JPH02235846A - Production of methyl formate - Google Patents

Production of methyl formate

Info

Publication number
JPH02235846A
JPH02235846A JP5697089A JP5697089A JPH02235846A JP H02235846 A JPH02235846 A JP H02235846A JP 5697089 A JP5697089 A JP 5697089A JP 5697089 A JP5697089 A JP 5697089A JP H02235846 A JPH02235846 A JP H02235846A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
membrane
reactor
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5697089A
Other languages
Japanese (ja)
Inventor
Shigeo Iiyama
飯山 繁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP5697089A priority Critical patent/JPH02235846A/en
Publication of JPH02235846A publication Critical patent/JPH02235846A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound in high yield with high yield of by-product hydrogen by catalytically reacting methanol using a reactor in which the wall of a reaction chamber thereof is partially composed of a heat-resistant hydrogen gas separation membrane, passing the resultant gas consisting essentially of hydrogen through the above-mentioned separation membrane and discharging the gas to the outside of the reactor. CONSTITUTION:Methanol is introduced from a raw material feed conduit pipe 1 into a reactor 3 in which the wall of a reaction chamber containing a methanol dehydration catalyst 6 is partially composed of a heat-resistant hydrogen gas separation membrane 6 and catalytically reacted to permeate a gas consisting essentially of hydrogen in the reaction product gases through the above-mentioned separation membrane 6 and discharge the gas from an outlet conduit pipe 7 to the outside of the reactor. Thereby, the objective compound is obtained from an outlet conduit pipe 8. A noncellular metal membrane (preferably a membrane, having 0.01-1.0mm thickness and composed of an alloy or Pd and Ag) is preferred as the above-mentioned separation membrane for providing high-purity hydrogen gas and a cellular gas separation membrane is preferred as the aforementioned membrane for enhancing the yield of methyl formate or hydrogen.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はギ酸メチルの製遣方法に関するものであり、
更に詳しくはメタノールから、ギ酸,ジメチルホルムア
ミドや高純度一酸化炭素等の原料,その他,医薬,農薬
品の中間体の原料として有用なギ酸メチルを高取率で製
造する方法に関する.[従来の技術] 従来、メタノールをギ酸メチルに転化するのにCu−Z
n−AN系触媒やCuイオン交換型フッ素四ケイ酸雲母
(Cu−TSM)触蝋が有効であることが知られている
, しかし、上記各従来技術では、副生ずる水素,一酸化炭
素,二酸化炭素等が多く、これらが原料のメタノールと
共存して化学平衡上原料の転化反応を抑制するため,目
的とするギ酸メチルは平衡転化率から予想される以上の
収率を得ることはできなかった.また、圧力の影響が非
常に大きいため、高収率でギ酸メチルを得るには低圧で
極力高い反応温度を選ぶ必要があるが、このため触媒寿
命が短くなる等の問題点があった. 本発明は後記の様に耐熱性の水素ガス分離膜即ち水素ガ
ス透過性の膜を利用するが,この種の膜を利用する他種
の反応については例えば特開昭61−17401 ,英
国特許出願2190397A等がある.[発明が解決し
ようとする課題] 本発明は、メタノールを原料とするギ酸メチルの製造に
おいて、前記従来技術に比較し、高いギ酸メチル収率と
高い副生水素収率を効率的に与える方法を提供すること
を目的とする. [課題を解決するための手段] 本発明はメタノール脱水素触媒を収容する反応室の壁の
一部が耐熱性水素ガス分llilwAから成る反応器に
メタノールを導入して接触反応させ、同時に反応生成ガ
ス中の水素を主成分とするガスを該耐熱性水素ガス分離
膜を透過させて反応器外に排出除去することを特徴とす
るギ酸メチルの製造方法.およびメタノールガスの導入
経路と反応済ガスの導出経路とが接続され、壁の一部が
耐熱性水素ガス分離膜であり、メタノール脱水素触媒が
収容され,触媒を収容した部分を加熱する手段を有する
反応器でありて、該膜に関し該触媒と反対側の空間即ち
透過先空間と,これに連なる反応器内で生成した水素を
主成分とするガスの導出経路とを有するギ酸メチルの製
造装置である.本発明で用いる鮒熱性水素ガス分NY’
lAはPd,TI.Zr,Ni.Co,Fe,Pt,V
,Nb,Ta,Agおよびこれらの2種以上から成る合
金の何れかから成る非多孔質金属展であり、特にPdと
Agの合金から成る非多孔質金属膜が好ましく、金属膜
の厚みが0.01〜1.0關あることが好ましい.該非
多孔質金属膜は反応生成ガス中の実質的に水素ガスのみ
を透過するので、高純度水素の副生に重点を置く場合好
適に用いられる.本発明で用いる耐熱性水素ガス分離膜
としては非多孔質金属膜以外に、平均細孔直径が110
0A(オングストローム)以下を有する耐熱性多孔質ガ
ス分離膜があり、その平均細孔直径は副生成物の中で最
大の平均自由行程を持つ水素の平均自由行程(0℃,l
atI1で1123人)よりも小さく、ガス分離機構が
クヌーセン拡散や分子ふるい作用等に従う分離膜であり
、好ましくは多孔質ガラス膜,多孔質セラミックス膜.
