JPH02233623A - Production of ditolylmethane - Google Patents

Production of ditolylmethane

Info

Publication number
JPH02233623A
JPH02233623A JP5414389A JP5414389A JPH02233623A JP H02233623 A JPH02233623 A JP H02233623A JP 5414389 A JP5414389 A JP 5414389A JP 5414389 A JP5414389 A JP 5414389A JP H02233623 A JPH02233623 A JP H02233623A
Authority
JP
Japan
Prior art keywords
zeolite
catalyst
zsm
reaction
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5414389A
Other languages
Japanese (ja)
Other versions
JP2731809B2 (en
Inventor
Shigenobu Kawakami
重信 川上
Keiji Endo
圭治 遠藤
Hideyuki Doi
土肥 英幸
Atsushi Sato
篤 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP1054143A priority Critical patent/JP2731809B2/en
Publication of JPH02233623A publication Critical patent/JPH02233623A/en
Application granted granted Critical
Publication of JP2731809B2 publication Critical patent/JP2731809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject compound in high yield with excellent catalyst longevity without deteriorating activity by using a specific crystalline synthetic zeolite as a catalyst and reacting toluene with diphenylmethane and benzyltoluene or a mixture thereof under prescribed conditions. CONSTITUTION:Toluene is reacted with diphenylmethane, benzyltoluene or a mixture thereof at a molar ratio of the toluene to the diphenylmethane within the range of preferably 0.5-20 in the presence of a crystalline synthetic zeolite catalyst at >=2.0 molar ratio of SiO2/Al2O3 (either zeolite at an ultrahigh molar ratio of SiO2/Al2O3, e.g. >=1,600, or further zeolite, called silicalite substantially without containing aluminum, as necessary, may be used) having inlets of main cavities consisting of 10-membered oxygen rings at 170-400 deg.C, preferably 200-350 deg.C reaction temperature to afford the objective compound.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジトリルメタンを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ditolylmethane.

[従来技術とその課題] 従来、ジトリルメタンを製造する方法としては、メチル
ベンジルクロライドなどのハロゲン化物をトルエンに反
応させる方法が主なものであった. 更に、本発明者らが既に出願した特願昭62−5586
3号明細書では、シリカ・アルミナなどの固体酸、塩化
アルミニウムなどのルイス酸などを不均化触媒として、
トルエンとジフェニルメタンとからジトリルメタンを製
造している。
[Prior art and its challenges] Conventionally, the main method for producing ditolylmethane has been to react a halide such as methylbenzyl chloride with toluene. Furthermore, the patent application No. 62-5586 already filed by the present inventors
In specification No. 3, solid acids such as silica and alumina, Lewis acids such as aluminum chloride, etc. are used as disproportionation catalysts,
Ditolylmethane is produced from toluene and diphenylmethane.

結晶性合成アルミノシリケート・ゼオライトとしては、
従来知られているモルデナイト、Y型ゼオライトなどの
ゼオラ・rトもあるが、本発明者らにより、これらの従
来のゼオライトは何れも触媒寿命が短いこと、すなわち
活性の低下が著しく、また形状選択性も小さく、本発明
の方法には適さないことが見出されている。
As crystalline synthetic aluminosilicate/zeolite,
There are conventionally known zeolites such as mordenite and Y-type zeolite, but the present inventors have discovered that all of these conventional zeolites have a short catalyst life, that is, a significant decrease in activity, and that shape selection is difficult. It has also been found that these compounds have low properties and are not suitable for the method of the present invention.

それ故、収率や選択率良くジトリルメタンを製造する方
法が望まれている。
Therefore, a method for producing ditolylmethane with good yield and selectivity is desired.

[発明の構成] 本発明の目的は、ジトリルメタンを収率および選択率良
く製造することにある。
[Structure of the Invention] An object of the present invention is to produce ditolylmethane with good yield and selectivity.

すなわち、本発明は、SiO2/At20,,モル比が
20以上であって、かつ主空洞の入口が10員酸素環か
らなる結晶性合成ゼオライト触媒を用いて、反応温度1
70〜400℃の範囲で、トルエンとジフェニルメタン
、ベンジルトルエンまたはその混合物とを反応させるこ
とを特徴とするジトリルメタンの製造方法に関する。
That is, the present invention uses a crystalline synthetic zeolite catalyst in which the SiO2/At20, molar ratio is 20 or more and the entrance of the main cavity is composed of a 10-membered oxygen ring, and the reaction temperature is 1.
The present invention relates to a method for producing ditolylmethane, which comprises reacting toluene with diphenylmethane, benzyltoluene, or a mixture thereof at a temperature of 70 to 400°C.

以下に本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

Sin2ハl20,モル比が20以上であって、主空洞
の入口が10員酸素環からなる結晶性合成ゼオライト触
媒の代表的な例は、ZSM−5型触媒であり、この触媒
を用いると、他の従来使用されている触媒と比較して、
ジトリルメタンを高い収率および高い選択率を以て得る
ことができる。
A typical example of a crystalline synthetic zeolite catalyst having a Sin2Hal20, molar ratio of 20 or more and whose main cavity has a 10-membered oxygen ring at the entrance is the ZSM-5 type catalyst, and when this catalyst is used, Compared to other conventionally used catalysts,
Ditolylmethane can be obtained with high yield and high selectivity.

