JPH0223507B2 - - Google Patents

Info

Publication number
JPH0223507B2
JPH0223507B2 JP59086215A JP8621584A JPH0223507B2 JP H0223507 B2 JPH0223507 B2 JP H0223507B2 JP 59086215 A JP59086215 A JP 59086215A JP 8621584 A JP8621584 A JP 8621584A JP H0223507 B2 JPH0223507 B2 JP H0223507B2
Authority
JP
Japan
Prior art keywords
slurry
gypsum
water
sound absorbing
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59086215A
Other languages
Japanese (ja)
Other versions
JPS60231476A (en
Inventor
Kyonori Yamaguchi
Tetsuo Asano
Atsushi Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP59086215A priority Critical patent/JPS60231476A/en
Publication of JPS60231476A publication Critical patent/JPS60231476A/en
Publication of JPH0223507B2 publication Critical patent/JPH0223507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、無機質板状吸音材の製造法に関する
ものである。 従来の技術 吸音材として従来多種多様のものが使われてい
るが、住宅やビルデインケグ等の建築物に使用し
易い板状に成形されていてしかも不燃性のものと
しては、ケイ酸カルシウム系またはセメントコン
クリート系のものが代表的である。 ケイ酸カルシウム系のものとしては、孔あきケ
イ酸カルシウム耐火板が早くから使われている。
この吸音材は、ケイ酸カルシウム質耐火板に多数
の貫通孔を形成して吸音性を持たせたものである
が、吸音性はあまりよくなく、建築物に取付ける
際に他の繊維質吸音材と組合わせたり空気層を設
けるなどして吸音性能を補強する必要がある。 これに対して、微細な連通気孔を有するセメン
トコンクリート板が、孔あきケイ酸カルシウム耐
火板系吸音材よりもすぐれた吸音性能を示す吸音
材として提案されている(特開昭52−32016号、
特開昭53−26419号等)。しかしながら、この種の
吸音材は、その製造に当り、起泡剤を用いて気泡
を混入したセメントスラリーを型に注入して硬化
させたのちオートクレーブに入れて高温加圧下に
養生しなければならないから、製造に時間がかか
るだけでなく、大型パネル状のものを大量生産し
なければならない建造物用吸音材の場合、熱エネ
ルギーコストが莫大なものになるとともに加圧養
生設備に費用を要し、製品がきわめて高価なもの
になるという欠点がある。 発明が解決しようとする問題点 本発明は、従来の連通気孔型吸音板がその良好
な吸音性能にもかかわらず上述のような欠点を持
つものであつたことに鑑み、高温加圧下の養生を
必要としない方法によりこれを製造することを可
能にしようとするものである。 問題点を解決するための手段 本発明の製法につきまずその概要を述べると、
本発明の製法は、起泡剤を溶解した水に起泡処理
を施して気泡液を調製し、該気泡液にα−半水石
膏もしくはβ−半水石膏、耐水性硬化物を形成可
能な合成樹脂エマルジヨン、および補強用繊維を
混合して撹拌し、最終的に嵩比重が0.30〜0.45の
多孔質硬化体を形成させるのに必要な量の独立気
泡を含有するスラリーを形成させ、得られた気泡
含有スラリーを成形用型に注入し、型内において
独立気泡の合体による連通気泡の生成を進行させ
ること、および、型内において独立気泡の大部分
が連通起泡に成長するまでスラリーが流動性を保
ちその後は速やかに硬化を起こすようにスラリー
の硬化特性を調節することができる量の硬化遅延
剤を上記原料スラリー調製工程において添加する
ことを特徴とする。 以下、本発明の製法を工程順に説明する。 主原料であるα−半水石膏もしくはβ−半水石
膏(以下、単に石膏ということがある)として
は、石膏ボードの製造に通常使用されるものと同
程度の品質のものでよく、特殊なものは必要とし
ない。 起泡剤としては、起泡性のある界面活性物質の
大部分を使用することができ、特に限定されるも
のではないが、連通起泡を生成し易いアニオン界
面活性剤、なかでもアルキルフエニルエーテル硫
酸エステル塩、ロジン酸セツケン等が好ましい。 合成樹脂エマルジヨンとしては、アクリル樹脂
エマルジヨン、スチレン−アクリル樹脂エマルジ
ヨン、酢酸ビニル樹脂エマルジヨン、エチレン−
酢酸ビニル樹脂エマルジヨンなど、加熱乾燥によ
り、耐水性の、強固な硬化物を形成し得るものを
用いる。 補強用繊維としては、ガラス繊維、岩綿、ステ
ンレス鋼繊維等の無機繊維が好ましいが、木材パ
ルプ、レーヨンスフ、各種合成繊維などの有機繊
維を用いてもよい。繊維は、あまり長いともつれ
て原料スラリー中に均一に分散せず、反対にあま
り短いと、補強効果が少ない。好ましい長さは繊
維の種類により異なるが、約6〜12mmである。 石膏の硬化速度調節剤には、石膏の硬化速度を
遅らせる作用を有するものと硬化を促進する作用
を有するものとがある。本発明では前者の使用を
必須とするが、後者は必要に応じて使用する。使
用可能な硬化遅延剤の例としては、パフタードP
−02(商品名;蛋白質分解物;味の素株式会社製
品)、クエン酸ソーダなどがある。また硬化促進
剤の例としては、硫酸アルミニウム、硫酸カリウ
ムなどがある。 以上の原料と水から、前述のように、最終的に
嵩比重が0.30〜0.45の多孔質硬化体を形成するの
に必要な量の、独立気泡を含有するスラリー状混
合物を調製するが、そのためには、まず石膏重量
の約0.6〜0.8倍量の水を用意し、これに石膏重量
に対して約0.2〜1.0%の起泡剤を溶解して泡立た
せる。水量がこれよりも少ないと、後でスラリー
の流動性が悪く、粉体原料および気泡の均一混合
ならびに気泡の調整が困難であり、また水量が多
くぎると、スラリーの流動性が過大になつて、成
形時に固形原料と気泡液が分離を起こす(但し、
石膏をあらかじめスラリー化してから気泡液と混
合する場合は、上記水量の一部をスラリー化用の
水として用いる)。なおこの水には、分散剤を溶
解させておいてもよい。 起泡剤を溶解した水を泡立たせるには、適当な
撹拌装置により、空気を巻込むように強撹拌すれ
ばよいが、微細気泡の吹込み装置を併用しもよ
い。起泡処理は、泡が充分微細かつ均一になり、
泡立つた水の体積がもとの水の体積の約4〜6倍
になるまで行うことが望ましい。 得られた気泡液に石膏、合成樹脂エマルジヨン
および硬化遅延剤を添加して混合する。これらの
原料は、別に用意した水と混合しておくと、気泡
液と混合する際に破泡を招くことがないので好ま
しい。この後、よく撹拌して気泡が均一に分布し
たスラリーにし、最終的に嵩比重0.30〜0.45の多
孔質硬化体を形成するのに必要な量の気泡を含有
するスラリーを調製する(この気泡量は、スラリ
ーの注型後、速やかに気泡の連通化を起こさせる