多孔質金属膜およびこれらの膜の表面をガラス.シリカ
,アルミナ,ジルコニアまたはPd金属等で処理して、
平均細孔直径を更に小さく制御した複合膜等が好ましい
.該多孔質ガス分離膜は反応生成ガス中の水素ガスを主
に透過させ、他にシ1生成物の一酸化炭素や二酸化炭素
の一部を透過させるので、直接得られる水素自体の純度
よりもギ酸メチルや水素の収率を高める目的に対し好適
に用いられる.本発明で用いる耐熱性水素ガス分離膜の
形状は、反応器が一般に円筒形状であるところから、円
筒形が好ましく、場合によっては中空形繊維状にして多
数本束ねた膜モジュールが膜面積の増大と単位面積当り
のガス透過量を増大させることができるところから最も
好ましい, 本発明で用いるメタノール脱水素触媒は公知のものが全
て利用でき、酸化銅.酸化亜鉛.酸化アルミニウムまた
はこれら3成分に次記A成分およびB成分および/また
はC成分を添加した触媒が代表的であり.ここでAIt
分が銅のりん酸塩,亜鉛のりん酸塩およびアルミニウム
のりん酸塩よりなる群から選ばれた1種以上のりん酸塩
であり、B成分が銅の塩化物,亜鉛の塩化物,アルミニ
ウムの塩化物,アルカリ金属の塩化物およびアルカリ土
類金属の塩化物よりなる群から選ばれた1種以上の塩化
物であり、C成分はアルカリ金属の化合物(ただしハロ
ゲン化物を除く)およびアルカリ土類金属の化合物(た
だしハロゲン化物を除く)よりなる群から選ばれた1種
以上の化合物であり、特開昭54−12315および特
開昭58−163444等に開示されている. また、本発明で用いるメタノール脱水素触媒としては上
記の池に銅化合物と無機イオン交換体でも良く、とりわ
け無機イオン交換体が層状ケイ酸塩鉱物であるのが好ま
しく、その中でもフッ素四ケイ素雲母の場合が最も好ま
しいことも知られている.(森川ら,石油学会誌,l旦
(4).321−324 (1983)). これらの触媒は公知の方法で触媒粉末ないし粒子を製造
後、常法により乾燥、焼成の後または焼成せずに成型し
、次いで還元することによりギ酸メチル製造用触媒とし
ての活性を有するに至る.即ち、例えば乾燥は常温〜2
00℃.好ましくは80〜150℃で常圧乃至減圧で行
われる.また、焼成は空気もしくは不活性ガス、たとえ
ば窒素ガスまたは空気と不活性ガスとの混合ガスの流通
下で200〜1000℃,好ましくは300〜800℃
程度の温度を行われる. 成型は.例えばグラファイトのような滑削を加えまたは
加えずに,多孔板および打錠機などを使用して行われる
.還元は水素,一酸化炭素またはそれらの混合ガスなど
の還元性ガス雰囲気中で150〜400℃で加熱して行
われる.また、加熱された触媒にメタノールを接触させ
て分解し発生した水素と一酸化炭素とで還元することも
できる.前記本発明の反応器に、原料メタノールを通常
蒸気として導入して接触反応させるが、その反応温度は
100〜500℃9好ましくは200〜400℃であり
、反応温度は低い程触媒寿命が長くなり好ましい.反応
圧力は常圧〜5 0 ko/dG ,好ましくは常圧〜
1 0 k(J/adGである. 反応圧力は低い程目
的とするギ酸メチルの収率は高くなるが、副生ガスから
のギ酸メチルの分離を効率良く行うためには反応系内を
加圧するのが好ましい.また、必要に応じて水素.一酸
化炭素,二酸化炭素,窒素等のガスをメタノール1モル
に対し0.1〜2モル程度共存させて反応を行うことも
できる. 本発明では膜を透過しなかった反応生成物を凝縮器に導
入し、0〜50℃に冷却することにより、主としてギ酸
メチルおよびメタノールからなる混合物が凝縮してくる
ので、これを更に気液分離器で副生成ガスと分離して得
た液から、蒸留により製品のギ酸メチルと未反応メタノ
ールを分離回収し、回収したメタノールは循環して原料
として供給されるメタノールと混合利用することが可能
であり一般に好ましい. 未凝縮のガス状生成物は前記耐熱性水素ガス分離膜を透
過せずに残存した水素.一酸化炭素,二酸化炭素等から
成っており、これらは石油化学原料や燃料等に用いるこ
とができる. 前記耐熱性水素ガス分離膜の透過側、即ち透過先側の圧
力は非透過側、即ち透過元側の圧力、即ち反応圧力以下
であることを要するが、50Torr乃至1 0 kQ
/a&Gが水素の回収率と膜の耐圧強度の面で好ましい
. 水素ガス分離膜が金属膜が代表する非多孔質ガス分離膜
の場合透過ガスは高純度水素ガスであり、池の化学反応
の原料としてたやすく用いることができる. 水素ガス分離膜が多孔質ガス分MFIAの場合、透過ガ
スは水素を主成分として池に一酸化炭素.二酸化炭素等
の副成ガスを一部含む混合ガスであり、種々のガス分離
精製装置により水素と他のガスを分離することが可能で
ある. 反応器の形式としては設備の規模,触媒の性質に応じて
固定床,移動床,流動床等を選択することができ、また
