルー5
.6−ジヒドロ−1.4.2−ジオキサジンが得られた
と記載されている.また、日本化学会誌1975年第6
巻第1041頁には、長鎖ヒトロキザム酸と1.2−ジ
ブロモエタンとの反応により、3一長鎖アルキル置換−
5,6−ジヒトロー1,4.2−ジオキサジン誘導体を
得ている.一方,生理活性物質への応用例は、医薬とじ
て中枢神経系に活性を有する化合物として,3一置換−
5,6−ジヒトロ−1.4.2−ジオキサジンの製法が
特開昭47−42685号公報に記載されており、3一
位の置換体の具体例として、例えば3−ベンジル体、3
−オルソク口ルフェニル体および3−メタクロルフェニ
ル体などの誘導体が開示されている.また農薬として応
用例は,カルボン酸誘導体を置換基に持つ既知の農薬を
変型した特殊な構造を有するものに限れらる.これらに
ついては特開昭57−154181号公報およびドイツ
特許第3220525号公報に記載され,除草活性を有
することも知られている.しかしながら,これまで5位
にカルボン酸誘導体を置換基として持つ化合物に関する
文献的記載はない. が  じようと る 従来、5位にカルボン酸誘導体を置換基として持つ5,
6−ジヒドロー1.4.2−ジオキサジンの製造方法は
知られていない. ↓ 本発明は,電解反応を応用て、新規なジオキサジン誘導
体を極めて高収率よく製造する方法を提供することにあ
る. るための 本発明者らは,上記の目的を達成するために、種々の合
成方法を試みた.その結果、下記する一般式(I)の化
合物を原料として電解還元し、生成したアニオン種に、
一般式(]r)または一般式(m)の化合物を反応させ
ることにより、新規て除草剤として有用な革≠単ジオキ
サジン誘導体に導きうることを知見するに至ワた. したがって、本発明の要旨は、一般式(I)R.−C−
NHOH    (I) I O (式中、R.は,水素原子、アルキル基、シクロアルキ
ル基、シクロアルキルアルキル基、アルコキシアルキル
基,アルキルチオアルキル基、アリール基,アリールア
ルキル基,アリールオキシアルキル基、アリールチオア
ルキル基、アリールアルキル才キシアルキル基またはア
リールアルキルチオアルキル基(ただし、アルキルとは
,飽和または不飽和のいずれでもよく、アリールとは、
ベンゼン核、ビリジン核、チオフェン核またはフラン核
を意味し,これらの核は2個までの同一または相異なる
八ロゲン原子、低級アルキル基,低級ハロアルキル基,
ヒドロキシ基,低級アルコキシ基、低級アルキルチオ基
,シアノ基、ニトロ基、フェノキシ基またはフェニルチ
オ基で置換されてもよい)を示す)で表されるヒトロキ
シルアミン化合物を電解還元し、生成したアニオン種を
一般式(n) アクリル酸誘導体と反応させることを特徴とする、一般
式(17) (式中、R,,R..R,は前記に同じである)で表さ
れるジオキサジン誘導体の製造方法からなる. 本発明の製造方法に用いられたR t . R *、R
..X.’l;よびzcvsmと、得られた(IV)式
化合物の物性値を第1表に示す. (式中,R2およびR,は,前記に同じであり,Xおよ
びYは同一または相異なるハロゲン原子を示す)で表さ
れるα,β−ジハロカルボン酸誘導体と反応させるか、
一般式(m) R *  − C H − C − C O R s 
      ( m )(式中、RよおよびR3は前記
に同じであり、2はハロゲン原子を示す)で表される,
α一八口本発明を実施するには,次に述べるようにs1
の方法および第2の方法に大別できるが,この二種の方
法を組み合わした方法あるいはそれによる連続方法で行
いつる. 第1の方法は、一般式(1)と(II)または(m)で
示される化合物、溶媒および支持電解寅を隔膜で仕切ら
れた電解層の陰極室に入れ,陽極室には溶蝶と支持電解
質を入れ、電極を通して直流電流を電気量として(■)
の化合物の場合2FmoJl−’.  (III)の化
合物の場合IFmojL−”前後通電する. 溶媒としては,非プロトン性極性溶媒が好ましく.ジメ
チルホルムアミド,ジメチルスルホキシト,ヘキサメチ