ここで、ZSM−5型のゼオライトを触媒として、トル
エン同士の不均化により、キシレンを製造する方法が既
に開示されている(特開昭50−96532号公報ほか
)。これは、当然ながらメチル基の移動によるものであ
る。
Here, a method for producing xylene by disproportionation of toluene using ZSM-5 type zeolite as a catalyst has already been disclosed (Japanese Unexamined Patent Publication No. 50-96532, etc.). This is naturally due to the movement of methyl groups.

ZSM−5型ゼオライトにより、トルエンとジフェニル
メタンとからジトリルメタンを製造する場合、メチル基
の移動が生じるとすれば、゛トルエンが存在するので、
当然ながらキシレンが生成すると予想される。キシレン
が生成すわば、その分原料トルエンが消費され、ジトリ
ルメタンの収率が低下し、好ましくないことになる。そ
れ故、トルエンとジフェニルメタンとからジトリルメタ
ンを製造するためには、ZSM−5触媒は適当ではない
と予想されるところである。
When ditolylmethane is produced from toluene and diphenylmethane using ZSM-5 type zeolite, if methyl group transfer occurs, 'because toluene is present,'
Naturally, it is expected that xylene will be produced. If xylene is produced, the raw material toluene is consumed accordingly, and the yield of ditolylmethane decreases, which is undesirable. Therefore, the ZSM-5 catalyst would not be expected to be suitable for producing ditolylmethane from toluene and diphenylmethane.

しかるに本発明者らは、意外にもトルエン存在下にもか
かわらず、実質的にキシレンの生成は認められずに反応
が進行し、ジトリルメタンが生成することを見出した。
However, the present inventors surprisingly found that despite the presence of toluene, the reaction proceeded without substantially producing xylene, and ditolylmethane was produced.

トルエンとベンジルトルエンの場合でも同様である。The same applies to toluene and benzyltoluene.

本発明におけるトルエンとジフエニルメタンまたはベン
ジルトルエンとの反応条件は次の通りである。
The reaction conditions of toluene and diphenylmethane or benzyltoluene in the present invention are as follows.

まず、触媒は、SiOz/Alz03モル比が20以上
であって、主空洞の入口が10員酸素環からなる結晶性
合成アルミノシリケート・ゼオライトなどである。この
ようなぜオライトとしては、主空洞の入口が10員酸素
環からなるZSM−5型の合成ゼオライトや、更に、ゼ
オライトゼータ1、ゼオライトゼータ2なども挙げられ
る。すなわち、本発明のゼオライトは、10員酸素環か
らなることで特徴付けられるものである。従丸の合成ゼ
オライトであるA型ゼオライト、エリオナイト、オフレ
タイトなどは、8員酸素環型小孔径ゼオライトであり、
モルデナイト、X型ゼオライト、Y型ゼオライトなどは
12員酸素環型大孔径ゼオライトである. これら従来の8員酸素環あるいは12員酸素環からなる
ゼオライトは、その構造が本発明のそれとは相違するこ
とに起因して、本発明の方法には通さないものである。
First, the catalyst is a crystalline synthetic aluminosilicate zeolite having a SiOz/Alz03 molar ratio of 20 or more and having a 10-membered oxygen ring at the entrance of the main cavity. Examples of such olite include ZSM-5 type synthetic zeolite whose main cavity has a 10-membered oxygen ring at its entrance, as well as zeolite zeta 1, zeolite zeta 2, and the like. That is, the zeolite of the present invention is characterized by consisting of a 10-membered oxygen ring. Jumaru's synthetic zeolites, such as A-type zeolite, erionite, and offretite, are 8-membered oxygen ring type small-pore size zeolites.
Mordenite, X-type zeolite, Y-type zeolite, etc. are 12-membered oxygen ring type large-pore zeolites. These conventional zeolites consisting of 8-membered oxygen rings or 12-membered oxygen rings cannot be passed through the method of the present invention because their structure is different from that of the present invention.

本発明において用いる結晶性合成ゼオライトは、主空洞
の入り口が10員酸素環からなる構造特性を有し、Si
O./Al,0.モル比が20以上である結晶性合成ア
ルミノシリケートであれば何れのものも使用できる。特
に好ましくは、ZSM−5型の合成ゼオライトであり、
例えば、ZSM−5、ZSM−11、ZSM−12、Z
SM−22、ZSM−23、ZSM−35、ZSM−3
8、ZSM−48などとして知られている。これらのZ
SM−5型の合成ゼオライトは、何れもその主空洞の入
口が10員酸素環からなる構造特性を有する.特に好適
な合成ゼオライトはZSM−5である。これらZSM−
5型ゼオライトの組成および製法は何れも下記特許公報
に記載されている。
The crystalline synthetic zeolite used in the present invention has a structural characteristic in which the main cavity entrance consists of a 10-membered oxygen ring, and Si
O. /Al, 0. Any crystalline synthetic aluminosilicate having a molar ratio of 20 or more can be used. Particularly preferred is a synthetic zeolite of type ZSM-5,
For example, ZSM-5, ZSM-11, ZSM-12, Z
SM-22, ZSM-23, ZSM-35, ZSM-3
8, ZSM-48, etc. These Z
All SM-5 type synthetic zeolites have a structural characteristic in which the main cavity entrance consists of a 10-membered oxygen ring. A particularly preferred synthetic zeolite is ZSM-5. These ZSM-
The composition and manufacturing method of type 5 zeolite are both described in the following patent publications.