その形式に応じた触媒の粒径および粒径分布を選択する
ことができる. また、反応器は1基でも良いが、直列または並列に数基
を使用することもできる. [実施例] 以下実施例により本発明を説明するが、本発明はこれら
に限定されるものではない. 実施例1 以下の実施例は第1図にそのフローの概略を示す試験装
置によって実施したので、第1図を参照しながら説明す
る. 本発明の製造装置の1例である反応器3は、外径10u
,長さIOOIIJ厚み0.1ffil1の円筒形Pd
−Ag合金膜6 (Pd/Ag=77/23,重量比)
とこの膜を壁の一部とする室に充填されたメタノール脱
水素触媒10nj(下記の方法により調製)を内蔵して
いる. 導管1からもたらされたメタノールは多孔性材料または
充填粒子層4,触媒床5,更に多孔性材料または充填粒
子層41を経て、導管8がら排出される.この間反応器
加熱器2で加熱される触媒床5で触媒反応を行い、水素
を主とする生成物の一部は円筒形Pd−Ag合金膜6を
透過して空間9に流出し導管7から排出される.触媒床
5および多孔性材料または充填粒子層4lは空間9を囲
む環状である. 管1より原料のメタノールを供給し、反応生成ガス中の
膜非透過ガスは導管8より、また、膜透過ガスは導管7
より抜き出し、生成ガスの分析をガスクロマトグラフィ
ーを用いて実施した.反応温度,反応圧力(膜透過元圧
力(5内)),膜透過先圧力(9内),W/F (W:
触媒充填重量,F:原料供給速度),メタノール転化率
およびギ酸メチル収率を表1に示した. この例の装置では、本発明の装置において、多孔性材料
または充填粒子層4と触媒床5と多孔性材料または充填
粒子層41とを反応器が内包し反応器内空間はこの空間
を空間9および外部空間とから隔てる隔壁および円筒形
Pd−Ag合金膜6により画成され,円筒形Pd−Ag
合金膜6が耐熱性水素ガス分離膜,触媒床5がメタノー
ル脱水素触媒,空間9が透過先空間.反応器加熱器2が
加熱する手段,導管1が触媒床へのメタノールガスの導
入経路,導管7が該分MwAを透過して触媒床から透過
先空間9に出た水素を主成分とするガスの導出経路,そ
して導管8が反応済ガスの導出経路にあたるといえ、ま
た多孔性材科または充填粒子層4がメタノールガス導入
経路の一部.多孔性材料または充填粒子層41が反応済
ガスの導出経路の一部と考えてもよい.ただし、本発明
装置は無論これだけには限定されない. 以下触媒床5について説明する. 表1の所定組成比を与える硝a銅と硝酸亜鉛とを含有す
る水溶液と水酸化ナトリウム水溶液を混合して、酸化銅
と酸化亜鉛の共沈澱物を得た.この共沈殿物をろ別,水
洗の後、表1の所定組成比となる量のアルミナゾルを加
え混合した,この酸化銅− 一酸化亜鉛一 酸化アルミ
ニウム混合物へ表1記載の所定量を与えるA成分および
B成分および/またはC成分を加えて混合した.このよ
うにして得られた所定の組成の混合物を115℃で熱風
乾燥し、更に空気気流中600’Cで焼成した.ついで
グラファイトを3重量%添加し、打錠によりタブレット
に遣粒した.このタブレットを破砕し、粒度が10〜2
0メッシュのものを得て反応器3に充填した.これを水
素気流中200℃で6時間加熱して還元した後、メタノ
ール蒸気を一定速度で流入させ、反応圧力,反応温度一
定で実験した. 実施例2 実施例1において円筒系Pd−Ag合金膜の代りに、外
径10nn,長さ100u,厚み0.5nlの円筒形多
孔質ガラス膜(平均細孔径40人)を用いた以外は全て
同じ条件で試験した結果を表1に示した. 実施例3 実施例1において円筒形Pd−Ag合金膜の代りに、外
径1(lI1,長さ100ni,厚み1lI1の円筒形
多孔質アルミナ膜(平均細孔径3000人)の外側表面
にゾルーゲル法により厚み約10μ1の多孔質シリカJ
lj(平均細孔径30〜60人)を被覆した複合膜を用
いた以外は全て同じ条件で試験した結果を表1に示した
. 実施例4 実施例1でメタノール脱水素触媒として以下の方法で調
整したものを用いた以外は全て同じ条件で試験した結果
を表1に示した. 硝酸銅,硝酸亜鉛および硝酸アルミニウムのモル比が1
0;0.5:2の混合水溶液に炭酸ナトリウム水溶液を
攪拌しながら混合液のpHが9になるまで加えて得られ
た沈殿物をろ別し、洗浄してから115℃で20時間乾
燥、空気気流中700℃で3時間焼成した.このように
して得られた焼成品に約3重量%の〆ラファイトを添加
し、打錠によりタブレットを造粒し、以下実施例1と同
様に10〜20メッシュのものを得てこの例の触媒とし
た. 比較例1 比較例として実施例1の円筒形Pd−Ag合金膜の代り
に同じサイズの円筒形石英ガラス膜〈非多孔質,ガス透
過性なし)を装填した以外は全て同じ条件で試験した結
果を表1に示した,実施例5 実施例1においてメタノール脱水素触媒とじて酸化銅.
