JPH02233822A - Engine piston - Google Patents

Engine piston

Info

Publication number
JPH02233822A
JPH02233822A JP1052075A JP5207589A JPH02233822A JP H02233822 A JPH02233822 A JP H02233822A JP 1052075 A JP1052075 A JP 1052075A JP 5207589 A JP5207589 A JP 5207589A JP H02233822 A JPH02233822 A JP H02233822A
Authority
JP
Japan
Prior art keywords
cavity
fuel
corner
lip
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1052075A
Other languages
Japanese (ja)
Other versions
JP2770376B2 (en
Inventor
Takatomo Arifuku
有福 孝智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP1052075A priority Critical patent/JP2770376B2/en
Publication of JPH02233822A publication Critical patent/JPH02233822A/en
Application granted granted Critical
Publication of JP2770376B2 publication Critical patent/JP2770376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To reduce waxy white smoke and irritating odor even in low temperature and low load driving by forming a conical projection in the base and a lip in an opening edge, respectively, in a cavity whose horizontal section is a regular pentagon. CONSTITUTION:A horizontal section of a cavity 2 installed in a piston top face 26 is formed into a regular pentagon, making up a corner which feeds a fuel spray from the central side. Then, a side wall 5 of this cavity 2 inclusive of the corner is set to an almost right angle to a fuel spray line. In addition, a conical projection 13 is formed on a bottom surface 11 of the cavity 2 and a lip 6 in an opening edge, respectively. With this formation, a relatively rich content air-fuel mixture exists in each corner, and thereby a diffusion air-fuel mixture of density suitable for flame propagation comes to exist in a swirl turning part 24. Thus, a combustion condition in the cavity 2 at time of low speed and light load driving is improved, thus discharge of hydrocarbon is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、燃料噴貫を直接供給する多角形のキャビテ
ィをピストン頂部に形成したエンジンのピストンに関す
る. [従来の技術] 通常、ターボ過給機付ディーゼルエンジンの高出力を追
及する場合は、エンジンの最大出力点、即ち燃料流量最
大の点で過給機圧力を最大に設定し、その最大出力点で
発生する燃焼圧力がエンジンの機械強度以下になるよう
に圧縮比を下げるのが一般であり、低い圧縮比にするほ
ど低燃費を期待できる. このように最大出力点で最適マッチングさせたエンジン
は、低速・軽負荷域、即ち過給機圧力が低い範囲で圧縮
圧力、温度そして燃焼室(キャビティ》温度が低くなる
傾向を示す。一般に、インジェクションノズルから噴射
された燃料は、通常、ピストン側壁に衝突して跳返り火
炎中で完全燃焼し、側壁に付着した燃料もその火炎によ
って完全に蒸発または炭化してしまう。しかし、上述の
ようにターボ過給機エンジン用にマッチングさせた低圧
縮比エンジンでは、側壁に衝突して反射した燃料が未着
火であったり、IN!!Iuに付着した燃料の蒸発の遅
れより、より低温度の燃焼室底部に達して液化し、火炎
に晒されてキャビティ内に未燃燃料として浮遊し、これ
が排気行程で排出されて青白煙(HC》、排気刺激臭を
生む. この理由からディーゼルエンジンの低圧縮化は、フリク
ション低減、過給率アップによる高出力化が可能である
にもかかわらず採用に至っていない.そこで、低圧縮比
過給エンジンを得るなめには、キャビティに供給する燃
料の状態(蒸発、分散、分布)を良好な状態に制御し、
正確な着火を生じさせて火炎伝播を図らねばならない. この種の課題を前提とした提案には、本出願人提案の「
直接噴射式ディーゼル機関の燃焼室」(実開昭58−1
02720号公報)がある.提案は、水平断面が四角形
のキャビティを形成し、そのキャビティの入り口を形成
する開口周縁に半径方向内方へ突出されたリップを形成
し、キャビティの側壁を燃料噴射ノズルの燃料噴霧線に
対して直角となるように形成し、キャビティ底中央にト
ロイダル方向の攪拌流を生成する円錘形状の突出部を形
成して横成したもので、側壁に燃料を直角に衝突させる
ことによって、噴射燃料の一部分の燃料の粒子をさらに
細かく砕きつつ、側壁に対する燃料の残部分がその側壁
に薄膜状に付着して拡散するようにし、そして上記リッ
プが、側壁で粉砕した燃料,蒸発した燃料そして薄膜状
に付着させる燃料をキャビティ内に閉込めようにしてい
る. つまり、提案は、燃料噴霧の微粒子化を促進して、着火
および火炎伝播に必要な混合気を生成する一方で、攪拌
流の強度に依存させて薄膜状の燃料及び側壁付近に存在
する蒸気を側壁側から剥離させ、これをキャビティの中
心側に運んで火炎を伝播させ、燃焼を良好にするように
している.[発明が解決しようとする課題] しかし、上述の提案を上述の低圧縮比エンジンに採用す
るためには、次の課題を解決する必要がある. ■ 燃料噴射ノズルを燃焼室の軸心上に配設し、そのノ
ズルからキャビティの側壁へ燃料を噴射するように楕成
すると、噴霧到達距!(噴射点から側壁までの距離)が
短いため噴射の過程でキャビティ内の空気と混合する燃
料の割合が少なく側壁に付着する燃料量が多くなる. ■ 低速・軽負荷程、噴射燃料量に対して空気過剰率が
高く、且つ、噴射燃料がスワールによってキャビティ内
で拡散するためにキャビティ全体として過大な稀薄混合
比となり、着火不良、消炎効果が強く未燃焼燃料の排出
割合が増加する. ■ エンジンの最大出力点は回転数が高く燃料噴射量も
多く噴射ポンプの角速度が大きいため動的な噴射タイミ
ングはかなり遅角する,このため最大出力点で最適タイ
ミングに設定すると低速回転では動的な噴射時期が進角
する.これが■と相乗して上死点前のかなり早い時期に
燃料が噴射されてピストン頂面(リップ上面)に付着す
るため、付加装置として噴射時期を自動的に調節するオ
ートタイマが必要になる. 以上■,■,■から明らかなように過給圧力の低い範囲
《低速・軽負荷)では過大量のHC(青白煙)が発生す
る. [課題を解決するための手段] この発明は上記課題を解決することを目的とし、ピスト
ン頂面に凹設するキャビティの水平断面を正五角形とし
て中央面から燃料噴霧を供給するコーナを形成し、コー
ナを含む上記キャビティの側壁を燃料噴霧線に対し略直
角とし、上記キャビティの底面に円錘状の突出部を、開
口縁にリップを形成してエンジンのピストンを構成した
ものである, [作用] 水平断面が正五角形で開口縁にリップが形成されたキャ
ビティは、キャビティ内に導入される空気流を、一旦リ
ップで減衰する.つまり、空気流の強度減少に伴い噴射
燃料の貫徹力を相対的に増加させ側壁への到達力を増加
させる. したがって、燃料噴霧の貫徹力が小さい低速・軽負荷時
にあっても、燃料噴霧が各コーナに到達する。燃料噴霧
はコーナを形成する側壁に衝突して一部が反射して拡散
し、一部がその側壁に燃料膜として付着し拡散する.反
射及び拡散の程度は、コーナ及び側壁が燃料噴霧線に対
する傾斜角によって一義的に決定するが、これを略直角
とすると燃料噴霧の中心軸対象として反射及び拡散がな
され、その程度もほぼ均一になる.燃料の貫徹力が速度
,負荷に応じて増加すると、反射及び拡散の程度も増加
するが、燃焼室外への流出はリップが生成するスキッシ
ュ流によって阻まれる.つまり、スキッシュ流の強度も
速度.負荷に応じて増加するからである.したがってコ
ーナ内にはあらゆる速度,負荷域で供給した燃料が分布
し、コーナ内には衝突によってさらに細かく砕かれて微
粒子化し蒸発する燃料、rM壁で蒸発する燃料が生成さ
れる6これら燃料は、上記スキッシュ流中に取込まれて
上下方向に旋回し、コーナ内に着火性,火炎の伝播性能
の優れた混合気(予混合気)を生成する.つまり、低速
・軽負荷にあっても側壁を過度に冷却することのない貫
徹力で部分的に燃料の供給が可能になり、部分的にリッ
チな混合気を生成できるようになる. また、供給する燃料噴霧の飛翔距離は、コーナ前後の側
壁に対する飛翔距離に対して増加するから、その飛翔距