ルホスホンアミト、スルホラン、アセトニトリルSよび
メタノールが使用できる,支持電解質としては、第4級
アンモニウム塩が好ましく,カチオンとしては、テトラ
メチルアンモニウム.トリメチルベンジルアンモニウム
,テκ二,ミ111レ トラエチルアンモニウム,トリエチルアンモニウノー,
テトラブロビルアンモニクム,テトライソブロアンモニ
ウム、テトラブチルアンモニウム、およびテトラヘキシ
ルアンモニウムなどが、アニオンとしては,塩素イオン
,臭素イオン、沃素イオン、バラトルエンスルホン酸イ
オン,ベンゼンスルホン酸イオン、過塩素イオン、硫酸
イオン、硝酸イオンおよびホウフッ化水素酸イオンなど
が用いられるが、とりわけテトラエチルアンモニウム、
バラトルエンスルホン酸塩.テトラエチルアンモニウム
過塩素酸およびテトラブチルアンモニウム過塩素酸塩な
どが多く用いられる.隔膜としては、ガラスフィルター
,素焼円筒およびイオン交換膜が使用できる.電極とし
ては,白金,水銀,鉛,銅などの金属電極および炭素な
ど一般に電解反応に用いられるものを反応装置に合わせ
種々の形状で使用することができるが、特に好ましい電
極は白金と炭素である. 電解反応は、(■)および(m)式化合物の還元を避け
るためこれらの還元電位より小さい定電位で電解を必要
とするが、一般に(I)式化合物の還元電位の方が小さ
いことから,適当な大きさの定電流で電解を行っても収
率よく目的物が得られる場合が多い.電解還元反応の温
度は、室温から溶媒の沸点の範囲で任意に設定できるが
,通常は室温から80℃の範囲で行う. 原料である式(I)化合物、式(n)化合物および式(
m)化合物のモル比は任意にとりうるが、l:l付近に
設定することが望ましい.また,電解反応な円滑に行う
ため攪拌を行うことが好ましい.反応終了後は、通常の
有機反応と同様に、水とベンゼン、トルエン、テトラヒ
ト口フラン、クロロホルムなどの有機溶媒を加えて目的
物を抽出し,溶媒を留去することによって目的物を得る
ことができる. 第2の方法は、一般式(r)で表される化合物、溶媒お
よび支持電解質を隔膜で仕切られた陰極室に入れ、陽極
室には溶媒と支持電解質を入れる.そして電極を通して
(I)式化合物をア二オンにするに必要な電気量として
IFmof−’前後の直流電流を流す.通電後,陰極室
で生成した式(I)化合物のア二オン種と半量モルの式
(II)化合物を反応させるか当量モルの式(m)化合
物を反応させる.ここて使用する溶媒,支持電解買、隔
WXSよび電極に関してはW4lの方法と全く同じであ
り、反応温度および後処理も第1の方法に準ずる.第2
の方法は本発明のすべての化合物に適用できるが、特に
(II)および(m)式化合物が還元され易い場合に有
利である. なお、原料である(I)、(n)および(m)式化合物
は公知化合物または公知類の合成法で容易に製造するこ
とができる. 次に本発明の方法について実施例1〜4にて具体的に説
明する.ただし、本発明はこれらの実施例のみに限定さ
れるものではない. 素焼円筒隔膜と白金電極を備えた反応容器の陰極室にタ
ーシャリープチルカルボニルヒドロキシルアミン 1.
17g (0.01モル)、N一(2.6−ジエチルフ
ェニル)−2.3−ジクロ11!lユユ 3−フェニル
−5− α、α−ジのDMF溶液(0.5モル濠度)6
0mjLを入れ、陽極室にはテトラエチルアンモニウム
過塩素酸塩のDMF溶液(0.75モル濃度)20ml
を入れ、両極の電流密度 1.5Adm””の電流を2
.0FmoJ1−’,50℃で攪拌しながら80分通電
した後、冷却し、陰極室の液をトルエンと水の混合物に
投入した.有機層をIN塩酸、次でIN水酸化ナトリウ
ムで洗浄し.水洗後無水硫酸ナトリウムで乾燥した.減
圧にて溶媒を留去すると,標記化合物が淡褐色結晶とし
て2.86 (収率90%、電流効率90%》得られ、
ヘキサンーアセトン混合溶媒で再結晶すると、白色結晶
となり,融点125−127℃を示した. 素焼円筒隔膜と白金電極を備えた反応容器の陰極室にペ
ンズヒトロキザム酸 1.37g (0.01モル).