ためにも必要なものである。)。気泡量が不充分な
場合は、この段階で更に気泡を導入する。なお、
補強用繊維は上記工程の任意の段階で混合する。 上述のようにして独立気泡液含有スラリーを調
製し、得られたスラリーを速やかに成形する。成
形は、スラリーを適当な型に注入する方法、ある
いは連続的な成形装置により連続的板状に成形し
硬化後に切断する方法など、任意の方法により行
うことができる。注型によりスラリーが静置され
るようになると、スラリー中の気泡は徐々に合体
して大きくなり、次いで連通型のものとなる。ス
ラリーが流動性を失なわないまま更に時間が経過
すると、気泡は破れ、気泡含有スラリーの体積が
減少してくる。 したがつて、気泡含有スラリー調製時に添加す
る硬化遅延剤の量は、ふつう数分で硬化してしま
う石膏の硬化を遅らせ、上述のような気泡調整に
必要な時間(通常20分以上)および注型後の連通
型気泡生成に必要な時間(通常60〜120分)を確
保するのに充分な量にしなければならないが、連
通型気泡が形成された後もスラリーが硬化しない
のは望ましくない。そこで硬化遅延剤によるスラ
リーの硬化遅延は、気泡の連通化が好ましい状態
まで進んだ時終了するのがよいが、硬化遅延剤の
添加量を加減することによりそのように硬化時期
を合わせることが困難な場合は、注型直前のスラ
リーに硬化促進剤を混入してもよい。 連通孔を形成したスラリーが充分硬化したとこ
ろで硬化体を型からはずせば、良好な吸音特性を
有する吸音材が得られる。 発明の効果 以上のような本発明によれば、連通気孔を持つ
ことによりすぐれた吸音性能を示す無機質板状吸
音材を、オートクレーブ養生を必要とすることな
しに、したがつて従来よりも簡単な設備で、かつ
高い生産性をもつて、製造することができる。な
お、石膏硬化体はセメントコンクリートと比べる
と強度が低いから、単に多量の連通気孔を含有せ
たのではもろくなつてしまうが、本発明の製法に
よるものは、耐水性樹脂によつて補強用繊維が石
膏硬化物によく接着するためか、繊維による補強
効果が大きく、実用上充分な強度を持つものであ
る。したがつて、主原料の石膏が安価であること
とあいまつて、本発明によれば従来のセメントコ
ンクリート系のものとほぼ同等の性能の吸音材を
従来よりもはるかに安価に製造することが可能と
なる。 実施例および比較例 水75重量部に起泡剤(アルキルフエニルエーテ
ル硫酸エステルナトリウム塩)0.4重量部を添加
し、ミキサーで強撹拌することにより、体積がも
との水のそれの5.3倍の気泡液を調製した。次い
でこの気泡液にβ−半水石膏100重量部、硬化遅
延剤(前記パフタードP−02)0.25重量部、アク
リル樹脂エマルジヨン・アクロナールYJ−
3032D(樹脂濃度40%;油化バーデイツシエ社製
品)5重量部を加えて10分間撹拌し、次いでBガ
ラス繊維チヨツプトストランド0.5重量部を加え
て更に1分間撹拌した。 この後、硬化促進剤(硫酸バン土10%水溶液)
0.10重量部を添加して1分間撹拌し、直ちに成形
用の型に注入して室温養生と60℃の加熱乾燥を行
なつた(実施例)。 また比較のため、原料配合を一部変更した実験
も行なつた。 上記例における気泡含有スラリーの硬化時間
(注型後の時間;指触により判定)および得られ
た吸音材の特性を第1表に示す。また、実施例の
吸音材および比較例3の吸音材の吸音特性を第1
図に示す(測定条件:吸音材厚さ35mm;背後空気
層なし)。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing an inorganic plate-like sound absorbing material. Conventional technology A wide variety of sound absorbing materials have been used in the past, but calcium silicate-based or cement materials are molded into plate shapes and are nonflammable and are easy to use in buildings such as houses and building kegs. A typical example is concrete. Perforated calcium silicate fireproofing boards have been used since the beginning of calcium silicate fireproofing.
This sound-absorbing material is made by forming a large number of through holes in a calcium silicate fireproof board to give it sound-absorbing properties, but its sound-absorbing properties are not very good, and when it is installed on buildings, it cannot be used with other fibrous sound-absorbing materials. It is necessary to strengthen the sound absorption performance by combining it with other materials or by providing an air layer. On the other hand, a cement concrete board with fine interconnected holes has been proposed as a sound absorbing material that exhibits better sound absorbing performance than perforated calcium silicate fireproof board-based sound absorbing materials (Japanese Patent Laid-Open No. 52-32016,
JP-A No. 53-26419, etc.). However, to manufacture this type of sound absorbing material, a cement slurry mixed with air bubbles using a foaming agent must be poured into a mold, hardened, and then placed in an autoclave and cured under high temperature and pressure. In the case of sound absorbing materials for buildings, which not only take time to manufacture, but also require mass production in the form of large panels, the cost of thermal energy is enormous and pressure curing equipment is expensive. The disadvantage is that the product