離の増加に応じて、飛翔途上での空気と混合時間を増加
させて、突出部周りに火炎伝播を主体的に行う混合気を
拡散分布させる.したがって、01霧の飛翔距離の増加
は、コーナ内に到達する燃料量を相対的に減少させ、そ
の結果として側壁に付着する燃料の膜厚を薄くするよう
に機能する一方で、この時間的遅れがピストンの実圧縮
比を増加させたときと一致させるように機能する.即ち
、低速・軽負荷において、噴射時期の進角を、燃料の飛
翔距離増に伴う時間遅れで相対的に吸収し、噴射時期を
エンジンの回転速度に同期させることが可能になる. この結果、ピストン頂面に燃料を噴射して付着させるこ
とを防止しつつ、側壁に付着する燃料の膜厚を適正に減
少し、未燃燃料の大iJな減少を図りつつ燃料の蒸発性
能の向上を図ることができる.ところで、四角形のキャ
ビティに対して五角形のキャビティを形成すると、コー
ナ数の増加によ円周方向における燃料噴霧間隔内に拡散
混合気を分布させる割合が増加するから噴震間の稀薄部
分の存在比率を減少する, したがって、コーナでの着火によって生じた火炎が隣接
する拡散混合気に伝播するようになり、迅速な火炎伝播
燃焼が行われるようになる.[実施例] 以下、この発明の好適一実施例を添付図面に基づいて説
明する. 第1図及び第2図に示すように、小型直接噴射デーゼル
エンジンに採用される一般のピストン1は、ピストン直
径が小さく、そのピストン1に形成するキャビティ2の
位置は燃料噴射ノズル3の配設位置によって一義的に定
まる,つまり、燃料噴射ノズル3の噴口部4の位置をシ
リンダ中心軸0.から半径方向外側にχlオフセットさ
せたときは、キャビイの中心軸02も燃料噴射ノズル3
側にχ2オフセットさせた位置に形成する.オフセット
χ1.χ2の関係は通常、χ2=χ1/2とする. このような関係を満足するエンジンにあっては、噴口部
4の各噴口(各噴射点)からキャビティ2の側壁5まで
を等距離とすることは困難である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an engine piston having a polygonal cavity formed at the top of the piston to directly supply fuel injection. [Prior Art] Normally, when pursuing high output from a turbocharged diesel engine, the supercharger pressure is set to the maximum at the maximum output point of the engine, that is, the point at which the fuel flow rate is maximum, and the maximum output point is Generally, the compression ratio is lowered so that the combustion pressure generated in the engine is less than the mechanical strength of the engine, and the lower the compression ratio, the lower the fuel consumption can be expected. An engine that has been optimally matched at the maximum output point in this way shows a tendency for the compression pressure, temperature, and combustion chamber (cavity) temperature to become lower in the low speed/light load range, that is, in the range where the supercharger pressure is low.Generally, injection Normally, the fuel injected from the nozzle collides with the side wall of the piston, rebounds, and burns completely in the flame, and the fuel that adheres to the side wall is also completely evaporated or carbonized by the flame.However, as mentioned above, the turbo In a low compression ratio engine matched for a supercharged engine, the fuel that collides with the side wall and is reflected may not be ignited, or the combustion chamber may have a lower temperature due to the delayed evaporation of fuel adhering to IN!!Iu. When it reaches the bottom, it liquefies, is exposed to flame, and floats in the cavity as unburned fuel, which is emitted during the exhaust stroke and produces blue white smoke (HC) and a pungent exhaust odor.For this reason, diesel engines are designed to have low compression. Although it is possible to increase output by reducing friction and increasing the supercharging rate, it has not yet been adopted. Therefore, in order to obtain a low compression ratio supercharged engine, the condition of the fuel supplied to the cavity (evaporation, dispersion, distribution) to a good condition,
Flame propagation must be achieved by igniting accurately. Proposals based on this type of problem include the applicant's proposal “
Combustion chamber of direct injection diesel engine
No. 02720). The proposal is to form a cavity with a rectangular horizontal cross section, and to form a radially inwardly protruding lip at the opening periphery forming the entrance of the cavity, and to align the side wall of the cavity with respect to the fuel spray line of the fuel injection nozzle. It is formed by forming a conical protrusion at the center of the cavity bottom to create a toroidal stirring flow.By colliding the fuel against the side wall at right angles, the injected fuel is While pulverizing some of the fuel particles into smaller particles, the remaining part of the fuel against the side wall adheres to the side wall in the form of a thin film and is diffused. The fuel to be deposited is confined within the cavity. In other words, the proposal promotes atomization of the fuel spray to generate the mixture necessary for ignition and flame propagation, while relying on the strength of the stirring flow to reduce the thin film of fuel and vapor present near the sidewalls. The material is separated from the side wall and transported to the center of the cavity to propagate the flame and improve combustion. [Problems to be Solved by the Invention] However, in order to apply the above-mentioned proposal to the above-mentioned low compression ratio engine, it is necessary to solve the following problems. ■ If you place the fuel injection nozzle on the axis of the combustion chamber and form an oval so that the fuel is injected from the nozzle to the side wall of the cavity, the spray reach will increase! (distance from the injection point to the side wall) is short, so the proportion of fuel that mixes with the air in the cavity during the injection process is small, and the amount of fuel that adheres to the side wall is large. ■ At low speeds and light loads, the excess air ratio is high relative to the amount of injected fuel, and the injected fuel diffuses within the cavity due to swirl, resulting in an excessively lean mixture ratio in the cavity as a whole, resulting in poor ignition and a strong flame-extinguishing effect. The proportion of unburned fuel emitted increases. ■ At the maximum output point of the engine, the engine speed is high, the amount of fuel injected is large, and the angular speed of the injection pump is large, so the dynamic injection timing is considerably retarded. Therefore, if the optimum timing is set at the maximum output point, the dynamic injection timing will be delayed at low speeds. The injection timing is advanced. This combined with ■ causes fuel to be injected quite early before top dead center and adhere to the top surface of the piston (upper surface of the lip), so an auto-timer that automatically adjusts the injection timing is required as an additional device. As is clear from the above ■, ■, and ■, an excessive amount of HC (blue-white smoke) is generated in the low boost pressure range (low speed, light load). [Means for Solving the Problems] The present invention aims to solve the above problems, and the horizontal cross section of the cavity recessed in the top surface of the piston is made into a regular pentagon to form a corner for supplying fuel spray from the central surface. The side wall of the cavity including the corner is approximately perpendicular to the fuel spray line, a conical protrusion is formed on the bottom surface of the cavity, and a lip is formed on the opening edge to form an engine piston. ] The cavity has a regular pentagonal horizontal cross section and a lip formed on the opening edge, and the lip attenuates the airflow introduced into the cavity. In other words, as the strength of the air flow decreases, the penetration force of the injected fuel increases relatively, increasing the force reaching the side wall. Therefore, even at low speeds and light loads when the penetration force of the fuel spray is small, the fuel spray reaches each corner. When the fuel spray collides with the side wall forming the corner, part of it is reflected and diffused, and part of it adheres to the side wall as a fuel film and diffuses. The degree of reflection and diffusion is uniquely determined by the angle of inclination of the corners and side walls with respect to the fuel spray line, but if this is made approximately at right angles, reflection and diffusion will occur symmetrically to the central axis of the fuel spray, and the degree of reflection will be approximately uniform. Become. As the fuel penetration force increases with speed and load, the degree of reflection and diffusion also increases, but the flow out of the combustion chamber is blocked by the squish flow generated by the lip. In other words, the strength of the squish flow is also the same as the speed. This is because it increases according to the load. Therefore, the fuel supplied at all speeds and load ranges is distributed within the corner, and within the corner, fuel is generated that is further broken down into fine particles by collision and evaporated, and fuel that evaporates at the rM wall 6 These fuels are It is taken into the above squish flow and swirls in the vertical direction, producing a mixture (premixture) with excellent ignitability and flame propagation performance in the corner. In other words, even at low speeds and light loads, it is possible to partially supply fuel with a penetration force that does not excessively cool the sidewalls, making it possible to generate a partially rich mixture. In addition, since the flight distance of the fuel spray to be supplied increases relative to the flight distance to the side walls before and after the corner, the time for mixing with the air on the way of flight is increased in accordance with the increase in the flight distance, and the fuel spray around the protrusion is The air-fuel mixture that primarily causes flame propagation is distributed by diffusion. Therefore, while an increase in the flight distance of the 01 fog