ZSM−5 :    米国特許第3,7 0 2,8
 8 6号英国特許第1,161,974号 および特公昭46−10064号 ?SM−8 :    英国特許第1,334,243
号ZSM−1 t :   米国特許第3,7 0 9
,9 7 9号および特公昭53−23280号 2SM−21 :   米国特許第4,0 0 1,3
 4 6号ZSM−35:   特開昭53−1445
00号ゼオライトゼータ1:特開昭51−67299号
ゼオライトゼータ2:特開昭51−67298号主空洞
の入口が10員酸素環からなる構造特性の合成ゼオライ
トは、高いSiOi/Al20sモル比を一般的に有し
、その値は通常20以上である。場合によっては、Si
O2/A1■03モル比が非常に高く、例えば1600
以上のようなゼオライトも有効である。さらに場合によ
っては、シリカライトと称する実質的にアルミニウムを
含まない、すなわちSi02/Al20.モル比が無限
大に近いゼオライトを使用することもできる。このよう
に「高シリカ」ゼオライトも本発明の定義に含まれる。
ZSM-5: U.S. Patent No. 3,70 2,8
8 6 British Patent No. 1,161,974 and Japanese Patent Publication No. 1973-10064? SM-8: British Patent No. 1,334,243
No. ZSM-1 t: U.S. Patent No. 3,709
, 979 and Japanese Patent Publication No. 53-23280 2SM-21: U.S. Patent No. 4,001,3
4 No. 6 ZSM-35: JP-A-53-1445
No. 00 Zeolite Zeta 1: JP-A No. 51-67299 Zeolite Zeta 2: JP-A No. 51-67298 A synthetic zeolite with a structural characteristic in which the entrance of the main cavity consists of a 10-membered oxygen ring generally has a high SiOi/Al20s molar ratio. The value is usually 20 or more. In some cases, Si
O2/A1■03 molar ratio is very high, for example 1600
Zeolites such as those mentioned above are also effective. Furthermore, in some cases, substantially aluminum-free materials called silicalites, ie Si02/Al20. It is also possible to use zeolites with a molar ratio approaching infinity. Thus, "high silica" zeolites are also included within the definition of the present invention.

このSi02/Al,0,モル比は原子吸光法などの通
常の分析法で測定される。この比はゼオライト結晶の硬
質アニオン骨格中の比にできるだけ近い値を表わし、結
合剤中またはチャンネル内のカチオンその他の形態中の
アルミニウムは除かれる。
This Si02/Al,0 molar ratio is measured by a conventional analytical method such as atomic absorption spectrometry. This ratio represents as close as possible the ratio in the hard anionic framework of the zeolite crystals, excluding aluminum in cations or other forms in the binder or in the channels.

主空洞の入口が10員酸素環からなる構造は通常x,I
I1回折法で確認される。例えば、本発明の触媒として
好ましいZSM−5型の合成ゼオライトは、それぞれ特
有の特性X線回折パターンを有する(詳しくは、前記特
許公報を参照)。
The structure in which the entrance of the main cavity consists of a 10-membered oxygen ring is usually x, I
Confirmed by I1 diffraction method. For example, ZSM-5 type synthetic zeolites, which are preferred as catalysts in the present invention, each have a unique characteristic X-ray diffraction pattern (see the above-mentioned patent publication for details).

しかしながら、このX線回折分析法によらずとも、制御
指数なる測定値をもってX線回折法の代りとすることも
できる。すなわち、本発明の10員酸素環は制御指数で
1〜12の合成ゼオライトであるとも定義できる。ここ
で、該制御指数は特開昭56−133223号公報に具
体的な測定方法が示されている。この指数は、ゼオライ
ト結晶の細孔構造がn−バラフィンよりも大きな断面積
の分子の接近を制御する程度を示すものである。
However, even if this X-ray diffraction analysis method is not used, a measured value called a control index can be used instead of the X-ray diffraction method. That is, the 10-membered oxygen ring of the present invention can also be defined as a synthetic zeolite with a control index of 1 to 12. Here, a specific method for measuring the control index is shown in Japanese Unexamined Patent Publication No. 133223/1983. This index indicates the degree to which the pore structure of the zeolite crystal controls the access of molecules with a larger cross-sectional area than n-baraffin.

その測定法は、該公報に開示されているように、n−ヘ
キサンと3−メチルベンタンを一定条件下でゼオライト
に吸着させ、それらの吸着量から計算される。代表的な
制御指数は下記の通りである。
As disclosed in the publication, the measurement method involves adsorbing n-hexane and 3-methylbentane onto zeolite under certain conditions, and calculating from the amount of adsorption thereof. Typical control indices are as follows.