becomes extremely expensive. Problems to be Solved by the Invention In view of the fact that the conventional sound absorbing board with continuous holes had the above-mentioned drawbacks despite its good sound absorbing performance, the present invention proposes a method for curing under high temperature and pressure. The aim is to make it possible to manufacture this by a method that does not require it. Means for Solving the Problems First, we will give an overview of the manufacturing method of the present invention.
The manufacturing method of the present invention involves subjecting water in which a foaming agent has been dissolved to a foaming treatment to prepare a foam liquid, which can form α-hemihydrate gypsum, β-hemihydrate gypsum, and a water-resistant cured product. A synthetic resin emulsion and reinforcing fibers are mixed and stirred to form a slurry containing the amount of closed cells necessary to finally form a porous cured material with a bulk specific gravity of 0.30 to 0.45. Injecting the cell-containing slurry into a mold, allowing the formation of open cells by coalescence of closed cells in the mold, and flowing the slurry until most of the closed cells grow into open cells in the mold. The method is characterized in that a curing retarder is added in the raw material slurry preparation process in an amount that can adjust the curing characteristics of the slurry so that the slurry maintains its properties and then rapidly hardens. Hereinafter, the manufacturing method of the present invention will be explained in order of steps. The main raw material, α-hemihydrate gypsum or β-hemihydrate gypsum (hereinafter sometimes simply referred to as gypsum), can be of the same quality as that normally used in the manufacture of gypsum board, or special I don't need anything. As the foaming agent, most foaming surfactants can be used, including but not limited to anionic surfactants that easily generate continuous foaming, especially alkyl phenyls. Ether sulfate ester salts, rosin acid salts, and the like are preferred. Examples of synthetic resin emulsions include acrylic resin emulsion, styrene-acrylic resin emulsion, vinyl acetate resin emulsion, and ethylene-acrylic resin emulsion.
Use a material that can form a water-resistant and strong cured product by heating and drying, such as vinyl acetate resin emulsion. As reinforcing fibers, inorganic fibers such as glass fibers, rock wool, and stainless steel fibers are preferred, but organic fibers such as wood pulp, rayon cloth, and various synthetic fibers may also be used. If the fibers are too long, they will become entangled and will not be uniformly dispersed in the raw material slurry, while if they are too short, the reinforcing effect will be low. The preferred length varies depending on the type of fiber, but is approximately 6 to 12 mm. Gypsum hardening rate regulators include those that have the effect of slowing down the hardening rate of gypsum and those that have the effect of accelerating the hardening of gypsum. In the present invention, the former is essential, but the latter is used as necessary. Examples of curing retarders that can be used include Pufftard P