N−(α、α−ジメチルベンジル)−2−プロモクロト
ン酸アミl(2.82g(0.01モル)およびテトラ
エチルアンモニウムバラトルエンスルホン酸塩のDMF
溶液(0.5モル濃度)30m文を入れ、陽極室にはテ
トラエチルアンモニウムバラトルエンスルホン酸塩のD
MF溶液(0.75モル濃度)10mlを入れ、両極の
電流密度1.5Adm−”の電流をl.OFmoi−’
60℃で攪拌しながら80分間通電した.通電後冷却し
,陰極室の液をトルエンと水の混合物に投入し、実施例
1と同様に処理すると茶色油状物が得られ.トルエンー
酢酸エチル混合溶媒を使用したシリカゲルカラムクロマ
トグラフィーにて精製すると、標記化合物が無色油状物
として2.97g (収率88%、電流効率88%)得
られ、n:’=1.5036を示した.}C3.63g
 (0、1モル)を加え、室温で2時間攪拌した.反応
終了後実施例lに準じて処理を行うと標記化合物が淡褐
色結晶として3.66g(収率89%、電流効率89%
)得られ、ヘキサンー酢酸エチル混合溶媒で再結晶する
と白色結晶となり、融点153−i56℃を示した.法
Q一 素焼円筒隔膜と白金電極を備えた反応容器の陰極室に2
−パラクロルフエノキシエチルカルボニルヒドロキシル
アミン 4.31g (0.02モル)およびテトラエ
チルアンモニウム過塩素酸塩のDMF溶液(0.5モル
濃度)60mMを入れ、陽極室にはテトラエチルアンモ
ニウム過塩素酸塩のDMF溶液(0.75モル濃度)2
0mlを入れ、両極の電流密度1.9Adm−”の電流
を1.OFmo文−1室温で攪拌しながら80分間通電
した.通電後陰極室にN− (2.6−ジエチルフェニ
ル)−2.3−ジブロモプロビオン酸アミ素焼円筒隔膜
と白金電極を備えた反応容器の喰極室にメチルチオカル
ボニルヒトロキシルアミン1.21g (0.1モル)
およびテトラエチルアンモニウムバラトルエンスルホン
酸塩のDMF溶液(0.5モル濃度)30mlを入れ、
陽極室にはテトラエチルアンモニウムバラトルエンスル
ホン酸塩のDMF溶液(0.75モル濃度)10mlを
入れ,両極の電流密度1.5Adm−”の電流を1.0
FmoR−’室温で攪拌しながら80分間通電した.通
電後陰極室にN−メチルーN−フェニル−2−ブロモア
クリル酸アミト2.40g(0.1モル)を加え、50
℃で1時間攪拌した.冷却後、実施例lに準じて処理を
行うと淡褐色油状物が得られ、トルエンーアセトン混合
溶媒を使用したシリカゲルカラムクロマトグラフイーに
て精製すると標記化合物が無色油状物として2.44g
 (収率87%,電流効率87%)得られ、nll1=
1.5114を示した.工11二蓋呈上 本発明の方法によれば、除草剤および医農薬の中間体と
して有用性が高い式(IT)化合物を工業的に有利に製
造することができる.すなわち,第1に,高純度,高収
率,しかも高い電気効率で,かつ簡単な操作で目的物を
得ることができる.特に収率において本発明の方法では
80%以上である.第2に、特に第2の方法は,式(n
)化合物が還元されやすい場合に有利であり,副反応を
ともなわず目的物を得ることができる. 第3に、第1の方法も第2の方法も、ともに基本的には
同じ反応メカニズムで進行し、かつほぼ同じレベルの高
収率で目的物を得ることができる.それゆえに,第1と
第2の方法を組み合わせた方法あるいは連続反応を行う
ことも可能である. 第4に、電気エネルギーによるため、操作が清潔に行え
る. 前記のごとく製造される一般式(ff)化合物は除草活
性を有する.この除草剤は,次の参考製造例に示すごと
く従来の方法にしたがって製剤化され、使用される. l 化合物?b.152の化合物30部,アルキルベンゼン
スルホン酸カルシウム3部、ボリオキシエチレンノニル
フエニルエーテル5部および白土62部を均一に混合し
,粉砕して、活性成分を30%含有する水利剤を得る. 2( 剤) 化合物崩.48の化合物30部,メチルエチルケトン4
0部およびポリオキシエチレンノニルフェニルエーテル
30部を混合して溶解すれば、活性成分を30%含有す
る乳剤を得る.化合物No.130の化合物5部、ラウ
リルサルフェート1.5部、リグニンスルホン酸カルシ
ウム1.5部、ベントナイト25部およびホワイトカー
ボン67部を均一に混合し,これに水を加えて混線機で
混練して造粒し、流動乾燥機で乾燥すると、活性成分を
5%含有する粒剤を得る.175 0 0 0アールの
大きさのワグネルポットに水田土壌(沖積壌土)をつめ
,その表層部にヒエ,ホタルイ、ヘラオモダカ,コナギ
,アゼナおよびキカシグサの種子を各50粒ずつ均一に
播種した.播種1日後湛水し、水深を2cmに保った.