制御指数 ZSM−5         8.3 ZSM−11          8.7ZSM−35
        4.5 非晶質シリカ・アルミナ  0.6 本発明のゼオライトの製造法としてZSM−5の合成方
法を例にとり説明すると、先ず水酸化テトラプ口ビルア
ンモニウム、酸化ナトリウム、酸化アルミニウム、酸化
珪素および水を含む反応原料を調製する。その組成は前
記公報に記載された範囲として、この反応混合物を加熱
し水熱合成させる。合成後、得られた結晶を空気中で焼
成することにより、ゼオライトZSM−5触媒が得られ
る。水酸化テトラプ口ビルアンモニウムは、反応系中に
おいてn−プロピルアミンとれ−プロビルブロマイドな
どからin situで合成することもできる。ここで
は、酸化アルミニウムを用いる方法を述べたが、実質的
にアルミニウム原子を含まないZSM−5を合成するこ
とも提案されている。
Control index ZSM-5 8.3 ZSM-11 8.7ZSM-35
4.5 Amorphous silica/alumina 0.6 To explain the method of synthesizing ZSM-5 as an example of the method for producing the zeolite of the present invention, first, tetraphammonium hydroxide, sodium oxide, aluminum oxide, silicon oxide, and water are used. Prepare a reaction raw material containing. The composition is within the range described in the above publication, and the reaction mixture is heated to perform hydrothermal synthesis. After synthesis, the obtained crystals are calcined in air to obtain a zeolite ZSM-5 catalyst. Tetrabubyl ammonium hydroxide can also be synthesized in situ from n-propylamine, probyl bromide, etc. in a reaction system. Although a method using aluminum oxide has been described here, it has also been proposed to synthesize ZSM-5 that does not substantially contain aluminum atoms.

上記方法では、水酸化テトラブロピルアンモニウムを用
いる方法を説明したが、例えばZSM−5の合成法とし
て、これ以外に種々の有機カチオンまたはその前駆体と
しての存機化合物を代わりに用いることが提案されてい
る。この例としては、例えば、アンモニア、トリアルキ
ルメチルアンモニウムカチオン,トリエチルーn−プロ
ビルアンモニウムカチオン、C2〜CI第一級モノアル
キルアミン、ネオペンチルアミン、ジまたはトリアルキ
ルアミン、アルカノールアミン、05〜C6アルキルジ
アミン、03〜CI27ルキレンジアミン、エチレンジ
アミン、ヘキサメチレンジアミン、03〜C6ジオール
、エチレンまたはプロピレングリコール、ペンタエリス
リトール、ジベンタエリスリトール、トリベンタエリス
リトール、1.4−ジメトキシシク口ヘキサン、ヒドロ
キノン、エチレンオキサイドおよびアンモニア、n−ド
デシルベンゼンスルフォネート、シクロペンタジエニル
フタ口シアニン錯体、2−アミノピリジン、エチレング
リ?−ルジメチルエーテル、ジオキサン,ジオキソラン
、テトラヒド口フラン、酒石酸などの脂肪族カルボン酸
等が挙げられる。また、そのほか、例えば結晶化時の種
として、ZSM−5を添加することなどにより、上記例
示の有機カチオンまたはその前駆体としての有機化合物
を添加することなく製造することさえも提案されている
.反応に用いられるゼオライトは、合成時の反応原料に
起因して、例えば、ナトリウムイオンその他の金属イオ
ンを含む。Naなとのアルカリ金属その他の金属として
は、カルシウム、マグネシウムなどのアルカリ土類金属
、さらに3僅の金属でイオン交換したものも使用できる
。更に、ほう素、カリウム、燐、もしくはこれらの化合
物で変性した結晶性合成アルミノシリケート・ゼオライ
ト、例えば,ZSM−5型ゼオライトも使用することが
できる。これらのイオン交換あるいは変性は、従来公知
の方法により行なうことができる。
In the above method, a method using tetrabropylammonium hydroxide was explained, but for example, as a method for synthesizing ZSM-5, it has been proposed to use various organic cations or existing compounds as their precursors instead. has been done. Examples include, for example, ammonia, trialkylmethylammonium cation, triethyl-n-propylammonium cation, C2-CI primary monoalkylamine, neopentylamine, di- or trialkylamine, alkanolamine, 05-C6 alkyl Diamines, 03-CI27 alkylene diamine, ethylene diamine, hexamethylene diamine, 03-C6 diol, ethylene or propylene glycol, pentaerythritol, diventaerythritol, tribetaerythritol, 1,4-dimethoxycyclohexane, hydroquinone, ethylene oxide and Ammonia, n-dodecylbenzenesulfonate, cyclopentadienylphthalocyanine complex, 2-aminopyridine, ethylene glycol? Examples include aliphatic carboxylic acids such as dimethyl ether, dioxane, dioxolane, tetrahydrofuran, and tartaric acid. In addition, it has even been proposed to produce the above-mentioned organic cations or organic compounds as their precursors without adding them, for example by adding ZSM-5 as a seed during crystallization. The zeolite used in the reaction contains, for example, sodium ions and other metal ions due to the reaction raw materials during synthesis. As the alkali metals and other metals with Na, alkaline earth metals such as calcium and magnesium, and also those obtained by ion exchange with only 3 metals can be used. Furthermore, crystalline synthetic aluminosilicate zeolites modified with boron, potassium, phosphorus, or compounds thereof, such as ZSM-5 type zeolites, can also be used. These ion exchanges or modifications can be performed by conventionally known methods.