酸化亜鉛,酸化アルミニウムを主成分とする触媒の代り
に銅イオン交換型のフッ素四ケイ素雲母触媒を用い、反
応温度を240℃とした以外は全て同じ条件で試験した
結果を表2に示した.比較例2 実施例5で円筒形Pd−Ag合金膜の代りに同じサイズ
の円筒形石英ガラス膜(非多孔質,ガス透過性なし)を
装填した以外は全て同じ条件で試験した結果を表2に示
した. 第2図に第1図の装置の部分横断面概念図を示す.aが
第1図のA−A矢視,bがB−B矢視,CがC−C矢視
断面を示す. 第3図以下は本発明の装置の他の例を示す略図である.
特記なければ同じ符号は第1図,第2図と同じものを示
す. 第3図は環状の触媒床5が内外2層の加熱部2で加熱さ
れ触媒床5内に多数環状に配列された管状分離膜6をも
つ装置の主要部の横断面略図である.透過先空間9らに
対しては図外のヘツダー状部分を装置の上端又は下端に
与えるとよい.第4図は外周の長方形断面の加熱層2内
に長方形断面の触媒床5,その中に膜6と壁66が囲む
長方形断面の空間9をもつ装置の主要部の部分横断面略
図である.膜6は平板状ゆえ適宜図外透孔をもつスペー
サ91を与えて差圧を支える.第5図は第4図の床5内
に円筒状のWA6を多数有する装置の主要部の部分横断
面略図である.空間9らに対しては装置の上端又は下端
にヘッダ状楕遣を与えるとよい. [発明の効果] 本発明は耐熱性水素ガス分離膜とメタノール脱水素触媒
を内蔵する反応器にメタノールを導入して触媒反応させ
、同時に反応生成ガス中の水素を主成分とするガスを該
耐熱性水素ガス分ili!膜を透過させて反応器外に排
出除去することにより、原料の転化促進を図り目的生成
物であるギ酸メチルの収率を向上させ、更にギ酸メチル
の収率を同一とする場合、従来よりも反応温度を低下さ
せ得るために、触媒活性の経時劣化を抑制して、その高
活性を比較的長時間保持することができる,
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing methyl formate,
More specifically, it relates to a method for producing methyl formate from methanol at a high yield, which is useful as a raw material for formic acid, dimethylformamide, high-purity carbon monoxide, and other intermediates for pharmaceuticals and agricultural chemicals. [Prior art] Conventionally, Cu-Z was used to convert methanol to methyl formate.
It is known that n-AN catalysts and Cu ion-exchanged fluorotetrasilicate mica (Cu-TSM) contact waxes are effective. It contains a lot of carbon, etc., and because these coexist with the raw material methanol and suppress the conversion reaction of the raw material due to chemical equilibrium, it was not possible to obtain the target methyl formate in a yield higher than expected from the equilibrium conversion rate. .. In addition, since the influence of pressure is extremely large, it is necessary to select a reaction temperature as high as possible at low pressure in order to obtain methyl formate in high yield, but this poses problems such as shortening the catalyst life. The present invention utilizes a heat-resistant hydrogen gas separation membrane, that is, a hydrogen gas permeable membrane, as described below, but other types of reactions using this type of membrane are disclosed in, for example, Japanese Patent Application Laid-Open No. 61-17401, British Patent Application. 2190397A etc. [Problems to be Solved by the Invention] The present invention provides a method that efficiently provides a higher yield of methyl formate and a higher yield of by-product hydrogen in the production of methyl formate using methanol as a raw material, compared to the above-mentioned prior art. The purpose is to provide [Means for Solving the Problems] The present invention introduces methanol into a reactor in which a part of the wall of a reaction chamber containing a methanol dehydrogenation catalyst is made of a heat-resistant hydrogen gas component, causes a catalytic reaction, and simultaneously generates a reaction product. A method for producing methyl formate, characterized in that a gas containing hydrogen as a main component is permeated through the heat-resistant hydrogen gas separation membrane and discharged to the outside of the reactor. A part of the wall is a heat-resistant hydrogen gas separation membrane, a methanol dehydrogenation catalyst is housed, and a means for heating the part housing the catalyst is connected. A methyl formate production apparatus comprising a reactor having a space on the opposite side of the membrane from the catalyst, that is, a permeation destination space, and an outlet path for a gas mainly composed of hydrogen produced in the reactor connected to the space. It is. Carp thermal hydrogen gas content NY' used in the present invention
lA is Pd, TI. Zr, Ni. Co, Fe, Pt, V
, Nb, Ta, Ag, or an alloy consisting of two or more of these. In particular, a non-porous metal film made of an alloy of Pd and Ag is preferred, and the thickness of the metal film is 0. Preferably, it is between .01 and 1.0. The non-porous metal membrane allows substantially only hydrogen gas in the reaction product gas to permeate therethrough, so it is suitably used when emphasis is placed on producing high-purity hydrogen as a by-product. In addition to the non-porous metal membrane, the heat-resistant hydrogen gas separation membrane used in the present invention has an average pore diameter of 110 mm.