播種3日後,水稲の2.5Ii期苗1株2本植えで,ポ
ット当り3株を移植した.水稲移植1日後、参考製剤例
2に準じて調製した乳剤を水で希訳し、ポット当り処理
薬液10mJL(活性成分の施用量換算でlOアール当
り50g相当)を滴下した. 本試験はl薬液濃度区当り2連制て行い,薬剤処理30
日後に、以下に示す評価の指標に基づいて、除草効果お
よび水稲の薬害程度を調査した.その結果は第2表のと
おりである. 除草率(%) 100% 80〜lOO%未満 6 0〜  80ll 4 0〜  BOn 2 0〜  4011 ’l,Qn 薬害程度 枯  死 薬害大 II中 ノI   小 H  僅小 11無 第2表 (ドイツ国特許第3220525号公報記載の化合物)
試験例2 畑作雑草に対する除草 果および作物1)雑
草に対する除草効果試験 1/5000アールの大きさの素焼製ポットに畑土壌(
沖積壌土)をつめ,表層1cmの土壌とメヒシバ、エノ
コログサ、シロザ,イヌビュ、イ一一 プに準じて調製した乳剤を水て希釈し、lOアール当り
1 00Mの処理薬液(活性成分の施用量換算で10ア
ール当り100g相当)を土壌表面に噴霧して処理した
. 本試験は1区2連制で行い,薬剤処理30日後に除草効
果を試験例1と同様の評価の指標に基づいて調査した. 2)作物に対する薬害試験 1/10,000アールの大きさの素焼製ポットに畑土
壌(沖積壌土)をフめ、各作物の種子(ダイズ5粒、ト
ウモロコシ5粒、ビート10粒、ナタネlO粒およびコ
ムギ10粒)をそれぞ希釈し、10アール当り100文
の処理薬液(活性成分量で10アール当り100g相当
)を土壌表面に噴霧した. 本試験は、1区2連制で行い、薬剤処理30日後に各作
物に対する薬害を試験例lと同様の評価指標に基づいて
調査した.その結果は第3表のとおりである.
DETAILED DESCRIPTION OF THE INVENTION [Above] The present invention relates to a method for producing a novel dioxazine derivative. More specifically, it relates to a method for producing a dioxazine derivative by electrolytically reducing a hydroxylamine compound and reacting the generated anion species with an α,β-diyakuchi carboxylic acid derivative or an α-diyakuchi acrylic acid derivative. It is. The dioxazine derivatives produced by the method of the present invention are useful as herbicides, and are also useful as intermediates for the synthesis of physiological substances such as agricultural chemicals and medicines. Therefore, the production method of the present invention can be used in the chemical industry, particularly in the agricultural and pharmaceutical manufacturing fields. Until now, there have been some literature descriptions of compounds having a 5,6-dihydro-1,4,2-dioxazine skeleton, and there have also been reports of their synthesis by conventional organic synthesis methods. It is stated. According to it, the Journal of
Organic Chemistry Volume 36 No. 2 No. 284
(1971), penzhydroxamic acid, l,
By reaction with 2-dibromoethane, 3-phenyl-5
.. It is stated that 6-dihydro-1,4,2-dioxazine was obtained. Also, the Journal of the Chemical Society of Japan, 1975, No. 6
Vol. 1041 describes that by reacting long-chain hydroxamic acid with 1,2-dibromoethane, 3-long-chain alkyl-substituted -
A 5,6-dihythro-1,4,2-dioxazine derivative has been obtained. On the other hand, as an example of application to physiologically active substances, 3-substituted -
A method for producing 5,6-dihydro-1,4,2-dioxazine is described in JP-A-47-42685, and specific examples of substituents at the 31-position include, for example, 3-benzyl compound, 3-benzyl compound,
- Derivatives such as orthochlorphenyl derivatives and 3-methachlorophenyl derivatives have been disclosed. Applications as agricultural chemicals are limited to those with special structures that are modified versions of known agricultural chemicals that have carboxylic acid derivatives as substituents. These are described in JP-A-57-154181 and German Patent No. 3220525, and are also known to have herbicidal activity. However, to date, there is no literature description of a compound having a carboxylic acid derivative as a substituent at the 5-position. Conventionally, 5, which has a carboxylic acid derivative as a substituent at the 5-position,
There is no known method for producing 6-dihydro 1.4.2-dioxazine. ↓ The purpose of the present invention is to provide a method for producing novel dioxazine derivatives at extremely high yields by applying electrolytic reactions. The present inventors have tried various synthetic methods to achieve the above objective. As a result, the anion species produced by electrolytically reducing the compound of the general formula (I) below as a raw material,
We have now discovered that by reacting a compound of general formula (]r) or general formula (m), it is possible to obtain a new dioxazine derivative useful as a herbicide. Therefore, the gist of the present invention is that the general formula (I) R. -C-
NHOH (I) I O (wherein R. is a hydrogen atom, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an alkoxyalkyl group, an alkylthioalkyl group, an aryl group, an arylalkyl group, an aryloxyalkyl group, ruthioalkyl group, arylalkyl group, oxyalkyl group, or arylalkylthioalkyl group (however, alkyl may be saturated or unsaturated, and aryl is
It means a benzene nucleus, a pyridine nucleus, a thiophene nucleus or a furan nucleus, and these nuclei can contain up to two identical or different octarogen atoms, a lower alkyl group, a lower haloalkyl group,
A hydroxylamine compound (which may be substituted with a hydroxy group, a lower alkoxy group, a lower alkylthio group, a cyano group, a nitro group, a phenoxy group, or a phenylthio group)) is electrolytically reduced, and the anion species generated are A method for producing a dioxazine derivative represented by general formula (17) (wherein R,,R...R, are the same as above), which is characterized by reacting with an acrylic acid derivative of general formula (n). Consists of. R t . used in the production method of the present invention. R *, R
.. .. X. 'l; and zcvsm, and the physical properties of the obtained compound of formula (IV) are shown in Table 1. (In the formula, R2 and R are the same as above, and X and Y represent the same or different halogen atoms.)