上記のように本発明の結晶性合成ゼオライトは各種の金
属を含むこともできるが、金属イオンを水素イオンで交
換した、いわゆる水素型ゼオライトが本発明の方法には
好ましい。代表的な水素型ゼオライトは、触媒調製時の
有機カチオンを含む触媒を不活性:囲気下で、例えば4
00〜700℃で1時間加熱し、しかる後にアンモニウ
ム塩あるいは塩酸などの鉱酸でイオン交換し、例えば3
00〜600℃で焼成することにより活性化され、いわ
ゆる水素型のゼオライトが得られる。
As mentioned above, the crystalline synthetic zeolite of the present invention can contain various metals, but so-called hydrogen-type zeolites in which metal ions are exchanged with hydrogen ions are preferred for the method of the present invention. A typical hydrogen-type zeolite is prepared by inactivating a catalyst containing organic cations under an atmosphere of, for example, 4
Heating at 00 to 700°C for 1 hour, followed by ion exchange with ammonium salt or mineral acid such as hydrochloric acid, e.g.
The zeolite is activated by firing at 00 to 600°C, and a so-called hydrogen type zeolite is obtained.

本発明の反応温度は170〜400℃、好ましくは20
0〜350℃である。
The reaction temperature of the present invention is 170 to 400°C, preferably 20°C.
The temperature is 0 to 350°C.

この範囲よりも反応温度が低い場合は、原料の転化率が
低くなる。また、反対に反応温度がこの範囲よりも高く
なると、キシレンの生成などの副反応が生じるために何
れも好ましくない。
If the reaction temperature is lower than this range, the conversion rate of the raw material will be low. On the other hand, if the reaction temperature is higher than this range, side reactions such as the production of xylene will occur, which is undesirable.

反応は気相で行なうこともできるが、触媒活性を長く保
つためには、液相で行なうのが適当である。また、気相
は必然的に反応温度を高くする必要があり、反応温度が
高いと前述のようにキシレンの生成などの副反応を生じ
易い。それ故、反応は液相で行なう。
Although the reaction can be carried out in the gas phase, in order to maintain the catalytic activity for a long time, it is suitable to carry out the reaction in the liquid phase. Further, in the gas phase, it is necessary to raise the reaction temperature, and if the reaction temperature is high, side reactions such as the production of xylene are likely to occur as described above. The reaction is therefore carried out in the liquid phase.

反応を液相で行なうために、反応圧は、反応相を液相に
保つために適当な圧力とすることが望ましい.この圧力
は、通常常圧から5 0 kg/cm”の範囲から選択
される. 本発明の方法の反応形式としては、流通式あるいはバッ
チ式の何れも選択できる。反応時間は、パッチ式では反
応温度その他の反応条件に応じて0.5〜50時間の範
囲から選ばれる。この範囲より反応時間が短いと転化率
が低くなる。また、反応時間を必要以上に長くしても、
ジトリルメタンの収率は向上せず、むしろ副反応を招く
のみであり好ましくない。
In order to carry out the reaction in a liquid phase, the reaction pressure should preferably be set to an appropriate pressure to maintain the reaction phase in a liquid phase. This pressure is usually selected from the range of normal pressure to 50 kg/cm''. Either a flow type or a batch type can be selected as the reaction type for the method of the present invention. It is selected from the range of 0.5 to 50 hours depending on the temperature and other reaction conditions.If the reaction time is shorter than this range, the conversion rate will be low.Also, if the reaction time is longer than necessary,
This is not preferable because the yield of ditolylmethane is not improved, but rather only causes side reactions.

流通式の反応形式の場合は、L}{SVは0.2〜20
、、好ましくは0.5〜10である。LHSVがこれよ
り小さいと副反応が多くなり、また、時間当りの収率が
小さくなるので好ましくない。また、逆にLHSVが大
きくなり過ぎると反応が進行せずに、反応原料が未反応
のまま系外に流出することになるので好ましくない。
In the case of a flow reaction type, L} {SV is 0.2 to 20
,, preferably 0.5 to 10. If the LHSV is smaller than this, side reactions will increase and the yield per hour will decrease, which is not preferable. On the other hand, if LHSV becomes too large, the reaction will not proceed and the reaction raw materials will flow out of the system unreacted, which is not preferable.