There is a heat-resistant porous gas separation membrane with a diameter of 0A (angstrom) or less, and its average pore diameter is equal to the mean free path of hydrogen, which has the largest mean free path among the by-products (0℃, l
atI1 (1123 people), and whose gas separation mechanism follows Knudsen diffusion, molecular sieving, etc., and is preferably a porous glass membrane, a porous ceramic membrane, etc.
Porous metal membranes and the surfaces of these membranes are made of glass. Treated with silica, alumina, zirconia or Pd metal, etc.
Composite membranes with even smaller average pore diameters are preferred. The porous gas separation membrane mainly allows hydrogen gas in the reaction product gas to pass through, and also allows some of the carbon monoxide and carbon dioxide produced by the reaction product to pass through, so the purity is higher than that of the directly obtained hydrogen itself. It is suitably used to increase the yield of methyl formate and hydrogen. The shape of the heat-resistant hydrogen gas separation membrane used in the present invention is preferably cylindrical because the reactor is generally cylindrical. In some cases, a membrane module in which a large number of hollow fibers are bundled is used to increase the membrane area. The most preferred methanol dehydrogenation catalyst used in the present invention is that it can increase the amount of gas permeation per unit area. All known methanol dehydrogenation catalysts can be used, including copper oxide. Zinc oxide. A typical catalyst is aluminum oxide or a catalyst in which the following components A, B, and/or C are added to these three components. Here AIt
Component B is one or more phosphates selected from the group consisting of copper phosphate, zinc phosphate, and aluminum phosphate, and component B is copper chloride, zinc chloride, and aluminum phosphate. chloride, alkali metal chloride, and alkaline earth metal chloride, and component C is an alkali metal compound (excluding halides) and alkaline earth metal chloride. One or more compounds selected from the group consisting of similar metal compounds (excluding halides), and are disclosed in JP-A-54-12315 and JP-A-58-163444. Further, the methanol dehydrogenation catalyst used in the present invention may be a copper compound and an inorganic ion exchanger in the above-mentioned pond, and it is particularly preferable that the inorganic ion exchanger is a layered silicate mineral, and among these, fluorotetrasilicon mica is preferable. It is also known that the case is the most favorable. (Morikawa et al., Journal of the Japan Petroleum Institute, 1983). These catalysts can be activated as catalysts for producing methyl formate by producing catalyst powder or particles using a known method, then drying and shaping with or without calcination using a conventional method, and then reducing the catalyst. That is, for example, drying at room temperature ~ 2
00℃. It is preferably carried out at 80 to 150°C and at normal pressure to reduced pressure. The firing is carried out at 200 to 1000°C, preferably 300 to 800°C, under the flow of air or an inert gas, such as nitrogen gas or a mixed gas of air and inert gas.
It is carried out at a certain temperature. As for molding. This is done using perforated plates and tablet presses, with or without the addition of lubrication, such as graphite. Reduction is performed by heating at 150 to 400°C in an atmosphere of a reducing gas such as hydrogen, carbon monoxide, or a mixture thereof. It is also possible to bring methanol into contact with a heated catalyst, decompose it, and reduce the resulting hydrogen and carbon monoxide. The raw material methanol is usually introduced as vapor into the reactor of the present invention and subjected to a catalytic reaction, and the reaction temperature is 100 to 500°C9, preferably 200 to 400°C, and the lower the reaction temperature, the longer the catalyst life. preferable. The reaction pressure is normal pressure to 50 ko/dG, preferably normal pressure to
10k (J/adG) The lower the reaction pressure, the higher the yield of the desired methyl formate, but in order to efficiently separate methyl formate from the by-product gas, it is necessary to pressurize the reaction system. In addition, if necessary, the reaction can be carried out in the coexistence of gases such as hydrogen, carbon monoxide, carbon dioxide, and nitrogen at about 0.1 to 2 mol per 1 mol of methanol. By introducing the reaction product that has not passed through the condenser and cooling it to 0 to 50°C, a mixture mainly consisting of methyl formate and methanol will be condensed. It is generally preferred that the product methyl formate and unreacted methanol are separated and recovered from the liquid obtained by separating the gas, and the recovered methanol can be recycled and mixed with the methanol supplied as a raw material. The uncondensed gaseous products consist of residual hydrogen that did not pass through the heat-resistant hydrogen gas separation membrane, carbon monoxide, carbon dioxide, etc., and these can be used as petrochemical raw materials, fuels, etc. The pressure on the permeation side, that is, the permeation destination side, of the heat-resistant hydrogen gas separation membrane is required to be lower than the pressure on the non-permeation side, that is, the pressure on the permeation source side, that is, the reaction pressure, and is 50 Torr to 10 kQ.