-02 (trade name; protein decomposition product; product of Ajinomoto Co., Inc.), sodium citrate, etc. Examples of hardening accelerators include aluminum sulfate and potassium sulfate. From the above raw materials and water, as described above, a slurry mixture containing closed cells is prepared in an amount necessary to finally form a porous cured body with a bulk specific gravity of 0.30 to 0.45. To do this, first prepare water in an amount of approximately 0.6 to 0.8 times the weight of the gypsum, and dissolve a foaming agent in the amount of approximately 0.2 to 1.0% based on the weight of the gypsum to create foam. If the amount of water is less than this, the fluidity of the slurry will be poor and it will be difficult to mix the powder raw materials and bubbles uniformly and adjust the bubbles, and if the amount of water is too large, the fluidity of the slurry will become excessive. Separation occurs between the solid raw material and the bubble liquid during molding (however,
If the gypsum is slurried in advance and then mixed with the bubble solution, a portion of the above amount of water is used as slurry water). Note that a dispersant may be dissolved in this water. In order to foam the water in which the foaming agent is dissolved, it is sufficient to vigorously stir the water using an appropriate stirring device so as to entrain air, but a device for blowing fine bubbles may also be used. Foaming treatment makes the bubbles sufficiently fine and uniform,
It is desirable to carry out the process until the volume of the foamed water becomes about 4 to 6 times the volume of the original water. Gypsum, synthetic resin emulsion, and hardening retardant are added to the resulting foam liquid and mixed. It is preferable to mix these raw materials with water prepared separately, as this will prevent bubbles from breaking when mixed with the bubble liquid. After this, stir well to make a slurry with air bubbles evenly distributed, and finally prepare a slurry containing the amount of air bubbles necessary to form a porous cured body with a bulk specific gravity of 0.30 to 0.45 (this air bubble amount is This is also necessary in order to cause the bubbles to communicate quickly after the slurry is cast.) If the amount of bubbles is insufficient, more bubbles are introduced at this stage. In addition,
The reinforcing fibers are mixed at any stage of the above process. A closed-cell liquid-containing slurry is prepared as described above, and the resulting slurry is immediately molded. Molding can be carried out by any method, such as pouring the slurry into a suitable mold, or forming the slurry into a continuous plate shape using a continuous molding device and cutting it after curing. When the slurry is allowed to stand still due to casting, the air bubbles in the slurry gradually coalesce and become larger, and then become open-circuited. If more time passes without the slurry losing its fluidity, the bubbles will burst and the volume of the bubble-containing slurry will decrease. Therefore, the amount of set retarder added when preparing the aerated slurry is determined by the amount of set retarder added to retard the setting of the plaster, which normally hardens within minutes, and to reduce the amount of time required for foam control (typically 20 minutes or more) and injections, as described above. The amount must be sufficient to allow the