バッチ式では、反応・原料混合物に対して、通常0.1
〜10重量%、好ましくは0.5〜5重量%の触媒を使
用すれば良い。これより低い触媒濃度では反応が進行せ
ず、一方これより高い触媒濃度では、必ずしも目的化合
物の収率が向上せず、触媒を多く使用する分だけ不経済
となるので好ましくない。
In a batch process, the reaction/raw material mixture is usually 0.1
~10% by weight of catalyst may be used, preferably 0.5-5% by weight. If the catalyst concentration is lower than this, the reaction will not proceed, while if the catalyst concentration is higher than this, the yield of the target compound will not necessarily improve and the amount of catalyst used will be uneconomical, which is not preferable.

反応系に供給すべきトルエンのジフェニルメタン、ベン
ジルトルエンまたはそれらの混合物に対する割合は、モ
ル比で0.5〜20、好ましくは1〜10である。これ
よりもモル比が小さいと、すなわちジフェニルメタンに
対するトルエンの使用量が少ないと、原料転化率が低下
するので好ましくない。また、その逆に上記範囲よりも
モル比を高くし、トルエンを過剰に使用すると、反応1
回当りのジトリルメタンの生成量が少なくなり好ましく
ない。
The molar ratio of toluene to diphenylmethane, benzyltoluene or a mixture thereof to be supplied to the reaction system is from 0.5 to 20, preferably from 1 to 10. If the molar ratio is smaller than this, that is, if the amount of toluene used relative to diphenylmethane is small, the raw material conversion rate will decrease, which is not preferable. Conversely, if the molar ratio is made higher than the above range and toluene is used in excess, reaction 1
This is not preferable because the amount of ditolylmethane produced per batch is reduced.

反応終了後、未反応トルエン、ジフェニルメタン、ベン
ジルトルエンおよび本発明の不均化反応の副生成物であ
るベンゼンを分離し、常法により本発明のジトリルメタ
ンが得られる。
After the reaction is completed, unreacted toluene, diphenylmethane, benzyltoluene and benzene, which is a by-product of the disproportionation reaction of the present invention, are separated, and the ditolylmethane of the present invention is obtained by a conventional method.

[発明の効果] 本発明の方法は、従来の塩化アルミニウム触媒を用いる
方法と比較しても、より重質な成分の副生がない。これ
は、シリカ・アルミナ触媒と比較しても同様である。ま
た、実質的にキシレンの生成がない。
[Effects of the Invention] The method of the present invention does not produce any heavier components as by-products, even when compared to the conventional method using an aluminum chloride catalyst. This is also true when compared with silica-alumina catalysts. Furthermore, there is virtually no xylene generation.

以下に実施例により本発明を詳述する。The present invention will be explained in detail with reference to Examples below.

[実施例] 触媒調製例 硫酸アルミニウム、硫酸、n−プロビルアミン、n−プ
ロビルブロマイドを水に溶解させ、この溶液に水ガラス
を攪拌しながら徐々に加え、できるだけ均一なゲル状ス
ラリーを調製した。これをオートクレープに入れ、攪拌
しながら160℃で72時間かけて結晶化させた。結晶
化後濾別し、水洗液が中性になるまで水洗および濾過を
繰り返すことにより、Si02/Al20.1モル比が
70のゼオライトZSM−5を得た。得られたゼオライ
トを空気中で焼成し、触媒を調製した.この触媒のX線
回折図などは、前記特許公報(特公昭46一10064
号》記載のものと一致した。更に前記制御指数なども一
致し、それ故、該触媒はその主空洞の入口が10員酸素
環からなる構造特性を育する。
[Example] Catalyst Preparation Example Aluminum sulfate, sulfuric acid, n-probylamine, and n-probyl bromide were dissolved in water, and water glass was gradually added to this solution while stirring to prepare a gel-like slurry as uniform as possible. did. This was placed in an autoclave and crystallized at 160° C. for 72 hours while stirring. After crystallization, the crystallization was filtered, and water washing and filtration were repeated until the washing liquid became neutral, thereby obtaining zeolite ZSM-5 having a Si02/Al2 molar ratio of 70. The obtained zeolite was calcined in air to prepare a catalyst. The X-ray diffraction diagram of this catalyst is disclosed in the above-mentioned patent publication (Japanese Patent Publication No. 46-10064).
No.). Furthermore, the control index and the like match, and therefore, the catalyst develops a structural characteristic in which the entrance of its main cavity is composed of a 10-membered oxygen ring.

実施例1 上記触媒調製例において調製したゼオライトZSM−5
を塩酸でイオン交換させることにより、水素型に変換し
た水素型ZSM−5(12〜14メッシュ)200ml
を、内容積250mlの反応容器に充填し、乾燥窒素を
送りながら480℃で3時間乾燥した. 反応温度290℃、圧力20気圧(窒素雰囲気下)、L
HSV=l.Oにてトルエン2モル対ジフェニルメタン
1モルの割合の混合液を通油した。
Example 1 Zeolite ZSM-5 prepared in the above catalyst preparation example
200 ml of hydrogen form ZSM-5 (12 to 14 mesh) converted to hydrogen form by ion exchange with hydrochloric acid
was filled into a reaction vessel with an internal volume of 250 ml, and dried at 480°C for 3 hours while supplying dry nitrogen. Reaction temperature 290°C, pressure 20 atm (under nitrogen atmosphere), L
HSV=l. A mixed solution of 2 moles of toluene and 1 mole of diphenylmethane was passed through the flask at O.