functions to relatively reduce the amount of fuel reaching the corner and, as a result, reduce the thickness of the fuel film adhering to the sidewall, this time lag It functions to match the actual compression ratio of the piston when it increases. In other words, at low speeds and light loads, the advance of the injection timing is relatively absorbed by the time delay that accompanies the increased flight distance of the fuel, making it possible to synchronize the injection timing with the engine rotational speed. As a result, while preventing fuel from being injected and deposited on the top surface of the piston, the thickness of the fuel film deposited on the side wall can be appropriately reduced, and the amount of unburned fuel can be greatly reduced while improving fuel evaporation performance. Improvements can be made. By the way, if a pentagonal cavity is formed compared to a square cavity, the ratio of distributing the diffused mixture within the fuel spray interval in the circumferential direction increases due to the increase in the number of corners, so the existence ratio of the lean part between injections increases. Therefore, the flame generated by ignition at the corner will propagate to the adjacent diffused mixture, resulting in rapid flame propagation combustion. [Embodiment] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. As shown in FIGS. 1 and 2, a general piston 1 used in a small direct injection diesel engine has a small piston diameter, and a cavity 2 formed in the piston 1 is located at a location where a fuel injection nozzle 3 is located. It is uniquely determined by the position, that is, the position of the injection port 4 of the fuel injection nozzle 3 is relative to the cylinder center axis 0. When the central axis 02 of the cavity is offset radially outward from
Formed at a position offset by χ2 to the side. Offset χ1. The relationship between χ2 is usually set as χ2 = χ1/2. In an engine that satisfies such a relationship, it is difficult to maintain equal distances from each injection port (each injection point) of the injection port section 4 to the side wall 5 of the cavity 2.

そこで、この実施例にあっては、燃料噴射ノズル3の噴
口数と、噴口から噴射する燃料噴霧の広がり角θに対応
した形状のキャビティ2をピストン頂面26に形成する
. 燃料噴射ノズル3は噴口部4に円周方向に等間隔をおい
て5個の噴口を有して形成され、内部に収容した二一ド
ル弁等の弁体く図示せず)の開弁時に同時に円周方向に
対して5つの方向(斜め下方)へ燃料噴霧を噴射するよ
うに構成する.これに対してキャビティ2の水平断面は
正五角形形状とし、そのキャビティ2の入り口10を形
成する開口周縁に円周方向に沿って半径方向内方へ突出
させたリップ6を形成する.リップ6の先端(突出端》
7は、リップ先端7よりリップ6の半径方向外方に中心
を置く曲率で円弧状に丸め、上記キャビティ2の[11
!lu5の中位より上部と、その円弧8と接線方向のリ
ップ下面9で連続させる.リップ下面9との接続部より
下方の側壁5は、そ?接続部分より半径方向内方へ傾斜
させて、斜め上方を向く傾斜面として成形する.この傾
斜面の角度θは、上記燃料噴射ノズル3からの燃料噴霧
線に対して90゜〜110゜の範囲の傾斜面とし、かつ
、その傾斜面の深さ方向の間隔は、上記燃料噴霧F1〜
F,の拡散間隔J!■と同等以上としつつ底面11と側
壁5とが形成する半径方向の間隔D1は、同一断面にお
けるリップ先@7間の間隔D2とほぼ同等程度とする。
Therefore, in this embodiment, a cavity 2 having a shape corresponding to the number of nozzles of the fuel injection nozzle 3 and the spread angle θ of the fuel spray injected from the nozzle is formed on the top surface of the piston 26. The fuel injection nozzle 3 is formed with five nozzles arranged at equal intervals in the circumferential direction in a nozzle part 4, and when a valve body (not shown) such as a 21 dollar valve housed therein is opened. It is configured to simultaneously inject fuel spray in five directions (diagonally downward) in the circumferential direction. On the other hand, the horizontal section of the cavity 2 has a regular pentagonal shape, and a lip 6 is formed on the periphery of the opening forming the entrance 10 of the cavity 2, projecting radially inward along the circumferential direction. Tip of lip 6 (protruding end)
7 is rounded into an arc shape with a curvature whose center is radially outward of the lip 6 from the lip tip 7, and the [11
! It is continuous with the upper part of the middle part of lu5 and the lower lip surface 9 which is tangential to the arc 8. The side wall 5 below the connection part with the lower lip surface 9 is It is formed as an inclined surface that slopes radially inward from the connecting part and faces diagonally upward. The angle θ of this slope is in the range of 90° to 110° with respect to the fuel spray line from the fuel injection nozzle 3, and the interval in the depth direction of the slope is the same as that of the fuel spray F1. ~
Diffusion interval J of F, The distance D1 in the radial direction formed between the bottom surface 11 and the side wall 5 is approximately equal to the distance D2 between the lip tips @7 in the same cross section, while being equal to or greater than (2).

キャビティ2の底面11は水平面とし、その底面11の
中央に、キャビティ2の中心軸02を中心としキャビテ
ィ2の底面11を底とする円錘形状の突出部13を形成
する(第2図).ただし、その突出部13の頂点は、リ
ップ下面9以下の高さ位置にあるようにし、突出部13
の底外周と側壁5との間には半径方向に一定の間隔を形
成する.ところで、上記各側壁5とリップ下面9とは一
定の曲率の円弧で滑らかに接続する.この曲率は圧縮行
程終期にリッグ6によって生成されるスキッシュ流Vを
リップ下面9側から剥離させてキャビティ2の底面11
1FIに反転させることのできる曲率とする.他の接続
部分は、流体の乱れ、爆発、圧力上昇等に対して応力集
中を改善する曲率の円弧でそれぞれ滑らかに接続する.
また、上記キャビティ2の角コーナ14.15.16,
17.18は隣接する側u5相互をそれぞれ円周方向の
曲面19,20,21.22.23で滑らかに接続して
形成する.この曲面19〜23も燃料噴霧線に対しては
90゜〜110゜範囲の傾斜面で形成する.このように
形成されたキャビティ2に対し各コーナ19〜23相互
を円周方向に接続する曲面19〜23の範囲内へ燃料噴
霧Fl〜F5の到達域があるように、上記燃料噴射ノズ
ル3の噴口の形成位置を決定する.また、第2図に示す
ように各曲面19〜23に対して燃料噴霧の開始点、及
び終了点をそれぞれA,Bとし、これら各点A,Bと燃
料噴射ノズル3中心02との成す角をθrとするとき、
燃料噴MF+〜F,の広がり角θがθr〉θであるよう
に噴口直径を定める.以上のように構成すると、上記リ
ップ下面9.上記側壁5下部そして突出部13によって
リップ下面9下には、キャビティ2内に供給される燃焼
用の空気の旋回流SIをトロイダル方向の攪拌流S2と
しつつ、上下方向には、圧縮行程終期のスキッシュ流■
を導入する空間24(以下スワール旋回部という)を形
成する. 次に作用を説明する. キャビイの水平断虱を従来の四角形から正五角形に形成
すると、角数の増加によって、旋回流S1として導入さ
れる空気流をピストン頂面26で一旦減衰する.つまり
、旋回流S,の強度減少に伴い燃料噴i1+〜F,の貫
徹力を相対的に増加させて各コーナ14〜18への燃料
の到達率を増加させる.一方、各コーナ14〜18間に
噴口から燃料噴霧F+〜Fsを供給する場合、燃料噴霧
F1〜Fsの噴霧飛翔距[4! .は、リップ先端7間
距離Dを同一とする四角形キャビティ2の場合と比較す
ると、j . =0.323 Dから』,=0.353
 Dに増加する。つまり、噴霧飛翔距離jlの増加に応
じて、キャビティ2内の燃焼用の空気と混合する時間が
増加し、その飛翔途上で突出部13周りに火炎伝播に必
要な拡散混合気を生成する.また、噴霧飛翔距ilit
1+が増加すると、拡散混合気の生成量の増加に反比例
して、側壁5への燃料の到達量が減少する.この結果、
低速・軽負荷にあって噴射時期を遅角させることになり
、ピストン1の実圧縮比を増加させた場合と結果的に一
致する.この結果、側325に付着する燃料膜の膜厚が
、側壁5を過度に冷却するような厚膜となり得す壁面の
蒸発能力は低速・軽負荷時にあっても一定以上に維持さ
れるようになる. このようにコーナ14〜18内には、比較的リッチ濃度
の混合気が存在し、そのコーナ14〜18の円周方向前
後のスワール旋回部24内に火炎伝播に適した濃度の拡
散混合気が存在するようになる.つまり、低速・軽負荷
運転時のキャビティ2内の燃焼条件《混合気の濃度、キ
ャビティ内雰囲気温度等》が改善され、HCの排出量が
減少する. 着火が開始すると、生成した火炎が円周方向に火炎伝播
され、比較的急速に燃焼する.つまり、燃焼温度が向上
して一定のエンジン出力が確保され、これ伴ってHCの
排出量が減少する.次に、上述のキャビティ2を備えた
ピストン1を、低圧縮比過給エンジン用として採用した
場合のHCの排出量に閲する四角形のキャビティと五角
形のキャビティ2の比較性能を第3図乃至第6図に示す
テストデータに基づいて説明する.第3図は、回転数が
変化しても四角形のキャビティに対して五角形のキャビ
ティ2の性能が優れていること、また、回転数の大小を
問わず四角形のキャビティに対して五角形のキャビティ
2の性能が優れていることを示し、第4図は回転数、圧
縮比を固定し、噴射時期を変化させた場合において、噴
射時期を上死点前約18゛とするとH Cの排出量が減
少することを示している. 一方、第5図は、回転数1000RPM ,220O 
RPMにおけるHeの排出量と圧縮比εとの関係を調べ
たものである.この結果、各回転数について圧縮比εを
下げることによってHCの排出量が減少することが確認
できた. 以上の結果から明らかなように、上述のような椙成の五
角形のキャビティ2は、低圧縮比エンジンに好適であり
、圧縮比εを約15.4、燃料の噴射時期を約18’ 
(BTDC )とすると、着実な着火と火炎伝播燃焼が
保障されるようになる, したがって、低圧縮比エンジンにおいて自動タイマを用
いて噴射時期の調整必要性がなく、低速・低負荷運転に
あっても青白煙(HC)、刺激臭を減少でき、燃費を向
上できる. 尚、実施例はキャビティ2の中心軸に対して燃料噴射ノ
ズル3をオフセットさせる例を説明したものであるが、
燃料噴射ノズル3の噴射点とキャビティ2の中心軸とを
一致させることも当然可能であり、また、大形のピスト
ンであれば、シリンダボア、キャビティ2、燃料噴射ノ
ズル3の中心軸を一致させることも当然可能である.さ
らに、オフセット必要である場合に噴口の口径を調整し
て燃料噴霧F1〜F,の貫徹力,霧化程度を調整するこ
とも当然可能である. [発明の効果] 以上説明したことから明らかなように、ピストン頂面に
凹設するキャビティの水平断面を正五角形として中央面
から燃料噴霧を供給するコーナを形成し、コーナな含む
上記キャビティの側壁を燃料噴霧線に対し略直角とし、
上記キャビティの底面に円錘状の突出部を、開口縁にリ
ップを形成したピストン頂面に各コーナ内に直接燃料噴
霧が供給する水平断面正五角形のキャビティを凹設し、
このキャビティの上部にリップを形成したから、低速・
低負荷運転にあっても自動タイマを用いることなく青白
煙(HC),刺激臭を減少できるキャビティを有したエ
ンジンのピストンを提供できる.
The bottom surface 11 of the cavity 2 is a horizontal surface, and a conical protrusion 13 is formed in the center of the bottom surface 11, with the center axis 02 of the cavity 2 as the center and the bottom surface 11 of the cavity 2 as the bottom (FIG. 2). However, the apex of the protrusion 13 should be at a height below the lip lower surface 9, and the protrusion 13
A constant distance is formed in the radial direction between the bottom outer periphery and the side wall 5. By the way, each side wall 5 and the lower lip surface 9 are smoothly connected by an arc of constant curvature. This curvature causes the squish flow V generated by the rig 6 at the end of the compression stroke to be separated from the lip lower surface 9 side and to form the bottom surface 11 of the cavity 2.
Let it be a curvature that can be inverted to 1FI. Other connections are connected smoothly with arcs of curvature that improve stress concentration against fluid turbulence, explosions, pressure increases, etc.
Also, the corner corners 14, 15, 16 of the cavity 2,