/a&G is preferable in terms of hydrogen recovery rate and pressure resistance of the membrane. When the hydrogen gas separation membrane is a non-porous gas separation membrane, typically a metal membrane, the permeated gas is high-purity hydrogen gas, which can be easily used as a raw material for chemical reactions in ponds. When the hydrogen gas separation membrane is a porous gas MFIA, the permeated gas contains hydrogen as its main component and carbon monoxide. It is a mixed gas that partially contains by-product gases such as carbon dioxide, and it is possible to separate hydrogen from other gases using various gas separation and purification devices. The type of reactor can be selected from fixed bed, moving bed, fluidized bed, etc. depending on the scale of the equipment and the properties of the catalyst, and the particle size and particle size distribution of the catalyst can be selected according to the type. Can be done. Furthermore, although one reactor may be used, several reactors may be used in series or in parallel. [Examples] The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. Example 1 The following example was carried out using a test device whose flow is shown schematically in FIG. 1, so it will be explained with reference to FIG. The reactor 3, which is an example of the production apparatus of the present invention, has an outer diameter of 10u.
, length IOOIIJ thickness 0.1ffil1 cylindrical Pd
-Ag alloy film 6 (Pd/Ag=77/23, weight ratio)
A chamber with this membrane as part of the wall contains a methanol dehydrogenation catalyst 10nj (prepared by the method described below). The methanol coming from the conduit 1 passes through the porous material or packed particle layer 4, the catalyst bed 5, the porous material or packed particle layer 41, and is discharged through the conduit 8. During this time, a catalytic reaction is carried out in the catalyst bed 5 heated by the reactor heater 2, and a part of the product mainly consisting of hydrogen permeates through the cylindrical Pd-Ag alloy membrane 6 and flows out into the space 9 from the conduit 7. It is discharged. The catalyst bed 5 and the porous material or packed particle bed 4l are annular surrounding the space 9. The raw material methanol is supplied from pipe 1, the non-membrane gas in the reaction product gas is supplied from pipe 8, and the membrane permeable gas is supplied from pipe 7.
The resulting gas was analyzed using gas chromatography. Reaction temperature, reaction pressure (membrane permeation source pressure (inside 5)), membrane permeation destination pressure (inside 9), W/F (W:
Table 1 shows the catalyst loading weight, F (raw material supply rate), methanol conversion rate, and methyl formate yield. In the apparatus of this example, in the apparatus of the present invention, the reactor contains a porous material or packed particle layer 4, a catalyst bed 5, and a porous material or packed particle layer 41, and the reactor internal space is a space 9. is defined by a partition wall and a cylindrical Pd-Ag alloy film 6 separating the cylindrical Pd-Ag
The alloy membrane 6 is a heat-resistant hydrogen gas separation membrane, the catalyst bed 5 is a methanol dehydrogenation catalyst, and the space 9 is a permeation destination space. The reactor heater 2 is a heating means, the conduit 1 is a path for introducing methanol gas into the catalyst bed, and the conduit 7 is a gas mainly composed of hydrogen that has passed through the corresponding amount of MwA and exited from the catalyst bed to the permeation destination space 9. It can be said that the lead-out route for the reacted gas and the conduit 8 correspond to the lead-out route for the reacted gas, and the porous material or the packed particle layer 4 is part of the methanol gas introduction route. The porous material or the packed particle layer 41 may be considered as part of the route for deriving the reacted gas. However, the device of the present invention is of course not limited to this. The catalyst bed 5 will be explained below. An aqueous solution containing copper nitrate and zinc nitrate having the prescribed composition ratio shown in Table 1 was mixed with an aqueous sodium hydroxide solution to obtain a coprecipitate of copper oxide and zinc oxide. After filtering this coprecipitate and washing with water, alumina sol in an amount having the prescribed composition ratio shown in Table 1 was added and mixed. Component A gives the prescribed amount shown in Table 1 to this copper oxide-zinc monoxide-aluminum monoxide mixture. Then, component B and/or component C were added and mixed. The thus obtained mixture having a predetermined composition was dried with hot air at 115°C and further calcined at 600°C in a stream of air. Then, 3% by weight of graphite was added, and the mixture was pelleted into tablets by compression. This tablet is crushed to a particle size of 10 to 2
A 0-mesh one was obtained and filled into reactor 3. After reducing the mixture by heating it at 200°C in a hydrogen stream for 6 hours, methanol vapor was introduced at a constant rate, and the reaction pressure and temperature were kept constant. Example 2 All cases were the same as in Example 1 except that instead of the cylindrical Pd-Ag alloy membrane, a cylindrical porous glass membrane with an outer diameter of 10 nn, a length of 100 u, and a thickness of 0.5 nl (average pore diameter of 40 mm) was used. Table 1 shows the results of testing under the same conditions. Example 3 Instead of the cylindrical Pd-Ag alloy membrane in Example 1, a sol-gel method was applied to the outer surface of a cylindrical porous alumina membrane (average pore diameter of 3000 mm) with an outer diameter of 1 (lI1, length 100 ni, and thickness 1lI1). porous silica J with a thickness of about 10μ1
Table 1 shows the results of tests conducted under the same conditions except that a composite membrane coated with lj (average pore diameter of 30 to 60 particles) was used. Example 4 Table 1 shows the results of a test conducted under the same conditions as in Example 1, except that a methanol dehydrogenation catalyst prepared in the following manner was used. The molar ratio of copper nitrate, zinc nitrate and aluminum nitrate is 1
A sodium carbonate aqueous solution was added to a mixed aqueous solution of 0:0.5:2 with stirring until the pH of the mixture reached 9. The resulting precipitate was filtered, washed, and dried at 115°C for 20 hours. It was fired for 3 hours at 700°C in a stream of air. Approximately 3% by weight of rhaffite was added to the calcined product thus obtained, and tablets were granulated by tableting to obtain tablets of 10 to 20 mesh in the same manner as in Example 1. It was. Comparative Example 1 As a comparative example, a cylindrical quartz glass membrane of the same size (non-porous, no gas permeability) was loaded instead of the cylindrical Pd-Ag alloy membrane of Example 1, but the results were tested under the same conditions. are shown in Table 1. Example 5 In Example 1, copper oxide was used as the methanol dehydrogenation catalyst.