time necessary for post-mold open cell formation (usually 60 to 120 minutes), but it is undesirable for the slurry to not harden even after the open cells are formed. Therefore, it is best to delay the curing of the slurry by using a curing retarder to end when the air bubbles reach a favorable state of communication, but it is difficult to adjust the curing timing by adjusting the amount of the curing retarder added. In such cases, a curing accelerator may be mixed into the slurry immediately before casting. When the slurry in which the communicating holes are formed is sufficiently cured, the cured product is removed from the mold, and a sound absorbing material having good sound absorbing properties can be obtained. Effects of the Invention According to the present invention as described above, an inorganic plate-like sound absorbing material that exhibits excellent sound absorbing performance by having communicating holes can be cured in a simpler manner than before without requiring autoclave curing. It can be manufactured using the same equipment and with high productivity. Note that hardened gypsum has lower strength than cement concrete, so if it simply contains a large number of communicating holes, it will become brittle, but in the production method of the present invention, reinforcing fibers are added using water-resistant resin. Perhaps because it adheres well to hardened gypsum, the reinforcing effect of the fibers is large, and it has sufficient strength for practical use. Therefore, in combination with the fact that gypsum, the main raw material, is inexpensive, the present invention makes it possible to produce a sound absorbing material with almost the same performance as conventional cement-concrete materials at a much lower cost than before. becomes. Examples and Comparative Examples By adding 0.4 parts by weight of a foaming agent (alkyl phenyl ether sulfate sodium salt) to 75 parts by weight of water and stirring vigorously with a mixer, the volume was increased to 5.3 times that of the original water. A bubble solution was prepared. Next, 100 parts by weight of β-hemihydrate gypsum, 0.25 parts by weight of a curing retardant (Pufftard P-02), and acrylic resin emulsion Acronal YJ- were added to this bubble liquid.
5 parts by weight of 3032D (resin concentration 40%; manufactured by Yuka Verdice Co., Ltd.) were added and stirred for 10 minutes, and then 0.5 parts by weight of B glass fiber chop strands were added and further stirred for 1 minute. After this, hardening accelerator (10% aqueous solution of sulfuric acid)
0.10 parts by weight was added, stirred for 1 minute, and immediately poured into a mold for curing at room temperature and heating drying at 60° C. (Example). For comparison, we also conducted an experiment in which the raw material composition was partially changed. Table 1 shows the curing time of the bubble-containing slurry in the above example (time after casting; determined by finger touch) and the properties of the obtained sound absorbing material. In addition, the sound absorbing properties of the sound absorbing material of Example and the sound absorbing material of Comparative Example 3 were
As shown in the figure (measurement conditions: sound absorbing material thickness 35 mm; no air space behind).

【表】【table】

【表】 ** 注型前に硬化
[Table] ** Cured before casting

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例および比較例3により得られた
吸音材の吸音特性を示すグラフである。
FIG. 1 is a graph showing the sound absorbing properties of the sound absorbing materials obtained in Example and Comparative Example 3.

Claims (1)

【特許請求の範囲】[Claims] 1 起泡剤を溶解した水に起泡処理を施して気泡
液を調製し、該気泡液にα−半水石膏もしくはβ
−半水石膏、耐水性硬化物を形成可能な合成樹脂
エマルジヨン、および補強用繊維を混合して撹拌
し、最終的に嵩比重が0.30〜0.45の多孔質硬化体
を形成させるのに必要な量の独立気泡を含有する
スラリーを形成させ、得られた気泡含有スラリー
を成形用型に注入し、型内において独立気泡の合
体による連通気泡の生成を進行させること、およ
び、型内において独立気泡の大部分が連通気泡に
成長するまでスラリーが流動性を保ちその後は速
やかに硬化を起こすようにスラリーの硬化特性を
調節することができる量の硬化遅延剤を上記原料
スラリー調製工程において添加することを特徴と
する無機質板状吸音材の製造法。
1. A foaming solution is prepared by performing foaming treatment on water in which a foaming agent is dissolved, and α-hemihydrate gypsum or β-hemihydrate gypsum is added to the foaming solution.
- The amount necessary to mix and stir gypsum hemihydrate, a synthetic resin emulsion capable of forming a water-resistant cured product, and reinforcing fibers, and finally form a porous cured product with a bulk specific gravity of 0.30 to 0.45. forming a slurry containing closed cells, injecting the obtained cell-containing slurry into a mold, and proceeding with the formation of open cells by coalescence of the closed cells in the mold; In the step of preparing the raw material slurry, a curing retarder is added in an amount that can adjust the curing characteristics of the slurry so that the slurry maintains fluidity until most of the cells grow into open cells and then hardens rapidly. A manufacturing method for a distinctive inorganic plate-like sound absorbing material.
JP59086215A 1984-05-01 1984-05-01 Manufacture of inorganic board-form sound absorber Granted JPS60231476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086215A JPS60231476A (en) 1984-05-01 1984-05-01 Manufacture of inorganic board-form sound absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086215A JPS60231476A (en) 1984-05-01 1984-05-01 Manufacture of inorganic board-form sound absorber

Publications (2)

Publication Number Publication Date
JPS60231476A JPS60231476A (en) 1985-11-18
JPH0223507B2 true JPH0223507B2 (en) 1990-05-24

Family

ID=13880555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086215A Granted JPS60231476A (en) 1984-05-01 1984-05-01 Manufacture of inorganic board-form sound absorber

Country Status (1)

Country Link
JP (1) JPS60231476A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613424B1 (en) * 1999-10-01 2003-09-02 Awi Licensing Company Composite structure with foamed cementitious layer
US6443258B1 (en) * 1999-10-01 2002-09-03 Awi Licensing Company Durable porous article of manufacture and a process to create same
JP5710823B1 (en) * 2014-05-08 2015-04-30 吉野石膏株式会社 Gypsum hardened body, gypsum board, method of manufacturing gypsum hardened body, method of manufacturing gypsum board
KR20190113738A (en) * 2017-02-03 2019-10-08 세키스이가가쿠 고교가부시키가이샤 Admixture Compositions and Kits for Gypsum Compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541324A (en) * 1977-06-07 1979-01-08 Sumitomo Metal Mining Co Method of making lighttweight gypsum hardened body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541324A (en) * 1977-06-07 1979-01-08 Sumitomo Metal Mining Co Method of making lighttweight gypsum hardened body

Also Published As

Publication number Publication date
JPS60231476A (en) 1985-11-18

Similar Documents

Publication Publication Date Title
US3867159A (en) Foamed concrete structures
US4077809A (en) Cellular cementitious compositions and method of producing same
US4057608A (en) Process of continuous manufacture of light-weight foamed concrete
US4683003A (en) Process for production of cellular concrete
DE3520300A1 (en) METHOD FOR PRODUCING POROUS CONCRETE
CN103306422B (en) Composite thermal self-insulation building block of a kind of inner core cast foam concrete and preparation method thereof
US4422989A (en) Method of producing hydrothermally cured aerated concrete building units
JPH07247183A (en) Construction and structural material, its production, molding, constructing or structural member and its production
US4040850A (en) Production of porous gypsum moldings
US4043825A (en) Production of foamed gypsum moldings
JPH0223507B2 (en)
CN101244919B (en) Technique for producing loess foaming light brick
JPH08104578A (en) Lightweight gypsum hardened body
JPH026378A (en) Production of lightweight cellular concrete
JP2900261B2 (en) Hydraulic lightweight composition and method for producing hydraulic lightweight molded article
EP0585200A2 (en) Stabilized lightweight gypsum
EP4215506A1 (en) A method for manufacturing a construction element
JPS61178478A (en) Manufacture of lightweight foamed concrete body
JPS5940782B2 (en) Manufacturing method of low specific gravity gypsum board
JPH0212915B2 (en)
CN116730673A (en) Pressure pre-curing high-strength autoclaved aerated concrete and preparation method thereof
JPH1067580A (en) Lightweight cement composite and its production
JPH02194904A (en) Manufacture of lightweight aerated concrete board
JPS6317273A (en) Heat insulating composition
JPH0360481A (en) Production of lightweight gas cement board