17.18 are formed by smoothly connecting the adjacent sides u5 with curved surfaces 19, 20, 21, 22, and 23 in the circumferential direction, respectively. These curved surfaces 19 to 23 are also formed as inclined surfaces in the range of 90° to 110° with respect to the fuel spray line. The fuel injection nozzle 3 is arranged so that the fuel sprays Fl to F5 reach within the curved surfaces 19 to 23 connecting the corners 19 to 23 in the circumferential direction of the cavity 2 formed in this way. Determine the formation position of the spout. In addition, as shown in FIG. 2, the starting point and ending point of fuel spray for each curved surface 19 to 23 are designated as A and B, respectively, and the angle formed between each of these points A and B and the center 02 of the fuel injection nozzle 3. When is θr,
The nozzle diameter is determined so that the spread angle θ of the fuel injections MF+ to F is θr>θ. With the above configuration, the lip lower surface 9. At the lower part of the side wall 5 and under the lip lower surface 9 by the protrusion 13, the swirling flow SI of the combustion air supplied into the cavity 2 is turned into a stirring flow S2 in the toroidal direction, and in the vertical direction Squish style■
A space 24 (hereinafter referred to as the swirl section) is formed into which the flow is introduced. Next, the effect will be explained. When the horizontal section of the cavity is formed from a conventional quadrangle to a regular pentagon, the air flow introduced as the swirling flow S1 is temporarily attenuated at the piston top surface 26 due to the increase in the number of corners. That is, as the strength of the swirling flow S decreases, the penetration force of the fuel injections i1+ to F is relatively increased to increase the rate of fuel reaching each corner 14 to 18. On the other hand, when fuel sprays F+ to Fs are supplied from the nozzle between each corner 14 to 18, the spray flight distance of the fuel sprays F1 to Fs is [4! .. j. =0.323 From D', =0.353
Increases to D. That is, as the spray flight distance jl increases, the time for mixing with the combustion air in the cavity 2 increases, and during the flight, a diffused mixture necessary for flame propagation is generated around the protrusion 13. In addition, the spray flight distance illit
When 1+ increases, the amount of fuel reaching the side wall 5 decreases in inverse proportion to the increase in the amount of diffused mixture generated. As a result,
The injection timing is retarded at low speeds and light loads, and the result is consistent with increasing the actual compression ratio of piston 1. As a result, the thickness of the fuel film adhering to the side wall 325 may become thick enough to cool the side wall 5 excessively.The evaporation capacity of the wall surface is maintained above a certain level even at low speeds and light loads. Become. In this way, a relatively rich mixture exists in the corners 14 to 18, and a diffused mixture with a concentration suitable for flame propagation exists in the swirl portions 24 before and after the corners 14 to 18 in the circumferential direction. It comes to exist. In other words, the combustion conditions (air-fuel mixture concentration, ambient temperature inside the cavity, etc.) inside the cavity 2 during low-speed, light-load operation are improved, and the amount of HC discharged is reduced. When ignition begins, the generated flame propagates in the circumferential direction and burns relatively quickly. In other words, the combustion temperature improves, a constant engine output is ensured, and HC emissions decrease accordingly. Next, the comparative performance of the square cavity and the pentagonal cavity 2 in terms of HC emissions when the piston 1 with the cavity 2 described above is adopted for a low compression ratio supercharged engine is shown in Figures 3 to 3. The explanation will be based on the test data shown in Figure 6. Figure 3 shows that the performance of the pentagonal cavity 2 is superior to that of the rectangular cavity even when the rotational speed changes, and that the performance of the pentagonal cavity 2 is superior to that of the rectangular cavity regardless of the rotational speed. It shows that the performance is excellent, and Figure 4 shows that when the rotation speed and compression ratio are fixed and the injection timing is varied, when the injection timing is set to about 18 degrees before top dead center, the amount of HC emissions decreases. It shows that On the other hand, in Fig. 5, the rotation speed is 1000RPM, 220O
This study investigated the relationship between He emission amount and compression ratio ε during RPM. As a result, it was confirmed that the amount of HC discharged was reduced by lowering the compression ratio ε for each rotation speed. As is clear from the above results, Suginari's pentagonal cavity 2 as described above is suitable for low compression ratio engines, with a compression ratio ε of approximately 15.4 and a fuel injection timing of approximately 18'.
(BTDC) ensures steady ignition and flame propagation combustion. Therefore, there is no need to adjust the injection timing using an automatic timer in low compression ratio engines, and it is suitable for low speed and low load operation. It can also reduce blue-white smoke (HC) and irritating odors, improving fuel efficiency. In addition, although the embodiment describes an example in which the fuel injection nozzle 3 is offset with respect to the central axis of the cavity 2,
It is naturally possible to make the injection point of the fuel injection nozzle 3 coincide with the center axis of the cavity 2, and if the piston is a large one, the center axes of the cylinder bore, the cavity 2, and the fuel injection nozzle 3 should be made to coincide. Of course, this is also possible. Furthermore, if an offset is necessary, it is of course possible to adjust the aperture of the nozzle to adjust the penetration force and atomization degree of the fuel sprays F1 to F. [Effects of the Invention] As is clear from the above explanation, the horizontal cross section of the cavity recessed in the top surface of the piston is a regular pentagon to form a corner to which fuel spray is supplied from the center surface, and the side wall of the cavity including the corner is approximately perpendicular to the fuel spray line,
A conical protrusion is provided on the bottom surface of the cavity, and a cavity with a regular pentagonal horizontal cross section is recessed on the top surface of the piston with a lip formed on the opening edge to which fuel spray is supplied directly into each corner,
Since a lip is formed at the top of this cavity, low-speed
It is possible to provide an engine piston with a cavity that can reduce blue-white smoke (HC) and irritating odors without using an automatic timer even during low-load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好適一実施例を示す断面図、第2図
は第1図の■−■線矢視図、第3図乃至第6図は四角形
と五角形のHC性能を示す性能線図である. 図中、1はピストン、2はキャビティ、5は側壁、6は
リッグ、14〜I8はコーナである.特許出願人  い
すゾ自動車株式会社
Fig. 1 is a sectional view showing a preferred embodiment of the present invention, Fig. 2 is a view taken along the line ■-■ in Fig. 1, and Figs. 3 to 6 are performance lines showing the HC performance of square and pentagonal shapes. This is a diagram. In the figure, 1 is a piston, 2 is a cavity, 5 is a side wall, 6 is a rig, and 14 to I8 are corners. Patent applicant Isuzo Jidosha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、ピストン頂面に凹設するキャビティの水平断面を正
五角形として中央面から燃料噴霧を供給するコーナを形
成し、コーナを含む上記キャビティの側壁を燃料噴霧線
に対し略直角とし、上記キャビティの底面に円錘状の突
出部を、開口縁にリップを形成したことを特徴とするエ
ンジンのピストン。
1. The horizontal section of the cavity recessed in the top surface of the piston is a regular pentagon to form a corner that supplies fuel spray from the center surface, and the side wall of the cavity including the corner is approximately perpendicular to the fuel spray line. An engine piston characterized by having a conical protrusion on the bottom and a lip on the opening edge.
JP1052075A 1989-03-06 1989-03-06 Engine piston Expired - Lifetime JP2770376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052075A JP2770376B2 (en) 1989-03-06 1989-03-06 Engine piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052075A JP2770376B2 (en) 1989-03-06 1989-03-06 Engine piston

Publications (2)

Publication Number Publication Date
JPH02233822A true JPH02233822A (en) 1990-09-17
JP2770376B2 JP2770376B2 (en) 1998-07-02

Family

ID=12904699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052075A Expired - Lifetime JP2770376B2 (en) 1989-03-06 1989-03-06 Engine piston

Country Status (1)

Country Link
JP (1) JP2770376B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614874A1 (en) * 2004-07-09 2006-01-11 Renault s.a.s. Internal combustion engine having a piston with truncated cone wall cavity
WO2006040936A1 (en) * 2004-10-14 2006-04-20 Yanmar Co., Ltd. Shape of combustion chamber of direct injection diesel engine
WO2006114946A1 (en) * 2005-04-19 2006-11-02 Yanmar Co., Ltd. Direct injection diesel engine
JP2013534593A (en) * 2010-07-28 2013-09-05 アウディ アクチェンゲゼルシャフト Self-igniting internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614874A1 (en) * 2004-07-09 2006-01-11 Renault s.a.s. Internal combustion engine having a piston with truncated cone wall cavity
FR2872855A1 (en) * 2004-07-09 2006-01-13 Renault Sas INTERNAL COMBUSTION ENGINE COMPRISING A PISTON HAVING A TRUNCONIC WALL CAVITY
WO2006040936A1 (en) * 2004-10-14 2006-04-20 Yanmar Co., Ltd. Shape of combustion chamber of direct injection diesel engine
EP1801381A4 (en) * 2004-10-14 2011-08-10 Yanmar Co Ltd Shape of combustion chamber of direct injection diesel engine
US7441535B2 (en) 2004-10-14 2008-10-28 Yanmar Co., Ltd. Shape of combustion chamber for direct-injection diesel engine
EP1801381A1 (en) * 2004-10-14 2007-06-27 Yanmar Co., Ltd. Shape of combustion chamber of direct injection diesel engine
EP1876332A1 (en) * 2005-04-19 2008-01-09 Yanmar Co., Ltd. Direct injection diesel engine
JP2006299885A (en) * 2005-04-19 2006-11-02 Yanmar Co Ltd Direct spray type diesel engine
EP1876332A4 (en) * 2005-04-19 2009-06-17 Yanmar Co Ltd Direct injection diesel engine
KR100946517B1 (en) * 2005-04-19 2010-03-11 얀마 가부시키가이샤 Direct injection diesel engine
WO2006114946A1 (en) * 2005-04-19 2006-11-02 Yanmar Co., Ltd. Direct injection diesel engine
JP2013534593A (en) * 2010-07-28 2013-09-05 アウディ アクチェンゲゼルシャフト Self-igniting internal combustion engine
EP2598733B1 (en) * 2010-07-28 2017-05-31 Audi AG Compression ignition type engine with piston bowls with swirl staging
US9670826B2 (en) 2010-07-28 2017-06-06 Audi Ag Self-igniting internal combustion engine having piston recesses having swirl steps

Also Published As

Publication number Publication date
JP2770376B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
EP1365123B1 (en) Direct-injection spark-ignition engine
US5058548A (en) Combustion chamber of an internal combustion engine
JP3079427B2 (en) Externally supplied ignition type internal combustion engine
JPH01219311A (en) Injection engine in spark ignition cylinder
CA1326186C (en) Spark-ignition air-compressing internal combustion engine
EP1111216A2 (en) Combustion chamber for DISI engines with swirl airflows
JPH0114405B2 (en)
JPH07102976A (en) Inter-cylinder injection type spark ignition engine
JPS63134813A (en) Combustion chamber of internal combustion engine
JPH07150944A (en) Combustion chamber structure for direct injecting type diesel engine
JPH02233822A (en) Engine piston
JP2697100B2 (en) Engine piston
JPH0623540B2 (en) Pentorf type direct injection internal combustion engine
JPH04292525A (en) Direct injection type internal combustion engine
JPS6093115A (en) Combustion chamber in direct injection type internal-combustion engine
JPS60147526A (en) Direct-injection type diesel engine
JP4075471B2 (en) In-cylinder direct injection internal combustion engine
JP2560337B2 (en) Direct injection diesel engine
JP2569919B2 (en) In-cylinder direct injection spark ignition engine
JPH11210469A (en) Cylinder injection type spark ignition engine
JP2521900B2 (en) Spark ignition internal combustion engine
JPS603311Y2 (en) Combustion chamber of direct injection diesel engine
JP2587370Y2 (en) In-cylinder direct injection spark ignition engine
JPS603312Y2 (en) Combustion chamber of direct injection diesel engine
JPH07122407B2 (en) Engine combustion chamber structure