General formula (m) R * - C H - C - C O R s
(m) (in the formula, R and R are the same as above, and 2 represents a halogen atom),
α18 mouth To carry out the present invention, s1
It can be roughly divided into the first method and the second method, but it can be carried out by a combination of these two methods or by a continuous method using them. The first method is to put the compound represented by the general formula (1), (II) or (m), a solvent and a supporting electrolyte into the cathode chamber of the electrolyte layer separated by a diaphragm, and put the molten butter and the anode chamber into the anode chamber. Add a supporting electrolyte and pass a direct current through the electrodes as a quantity of electricity (■)
For the compound 2FmoJl-'. In the case of the compound (III), current is applied before and after IFmojL-''. As the solvent, an aprotic polar solvent is preferable. Dimethylformamide, dimethylsulfoxide, hexamethylphosphonamide, sulfolane, acetonitrile S and methanol can be used as the supporting electrolyte. is preferably a quaternary ammonium salt, and the cations include tetramethylammonium, trimethylbenzylammonium, tetraethylammonium, triethylammonium, triethylammonium,
Tetrabrobylammonicum, tetraisobroammonium, tetrabutylammonium, and tetrahexylammonium, etc., and anions include chloride ion, bromine ion, iodide ion, valatoluenesulfonate ion, benzenesulfonate ion, perchloride ion, and sulfuric acid. ion, nitrate ion and borofluoride ion, among others, tetraethylammonium,
Balatoluene sulfonate. Tetraethylammonium perchlorate and tetrabutylammonium perchlorate are often used. Glass filters, unglazed cylinders, and ion exchange membranes can be used as diaphragms. As electrodes, metal electrodes such as platinum, mercury, lead, and copper, and those commonly used in electrolytic reactions such as carbon can be used in various shapes depending on the reaction apparatus, but particularly preferred electrodes are platinum and carbon. .. Electrolytic reactions require electrolysis at a constant potential lower than these reduction potentials in order to avoid reduction of compounds of formulas (■) and (m), but generally the reduction potential of compounds of formula (I) is lower, Even if electrolysis is performed at an appropriate constant current, the desired product can often be obtained in good yield. The temperature of the electrolytic reduction reaction can be set arbitrarily within the range from room temperature to the boiling point of the solvent, but it is usually carried out between room temperature and 80°C. Formula (I) compound, formula (n) compound and formula (
m) The molar ratio of the compounds can be set arbitrarily, but it is preferably set around 1:1. In addition, it is preferable to perform stirring to ensure a smooth electrolytic reaction. After the reaction is complete, the target product can be obtained by adding water and an organic solvent such as benzene, toluene, tetrahydrofuran, or chloroform, and then distilling off the solvent, as in a normal organic reaction. can. In the second method, the compound represented by the general formula (r), a solvent, and a supporting electrolyte are placed in a cathode chamber separated by a diaphragm, and the solvent and supporting electrolyte are placed in an anode chamber. Then, a direct current around IFmof-' is passed through the electrode as the amount of electricity necessary to convert the compound of formula (I) into an anion. After electricity is applied, the anion species of the formula (I) compound produced in the cathode chamber is reacted with half a mole of the formula (II) compound or with an equivalent mole of the formula (m) compound. The solvent, supporting electrolyte, separation WXS, and electrode used here are exactly the same as the W4l method, and the reaction temperature and post-treatment also follow the first method. Second
Although the method can be applied to all compounds of the present invention, it is particularly advantageous when compounds of formulas (II) and (m) are easily reduced. The starting materials, compounds of formulas (I), (n) and (m), can be easily produced using known compounds or known synthetic methods. Next, the method of the present invention will be specifically explained in Examples 1 to 4. However, the present invention is not limited to these examples. Tertiarybutylcarbonylhydroxylamine was added to the cathode chamber of a reaction vessel equipped with an unglazed cylindrical diaphragm and a platinum electrode.1.
17g (0.01 mol), N-(2.6-diethylphenyl)-2.3-dichloro11! DMF solution of lyuyu 3-phenyl-5-α,α-di (0.5 molar concentration) 6
0 mjL, and 20 ml of a DMF solution (0.75 molar concentration) of tetraethylammonium perchlorate in the anode chamber.
, and a current with a current density of 1.5Adm" at both poles is applied to 2
.. 0FmoJ1-', was heated at 50°C with stirring for 80 minutes, cooled, and the liquid in the cathode chamber was poured into a mixture of toluene and water. The organic layer was washed with IN hydrochloric acid and then with IN sodium hydroxide. After washing with water, it was dried with anhydrous sodium sulfate. When the solvent was distilled off under reduced pressure, the title compound was obtained as pale brown crystals (yield 90%, current efficiency 90%).
Recrystallization from a hexane-acetone mixed solvent gave white crystals with a melting point of 125-127°C. 1.37 g (0.01 mol) of penzhydroxamic acid was placed in the cathode chamber of a reaction vessel equipped with an unglazed cylindrical diaphragm and a platinum electrode.
Amyl N-(α,α-dimethylbenzyl)-2-promocrotonate (2.82 g (0.01 mol) and tetraethylammonium valatoluenesulfonate in DMF
Add 30 m of solution (0.5 molar concentration) and add D of tetraethylammonium valatoluene sulfonate to the anode chamber.
Add 10 ml of MF solution (0.75 molar concentration) and apply a current with a current density of 1.5 Adm-' at both poles to l.OFmoi-'
Electricity was applied for 80 minutes while stirring at 60°C. After energization, the cathode chamber was cooled, and the liquid in the cathode chamber was poured into a mixture of toluene and water, and treated in the same manner as in Example 1 to obtain a brown oil. When purified by silica gel column chromatography using a mixed solvent of toluene and ethyl acetate, 2.97 g (yield 88%, current efficiency 88%) of the title compound was obtained as a colorless oil, showing n:' = 1.5036. Ta. }C3.63g
(0.1 mol) was added and stirred at room temperature for 2 hours. After the reaction was completed, the treatment was carried out according to Example 1, and 3.66 g of the title compound was obtained as light brown crystals (yield: 89%, current efficiency: 89%).
), which was recrystallized from a hexane-ethyl acetate mixed solvent to give white crystals with a melting point of 153-56°C. Method Q: 2 in the cathode chamber of a reaction vessel equipped with an unglazed cylindrical diaphragm and a platinum electrode.
- Put 4.31 g (0.02 mol) of parachlorophenoxyethylcarbonylhydroxylamine and 60 mM of a DMF solution (0.5 molar concentration) of tetraethylammonium perchlorate into the anode chamber. DMF solution (0.75 molar concentration) 2
0 ml of N-(2.6-diethylphenyl)-2. 1.21 g (0.1 mol) of methylthiocarbonylhydroxylamine was placed in the electrode chamber of a reaction vessel equipped with a 3-dibromoprobionic acid amine clay cylindrical diaphragm and a platinum electrode.
and 30 ml of DMF solution (0.5 molar concentration) of tetraethylammonium valatoluene sulfonate,
10 ml of a DMF solution (0.75 molar concentration) of tetraethylammonium valatoluene sulfonate was placed in the anode chamber, and a current of 1.5 Adm-'' was applied to both electrodes.
FmoR-'Electricity was applied for 80 minutes while stirring at room temperature. After energization, 2.40 g (0.1 mol) of N-methyl-N-phenyl-2-bromoacrylic acid amide was added to the cathode chamber, and 50
The mixture was stirred at ℃ for 1 hour. After cooling, a light brown oil was obtained by processing according to Example 1. Purification by silica gel column chromatography using a toluene-acetone mixed solvent yielded 2.44 g of the title compound as a colorless oil.
(yield 87%, current efficiency 87%) was obtained, nll1=
It showed 1.5114. According to the method of the present invention, compounds of formula (IT), which are highly useful as herbicides and intermediates for pharmaceuticals and agricultural chemicals, can be industrially advantageously produced. Firstly, the desired product can be obtained with high purity, high yield, high electrical efficiency, and simple operation. In particular, the yield of the method of the present invention is 80% or more. Second, and especially the second method, the formula (n
) It is advantageous when the compound is easily reduced, and the desired product can be obtained without side reactions. Third, both the first method and the second method basically proceed with the same reaction mechanism, and can obtain the desired product at almost the same high yield. Therefore, it is also possible to perform a combination of the first and second methods or a continuous reaction. Fourth, since it uses electrical energy, it can be operated cleanly. The compound of general formula (ff) produced as described above has herbicidal activity. This herbicide is formulated and used according to conventional methods as shown in the following reference production example. l Compound? b. 30 parts of the compound No. 152, 3 parts of calcium alkylbenzenesulfonate, 5 parts of polyoxyethylene nonyl phenyl ether, and 62 parts of clay are uniformly mixed and pulverized to obtain an irrigation agent containing 30% of the active ingredient. 2 (agent) Compound decomposition. 30 parts of compound 48, methyl ethyl ketone 4
By mixing and dissolving 0 parts of polyoxyethylene nonylphenyl ether and 30 parts of polyoxyethylene nonylphenyl ether, an emulsion containing 30% of the active ingredient is obtained. Compound no. 5 parts of the compound No. 130, 1.5 parts of lauryl sulfate, 1.5 parts of calcium lignin sulfonate, 25 parts of bentonite and 67 parts of white carbon were uniformly mixed, water was added thereto, and the mixture was kneaded using a mixer to form granules. and dried in a fluidized fluid dryer to obtain granules containing 5% of the active ingredient. A Wagner pot with a size of 175,000 are was filled with rice paddy soil (alluvial loam), and 50 seeds each of Japanese barnyard grass, firefly, Japanese cypress, Japanese azalea, azalea, and cypress grass were uniformly sown on the surface layer. One day after sowing, the plants were flooded and the water depth was maintained at 2 cm.
Three days after sowing, two 2.5Ii seedlings of paddy rice were planted, and three plants were transplanted per pot. One day after transplanting paddy rice, an emulsion prepared according to Reference Formulation Example 2 was diluted with water, and 10 mJL of the treatment chemical solution per pot (equivalent to 50 g per 1O are in terms of application amount of active ingredient) was added dropwise. This test was conducted in duplicate per 1 drug solution concentration section, and
After a few days, the herbicidal effect and the degree of chemical damage to rice were investigated based on the evaluation indicators shown below. The results are shown in Table 2. Weeding rate (%) 100% Less than 80~lOO% 6 0~ 80ll 4 0~ BOn 2 0~ 4011 'l, Qn Degree of chemical damage Blight Killing chemical damage Large II Medium I Small H Very small 11 None Table 2 (Germany) Compound described in Japanese Patent No. 3220525)
Test Example 2 Weeding against weeds in field crops Fruits and crops 1) Test of herbicidal effect against weeds Field soil (
Alluvial loam) was packed, and an emulsion prepared according to the soil of 1 cm of the surface layer was diluted with water, and an emulsion was prepared according to the method for the soil of 1 cm of the surface layer. (equivalent to 100 g per 10 are) was sprayed onto the soil surface. This test was conducted in two consecutive plots, and 30 days after the chemical treatment, the herbicidal effect was investigated based on the same evaluation index as in Test Example 1. 2) Test for phytotoxicity on crops Pour field soil (alluvial loam) into a clay pot with a size of 1/10,000 are, and add seeds of each crop (5 soybean grains, 5 corn grains, 10 beet grains, rapeseed 10 grains). and 10 grains of wheat) were diluted and sprayed onto the soil surface with 100 grams of treatment solution per 10 ares (equivalent to 100 g of active ingredient per 10 ares). This test was conducted in two consecutive plots, and 30 days after the chemical treatment, the chemical damage to each crop was investigated based on the same evaluation index as in Test Example 1. The results are shown in Table 3.

Claims (1)

【特許請求の範囲】 1)一般式( I ) ▲数式、化学式、表等があります▼( I ) 〔式中、R_1は、水素原子、アルキル基、シクロアル
キル基、シクロアルキルアルキル基、アルコキシアルキ
ル基、アルキルチオアルキル基、アリール基、アリール
アルキル基、アリールオキシアルキル基、アリールチオ
アルキル基、アリールアルキルオキシアルキル基または
アリールアルキルチオアルキル基(ただし、アルキルと
は、飽和または不飽和のいずれでもよく、アリールとは
、ベンゼン核、ピリジン核、チオフェン核またはフラン
核を意味し、これらの核は2個までの同一または相異な
るハロゲン原子、低級アルキル基、低級ハロアルキル基
、ヒドロキシ基、低級アルコキシ基、低級アルキルチオ
基、シアノ基、ニトロ基、フェノキシ基またはフェニル
チオ基で置換されてもよい)を示す〕で表されるヒドロ
キシルアミン化合物を電解還元し、生成したアニオン種
を一般式(II) ▲数式、化学式、表等があります▼(II) 〔式中、R_2は、水素原子、低級アルキル基、アリー
ル基またはアリールアルキル基を示し、R_3は、ヒド
ロキシ基、低級アルコキシ基、低級アルキルチオ基もし
くは基▲数式、化学式、表等があります▼(ただし、R
_4およびR_5は、同一または相異なる水素原子、ア
ルキル基、シクロアルキル基、アルコキシアルキル基、
アリール基、アリールアルキル基、アリールアルキルオ
キシ基であるか、互いに結合して含窒素5〜7員環を形
成するが、この場合は環内にさらに別のヘテロ原子を含
むことができる)を示し、XおよびYは同一または相違
なるハロゲン原子を示す〕で表されるα,β−ジハロカ
ルボン酸誘導体と反応させるか、一般式(III)▲数式
、化学式、表等があります▼(III) (式中、R_2およびR_3は前記に同じであり、Zは
ハロゲン原子を示す)で表される、α−ハロアクリル酸
誘導体と反応させることを特徴とする、一般式(IV) ▲数式、化学式、表等があります▼(IV) (式中、R_1、R_2、R_3は前記に同じである)
で表されるジオキサジン誘導体の製造方法。
[Claims] 1) General formula (I) ▲ Numerical formula, chemical formula, table, etc. ▼ (I) [In the formula, R_1 is a hydrogen atom, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, or an alkoxyalkyl group. group, alkylthioalkyl group, aryl group, arylalkyl group, aryloxyalkyl group, arylthioalkyl group, arylalkyloxyalkyl group or arylalkylthioalkyl group (however, alkyl may be saturated or unsaturated, and aryl means a benzene nucleus, a pyridine nucleus, a thiophene nucleus or a furan nucleus, which can contain up to two identical or different halogen atoms, a lower alkyl group, a lower haloalkyl group, a hydroxy group, a lower alkoxy group, a lower alkylthio group. A hydroxylamine compound represented by the following formula (which may be substituted with a group, a cyano group, a nitro group, a phenoxy group or a phenylthio group) is electrolytically reduced, and the generated anion species is converted to the general formula (II) ▲Mathematical formula, chemical formula, There are tables, etc.▼(II) [In the formula, R_2 represents a hydrogen atom, a lower alkyl group, an aryl group, or an arylalkyl group, and R_3 represents a hydroxy group, a lower alkoxy group, a lower alkylthio group, or a group▲Mathematical formula, chemical formula , tables, etc. ▼ (However, R