通油された反応液をガスクロマトグラム法で分析し、一
定の通油時間後の反応液の組成を調べた。
The oil-passed reaction liquid was analyzed by gas chromatography to examine the composition of the reaction liquid after a certain oil-flow time.

それらの結果を表1に示す, 実施例2 内容積21のオートクレープに、トルエン4モル、ベン
ジルトルエン2モル、および触媒とじてH−ZSM−5
を20gいれ、270℃、20気圧で3時間反応させた
The results are shown in Table 1. Example 2 4 moles of toluene, 2 moles of benzyltoluene, and H-ZSM-5 as a catalyst were placed in an autoclave with an internal volume of 21.
20g of was added and reacted at 270°C and 20 atm for 3 hours.

反応後,反応液を分析したところ、ベンジルトルエンの
反応率は55%、ジトリルメタンの選択率は70%でジ
トリルメタンが生成した。
After the reaction, the reaction solution was analyzed, and ditolylmethane was produced with a conversion rate of benzyltoluene of 55% and a selectivity of ditolylmethane of 70%.

比較例1 内容積2501の反応容器に、固体酸触媒であるシリカ
・アルミナ触媒N−632L (商品名、日揮■製、粒
径:12〜14メッシュ)200+alを充填し、乾燥
窒素を送りながら250℃で24時間乾燥した。反応温
度290℃、圧力20気圧(窒素雰囲気下).LHSV
=1.0にてトルエン2モル対ジフェニルメタン1モル
の割合の混合液を通油した。実施例1と同様に、反応液
をガスクロマトグラム法で分析し、一定の通油時間後の
反応液の組成を調べた。それらの結果を表2に併せて示
す.表1および表2に示す結果によれば、ZSM一5触
媒が、シリカ・アルミナ触媒の場合と比べてジトリルメ
タンの選択率が高いことが解る.また触媒活性が低下す
る割合も、ZSM−5触媒の方が小さいことが解る。
Comparative Example 1 A reaction vessel with an internal volume of 2,501 liters was filled with 200+ al of silica-alumina catalyst N-632L (trade name, manufactured by JGC ■, particle size: 12 to 14 mesh), which was a solid acid catalyst, and was heated to 250 ml while supplying dry nitrogen. It was dried at ℃ for 24 hours. Reaction temperature: 290°C, pressure: 20 atm (under nitrogen atmosphere). LHSV
= 1.0, a mixture of 2 moles of toluene and 1 mole of diphenylmethane was passed through the oil. As in Example 1, the reaction solution was analyzed by gas chromatography to examine the composition of the reaction solution after a certain oil passage time. The results are also shown in Table 2. According to the results shown in Tables 1 and 2, it can be seen that the ZSM-5 catalyst has a higher selectivity for ditolylmethane than the silica-alumina catalyst. It can also be seen that the rate at which the catalyst activity decreases is smaller for the ZSM-5 catalyst.

比較例2 内容[11のセパラブルフラスコに、トルエン4モル、
ジフェニルメタン2モルおよび触媒として塩化アルミニ
ウム10gを入れて、室温で5時間攪拌した.その後触
媒を失活した後、反応液を実施例と同様に分析したとこ
ろ、以下の表3の通りであった. 表3の結果から明らかなように、塩化アルミニウムを触
媒とすると、その反応液中にはジトリルメタンおよび重
質分が多いという欠点があることが解る. 比較例3 内容量250mlの反応容器に、水素型Y型ゼオライト
(ユニオンカーバイド社製、12〜14メッシュ)20
0mlを充填し、乾燥窒素を送りながら480℃で3時
間乾燥した。反応温度180℃、圧力20気圧(窒素雰
囲気下)、LHSV=1.0の反応条件で、トルエン2
モル対ジフェニルメタン1モルの混合液を通油した。
Comparative Example 2 Contents [4 moles of toluene in 11 separable flasks,
Two moles of diphenylmethane and 10 g of aluminum chloride as a catalyst were added, and the mixture was stirred at room temperature for 5 hours. After deactivating the catalyst, the reaction solution was analyzed in the same manner as in the example, and the results were as shown in Table 3 below. As is clear from the results in Table 3, using aluminum chloride as a catalyst has the disadvantage that the reaction solution contains a large amount of ditolylmethane and heavy components. Comparative Example 3 In a reaction vessel with an internal capacity of 250 ml, 20 hydrogen-type Y-type zeolite (manufactured by Union Carbide, 12-14 mesh) was added.
It was filled with 0 ml and dried at 480° C. for 3 hours while supplying dry nitrogen. Under the reaction conditions of reaction temperature 180°C, pressure 20 atm (under nitrogen atmosphere), and LHSV = 1.0,
A mixture of mole to 1 mole of diphenylmethane was passed through the oil.