Table 2 shows the results of tests conducted under the same conditions except that a copper ion exchange type fluorotetrasilicon mica catalyst was used in place of the catalyst containing zinc oxide and aluminum oxide as the main components, and the reaction temperature was 240°C. Comparative Example 2 Table 2 shows the results of testing under the same conditions as in Example 5 except that a cylindrical quartz glass membrane (non-porous, no gas permeability) of the same size was loaded instead of the cylindrical Pd-Ag alloy membrane. It was shown to. Figure 2 shows a partial cross-sectional conceptual diagram of the device shown in Figure 1. A shows a cross section taken along the line A-A in Fig. 1, b shows a cross-section taken along B-B, and C shows a cross-section taken along C-C. Figure 3 and the following are schematic diagrams showing other examples of the apparatus of the present invention.
Unless otherwise specified, the same reference numerals refer to the same items as in Figures 1 and 2. FIG. 3 is a schematic cross-sectional view of the main part of an apparatus in which an annular catalyst bed 5 is heated by two layers of heating parts 2, an inner and outer layer, and a large number of tubular separation membranes 6 are arranged in an annular manner within the catalyst bed 5. For the transmission destination space 9, etc., it is recommended to provide a header-shaped part (not shown) at the upper or lower end of the device. FIG. 4 is a schematic partial cross-sectional view of the main part of the device, which has a catalyst bed 5 of rectangular cross-section in a heating layer 2 of rectangular cross-section at the outer periphery, and a space 9 of rectangular cross-section surrounded by a membrane 6 and a wall 66 therein. Since the membrane 6 has a flat plate shape, a spacer 91 with a through hole (not shown) is appropriately provided to support the differential pressure. FIG. 5 is a schematic partial cross-sectional view of the main part of the apparatus having a large number of cylindrical WAs 6 in the floor 5 of FIG. For spaces such as 9, it is recommended to give a header-like ellipse to the top or bottom of the device. [Effect of the invention] The present invention introduces methanol into a reactor containing a heat-resistant hydrogen gas separation membrane and a methanol dehydrogenation catalyst to cause a catalytic reaction, and at the same time converts the gas mainly composed of hydrogen in the reaction product gas into the heat-resistant hydrogen gas separation membrane. Sexy hydrogen gas! By passing through the membrane and discharging and removing it outside the reactor, the conversion of the raw material is promoted and the yield of the desired product methyl formate is improved. Furthermore, when the yield of methyl formate is the same, it is faster than the conventional method. Since the reaction temperature can be lowered, deterioration of catalyst activity over time can be suppressed and high activity can be maintained for a relatively long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施!IIX様の一例のフローと装置
を示す概略図,第2〜5図は本発明の装置の数種の例を
説明する概略図である. 1/原料供給導管 2/反応器加熱器 3/反応器 4.41/触媒稀釈材 (多孔性材料または充填粒子層) 5/触媒床 6/耐熱性水素ガス分離膜7/反応生成ガ
ス膜透過ガス出口導管 8/反応生成ガス膜非透過ガス出口導管9/透過先空間 特許出願人 東洋エンジニアリング株式会社b)/−p
/−σduct pFo嘉cr
Figure 1 shows the implementation of the present invention! A schematic diagram showing the flow and equipment of an example of IIX, and Figures 2 to 5 are schematic diagrams illustrating several examples of the equipment of the present invention. 1/Raw material supply conduit 2/Reactor heater 3/Reactor 4.41/Catalyst diluent (porous material or packed particle layer) 5/Catalyst bed 6/Heat-resistant hydrogen gas separation membrane 7/Reaction product gas membrane permeation Gas outlet conduit 8/reaction product gas membrane non-permeable gas outlet conduit 9/permeation destination space Patent applicant Toyo Engineering Co., Ltd. b)/-p
/-σduct pFoka cr

Claims (2)

【特許請求の範囲】[Claims] (1)メタノール脱水素触媒を収容する反応室の壁の一
部が耐熱性水素ガス分離膜から成る反応器にメタノール
を導入して接触反応させ、同時に反応生成ガス中の水素
を主成分とするガスを該耐熱性水素ガス分離膜を透過さ
せて反応器外に排出除去することを特徴とするギ酸メチ
ルの製造方法。
(1) Methanol is introduced into a reactor containing a methanol dehydrogenation catalyst, where part of the wall of the reaction chamber is made of a heat-resistant hydrogen gas separation membrane, and subjected to a contact reaction, and at the same time hydrogen in the reaction product gas is the main component. A method for producing methyl formate, which comprises passing the gas through the heat-resistant hydrogen gas separation membrane and removing the gas out of the reactor.
(2)メタノールガスの導入経路と反応済ガスの導出経
路とが接続され、壁の一部が耐熱性水素ガス分離膜であ
り、メタノール脱水素触媒が収容され、触媒を収容した
部分を加熱する手段を有する反応器であって、該膜に関
し該触媒と反対側の空間即ち透過先空間と、これに連な
る反応器内で生成した水素を主成分とするガスの導出経
路とを有するギ酸メチルの製造装置。
(2) The methanol gas introduction route and the reacted gas exit route are connected, part of the wall is a heat-resistant hydrogen gas separation membrane, the methanol dehydrogenation catalyst is housed, and the part housing the catalyst is heated. A reactor having means for methyl formate, the reactor having a space on the opposite side of the membrane to the catalyst, that is, a permeation destination space, and an outlet path for a gas mainly composed of hydrogen produced in the reactor connected to the space. Manufacturing equipment.
JP5697089A 1989-03-09 1989-03-09 Production of methyl formate Pending JPH02235846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5697089A JPH02235846A (en) 1989-03-09 1989-03-09 Production of methyl formate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5697089A JPH02235846A (en) 1989-03-09 1989-03-09 Production of methyl formate

Publications (1)

Publication Number Publication Date
JPH02235846A true JPH02235846A (en) 1990-09-18

Family

ID=13042382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5697089A Pending JPH02235846A (en) 1989-03-09 1989-03-09 Production of methyl formate

Country Status (1)

Country Link
JP (1) JPH02235846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023372A1 (en) * 1992-05-21 1993-11-25 Daicel Chemical Industries, Ltd. Process for producing 2-hydroxy-4-methylthiobutanoic acid
WO2013114781A1 (en) * 2012-02-02 2013-08-08 Jnc株式会社 Method for producing lower ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023372A1 (en) * 1992-05-21 1993-11-25 Daicel Chemical Industries, Ltd. Process for producing 2-hydroxy-4-methylthiobutanoic acid
US5386056A (en) * 1992-05-21 1995-01-31 Daicel Chemical Industries, Ltd. Process for producing 2-hydroxy-4-methylthiobutanoic acid
WO2013114781A1 (en) * 2012-02-02 2013-08-08 Jnc株式会社 Method for producing lower ester

Similar Documents

Publication Publication Date Title
US9630893B2 (en) Inherently safe ODH operation
RU2646643C2 (en) Method for oxidising ammonia and system suitable therefor
RU2024296C1 (en) Method for production of acrylic acid and catalyst for its realization
KR101376082B1 (en) Oxidation reactor and oxidation process
US6992112B2 (en) Selective removal of oxygen from syngas
KR101807112B1 (en) A shell-and-tube type reactor for reforming natural gas and a preparation method of syngas or hydrogen gas by using the same
US5612009A (en) Catalytic decomposition of dinitrogen monoxide
EP1317319B2 (en) Mixed conducting membranes for syngas production
US6413449B1 (en) Method of using catalyst for steam reforming of alcohols
US4608449A (en) Process for the production of ethane and/or ethylene from methane
CN102459066B (en) Method for electrochemically removing hydrogen from a reaction mixture
US20060013759A1 (en) Systems and methods for hydrogen production
US20030113244A1 (en) Method for producing carbon monoxide by reverse conversion with an adapted catalyst
EP1024111A1 (en) Process and apparatus for producing high purity hydrogen
CA2936448C (en) Controlled pressure hydrothermal treatment of odh catalyst
EP0866030B1 (en) Method for operation of membrane reactor, and membrane reactor used therein
US6024774A (en) Chemical reaction apparatus and method of collecting main product gas
EP0344053A1 (en) Process for producing high-purity hydrogen by catalytic reforming of methanol
EA017772B1 (en) Process for a reduction in the amount of sulphur compounds, hydrogen cyanide and formic acid in synthesis gas
JPH02235846A (en) Production of methyl formate
JPH05194281A (en) Method for dehydrating hydrocarbons
WO2002055465A1 (en) Reaction method utilizing diaphram type catalyst and apparatus therefor
JP2005289652A (en) Method for producing hydrogen and reaction tube
JPS58225061A (en) Preparation of indole compound
JP2514066B2 (en) Method and apparatus for producing aromatic hydrocarbon