_4 and R_5 are the same or different hydrogen atoms, alkyl groups, cycloalkyl groups, alkoxyalkyl groups,
is an aryl group, an arylalkyl group, an arylalkyloxy group, or is bonded to each other to form a nitrogen-containing 5- to 7-membered ring, in which case the ring may further contain another heteroatom) . (wherein, R_2 and R_3 are the same as above, and Z represents a halogen atom), the general formula (IV) is characterized by reacting with an α-haloacrylic acid derivative ▲Mathematical formula, chemical formula, table etc.▼(IV) (In the formula, R_1, R_2, R_3 are the same as above)
A method for producing a dioxazine derivative represented by
JP5502289A 1989-03-09 1989-03-09 Production of dioxazine derivative Pending JPH02235874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502289A JPH02235874A (en) 1989-03-09 1989-03-09 Production of dioxazine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502289A JPH02235874A (en) 1989-03-09 1989-03-09 Production of dioxazine derivative

Publications (1)

Publication Number Publication Date
JPH02235874A true JPH02235874A (en) 1990-09-18

Family

ID=12987043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502289A Pending JPH02235874A (en) 1989-03-09 1989-03-09 Production of dioxazine derivative

Country Status (1)

Country Link
JP (1) JPH02235874A (en)

Similar Documents

Publication Publication Date Title
JPH03204855A (en) Cyclic amide derivative and herbicide
JPH01221371A (en) Production of cyclic oxyamine derivative
JPH02200658A (en) N-(substituted) benzylcarboxamide derivative and herbicide
JPH02235874A (en) Production of dioxazine derivative
JPH02229175A (en) Cyclic acylhydroxylamine derivative and production thereof
US3711271A (en) Method for controlling algae
JP2810544B2 (en) N-acyl-N-phenyltetrahydrophthalamic acid derivative, method for producing the same, and herbicide containing the same as an active ingredient
JPH03176475A (en) Cyclic urea derivative and herbicide
JPH05213970A (en) Condensed heterocyclic ring derivative and herbicide
JPH0625133B2 (en) Pyrazole derivative, its production method and selective herbicide
JPH01301668A (en) Mandelic acid derivative and herbicide
JP3066536B2 (en) Condensed heterocyclic derivatives and herbicides
KR790001357B1 (en) Process for the preparation of new nitrodiphenyl ethers
JP4047949B2 (en) Preparation of benzothiazole derivatives
JPS62123145A (en) 1,3-cyclohexanedione derivative and herbicide for paddy field containing said derivative as active component
JPH03200772A (en) Alkanoic acid amide derivative and herbicide
JP3177288B2 (en) 2-oxo-3-pyrroline derivatives and herbicides
JPH01215994A (en) Production of benzenecarboxyimidamido derivative by electrolytic reaction
JPH08193011A (en) Herbicidal sulfonamide compound
JP2564066B2 (en) N-acyl-N-phenyltetrahydrophthalamic acid derivative, method for producing the same and herbicide containing the same as active ingredient
JP2613047B2 (en) Novel 1,2,4-triazole-3-carboxylic acid amide derivative, production method thereof and herbicide containing the same as active ingredient
JPS6353184B2 (en)
JPH05221972A (en) 2-@(3754/24)2-oxo-3-pyrrolin-1-yl)isobutyric acid derivative and herbicide
JPS59130847A (en) Alpha,alpha-methylethylphenylacetic anilide derivative, its preparation and herbicide containing the same
JPS60218379A (en) 1,2,4-triazolin-5-one derivative and preparation and use thereof