通油した反応液をガスクロマトダラム法で分析し、20
時間通油後の反応液の組成を分析した.結果を表3に併
せて示す。
The oil-passed reaction solution was analyzed by gas chromatography using the Durum method.
The composition of the reaction solution after passing through the oil for a period of time was analyzed. The results are also shown in Table 3.

この結果によると、Y型ゼオライトはジトリルメタンの
選択率が低く、また活性低下が著しい。
According to these results, Y-type zeolite has a low selectivity for ditolylmethane and a significant decrease in activity.

この活性低下は、反応温度を180℃から260℃に昇
温させても回復できない活性低下であった。
This decrease in activity could not be recovered even if the reaction temperature was raised from 180°C to 260°C.

Claims (5)

【特許請求の範囲】[Claims] (1)SiO_2/Al_2O_3モル比が20以上で
あって、かつ主空洞の入口が10員酸素環からなる結晶
性合成ゼオライト触媒を用いて、反応温度170〜40
0℃の範囲で、トルエンとジフェニルメタン、ベンジル
トルエンまたはその混合物とを反応させることを特徴と
するジトリルメタンの製造方法。
(1) Using a crystalline synthetic zeolite catalyst in which the SiO_2/Al_2O_3 molar ratio is 20 or more and the entrance of the main cavity has a 10-membered oxygen ring, the reaction temperature is 170 to 40.
A method for producing ditolylmethane, which comprises reacting toluene with diphenylmethane, benzyltoluene, or a mixture thereof at a temperature of 0°C.
(2)前記結晶性合成ゼオライト触媒が、ZSM−5型
触媒である請求項1記載のジトリルメタンの製造方法。
(2) The method for producing ditolylmethane according to claim 1, wherein the crystalline synthetic zeolite catalyst is a ZSM-5 type catalyst.
(3)前記ZSM−5型触媒が、ZSM−5である請求
項2記載のジトリルメタンの製造方法。
(3) The method for producing ditolylmethane according to claim 2, wherein the ZSM-5 type catalyst is ZSM-5.
(4)前記反応系に供給すべきトルエンの、ジフェニル
メタンまたはベンジルトルエンまたはその混合物に対す
るモル比が、0.5〜20である請求項1記載のジトリ
ルメタンの製造方法。
(4) The method for producing ditolylmethane according to claim 1, wherein the molar ratio of toluene to be supplied to the reaction system to diphenylmethane, benzyltoluene, or a mixture thereof is 0.5 to 20.
(5)前記反応温度が、200〜350℃である請求項
1記載のジトリルメタンの製造方法。
(5) The method for producing ditolylmethane according to claim 1, wherein the reaction temperature is 200 to 350°C.
JP1054143A 1989-03-07 1989-03-07 Method for producing ditolylmethane Expired - Fee Related JP2731809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054143A JP2731809B2 (en) 1989-03-07 1989-03-07 Method for producing ditolylmethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054143A JP2731809B2 (en) 1989-03-07 1989-03-07 Method for producing ditolylmethane

Publications (2)

Publication Number Publication Date
JPH02233623A true JPH02233623A (en) 1990-09-17
JP2731809B2 JP2731809B2 (en) 1998-03-25

Family

ID=12962336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054143A Expired - Fee Related JP2731809B2 (en) 1989-03-07 1989-03-07 Method for producing ditolylmethane

Country Status (1)

Country Link
JP (1) JP2731809B2 (en)

Also Published As

Publication number Publication date
JP2731809B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US5360774A (en) Method for recharging a spend fluid catalytic cracking process catalyst
EP0055045B1 (en) Production of ethers
EP0106552B1 (en) Process for preparation of zeolites
CA1185224A (en) Titanium-containing zeolites, process for their manufacture, and their use
JPH0686451B2 (en) Method for producing triethylenediamines
JPH0788217B2 (en) Synthetic zeolite material and method for producing the same
CN112209397A (en) CHA type topological structure zinc-silicon molecular sieve with high zinc-silicon ratio and synthesis method thereof
JPH01163138A (en) Production of m-benzyltoluene
JPH02233624A (en) Production of dibenzylbenzenes
JP5791711B2 (en) Improved conversion process from isobutylene to tertiary butylamine.
JP2664455B2 (en) Preparation of phenylethanol
JPH02233623A (en) Production of ditolylmethane
JP2002530363A (en) Method for producing methylamine using acidic molecular sieve catalyst
CN111099613B (en) Molecular sieves, methods of synthesis, and uses thereof
JPH0798946B2 (en) By-product oil treatment method
JPH09208219A (en) Zeolite having mordenite structure and production thereof
CN112624148A (en) SCM-29 molecular sieve and preparation method and application thereof
EP0551688B1 (en) A process for the preparation of crystalline molecular sieves
US5215736A (en) Mordenite type zeolite and its preparation process
HU202213B (en) Process for producing acylated imidazol- and pyrazol derivatives
JP2002137918A (en) Method of synthesizing zeolite and new organic template compound and its manufacturing method
JPH0551533B2 (en)
JP2640605B2 (en) Method for producing triethylenediamines
JPH08253434A (en) Production of high-purity 1,3-cyclohexadiene
JPS6372640A (en) Production of diphenyl ethers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees