JPH02233610A - Vascularization inhibitor - Google Patents

Vascularization inhibitor

Info

Publication number
JPH02233610A
JPH02233610A JP5336889A JP5336889A JPH02233610A JP H02233610 A JPH02233610 A JP H02233610A JP 5336889 A JP5336889 A JP 5336889A JP 5336889 A JP5336889 A JP 5336889A JP H02233610 A JPH02233610 A JP H02233610A
Authority
JP
Japan
Prior art keywords
formula
active ingredients
wf2015b
tablets
wf2015a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5336889A
Other languages
Japanese (ja)
Other versions
JP2762522B2 (en
Inventor
Takanao Otsuka
隆尚 大塚
Toshihiro Shibata
柴田 敏裕
Hiroshi Terano
寺野 紘
Yasuhisa Tsurumi
鶴海 泰久
Masakuni Okuhara
奥原 正国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujisawa Pharmaceutical Co Ltd
Original Assignee
Fujisawa Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawa Pharmaceutical Co Ltd filed Critical Fujisawa Pharmaceutical Co Ltd
Priority to JP5336889A priority Critical patent/JP2762522B2/en
Publication of JPH02233610A publication Critical patent/JPH02233610A/en
Application granted granted Critical
Publication of JP2762522B2 publication Critical patent/JP2762522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a vascularization inhibitor having a remarkable vasculrization-inhibiting activity and useful for preventing or treating diseases caused by the abnormal multiplication of blood vessels by containing WF2015A and/or WF2015B as active ingredients. CONSTITUTION:A vascularization inhibitor having the above-mentioned activity and useful for preventing or treating diabetic retinopathy, rheumatic arthritis, immature infant retinopathy, senile macular degeneration, etc., contains WF2015A (X = formula II) and/or WF2015B (X = formula III) represented by formula I (X is formula II or III) as active ingredients. The active ingredients can be mixed with a carrier acceptable as a drug and orally or parenterally administered in a form of capsules, tablets, granules, powders, oral tablets, sublingual tablets, solutions, etc., preferably in a does of usually 0.01-10mg/kg/ day in the case of injection and 0.5-50mg/kg/day in the case of oral administration.

Description

【発明の詳細な説明】 ilよ旦皿貝立1 この発明は新規な血管新生阻害剤に関するものである.
さらに詳細には、この発明はW F 2015Aおよび
/またはWF2015Bを有効成分として含有する血管
新生阻害剤に関するものである.の   び  が  
しようとする  占従来、血管新生阻害剤としては種々
のものが知られているが、これらのものは医薬品として
必ずしも満足される性質を備えて1いるものではなかっ
た.そこで、この発明者等は新しいタイプの血管新生阻
害剤の開発を企図した. の  およびク この発明の血管新生阻害剤の有効成分である示される. で示される基である化合物がWF2015Bを意味する
) 上記一般式(I)で示される化合物は例えば特願昭63
−262044号記載の方法、より具体的には後記製造
例で示す方法ゝにより製造することができる. 後記製造例で得られるW F 2015AおよびBは下
記の理化学的性質を有する: (1) WF2015A ●》分子量 41G [FAB−MS : s/x 411  (M
+H)]b)元素分析 C84.ss:  H  a.oa:  0  27.
39 (差として算出) C)比旋光度 【α1 竃−52@ O (C−1.0  ,  C}130H)d) UV吸収
スペクトル 末端吸収(CICI,中) e) IR吸収スペクトル 1170.112G,1100.1070.1050,
1000.  980,  920,  880.  
830 cm−’l f)HNMR吸収スペクトル(CDCIs)δ: 8.
95 (IH,dd,J−15.5および4.5HZ)
 .6.20(IH.dd,J−15.5および2Hx
) .5.70(IH,広いS》, 5.20(IH,広いt,J−7}1x) ,4.31
(IH劃》, 3.90(IH劃). 3.68(IH,dd,J−11および3Hz) ,3
.44(3Ls). 2.98(IH,d,J−4.21).2J2 (IH
.dd.J−6.5およびl!Hz) ,2.58(I
H,d,J−4.2tlz),2.36(III,m)
. 2.18(1B,+s) , 2.10(1B,+a), 2.00(IN,m), 1.98(IH,d,J−11Hx),1.87(IH
,m). 1.74 (3H,d,J−1+1z) .1.86 
(3}1,d,J−1+1z) .1.21(3H.s
). 1.14(311,d,J−8.5HZ).1.07(
1}1.@), g) ”C NMR吸収スペクトル(CDCli)δ 
:  1B5.8(S). 146.6(d). 135.0($). 121.ll(d). 118.3 (d) . 79 .4 (d) , 74.5 (d) . 69.9(.d), 66.3 (d) , 81.1(d). 59.4 (s) . 5L9 (S) . sa.7 (q) . 50.7(t), 48.2 (d) , 29.2 (t) , 27.2(t), 25.6 (q) . 25.6 (t) , 17.9 (+1) . 17.1 (q) , 13.7 (q) , h》溶解性 可溶:クロロホルム、メタノール、アセトン、エタノー
ル 不溶:n−ヘキサン、水 i》呈色反応 陽性:沃素蒸気との反応 陰性:ニンヒドリン反応、モリッシュ反応、塩化第二鉄
反応 」)物買の性質 中性物質 (2) WF2015B a》分子量 447[F^トMS  : m/z 469(M+Na
)]b)元素分析 C 58.03: I%1.94. Clフ.′・3l
: 0  2B.72 C差として算出) C》比旋光度 d) e》 UV吸収スペクトル 末端吸収(CHCIs中) IR吸収スペクトル CHCIs  : 35?0. 3400,ν ma× 2820. 1?10, 1440, 1400, 1300, 1270, 1080, 1020. 910 cm−’ 29150, 1,660. 1380. 1220. 980. 2940,2870. 1560.14B0, 1360,1340, 1170,1120, 960,940, f) 18 NMR(400Mllz.CDCls)δ
: 6.99(III,dd,J−5およびls.!J
z) ,6.20(IL(ld,J−2および15.5
Hz) ,5.55(IH)), s.ta(to,霞》. 4.36(IH,脂), 3.98(IH,dq,J−4および6Hz) .3.
87(1B,d,J−ILHz),3.49 (IH,
d,J−1182) .3.31 (IH,+s) , 3.30(3H,s). 2.97(IH,t,JJ.SH,z) .2.56−
2.40 (2B,@) .2.17(ILm), 2.05(LH,s+), 1.90−1.75 (2H,l) .1.73 (3
H,s) . 1.61!(3H,s), 1.41(3Ls), 1.40(IH,広いd,J−1411z) ,1.2
0(3M,d,J−611z) g) ”C NMR (loOMHx, CDCIs)
δ: 165.7 (s) , 14L3(d), 134.8 (s) . 122.4 (d) . 118.2(d). 78.7 (d) . ?@.Z (a) , 74.5 (d) . 70.0(d), 66.1(d), 64.0 (s) , 82.3 (d) , 58.7 (d) , 50.5 (t) , 43.3(d). 29.1 (t) . 27 .5 (t) , 25.8(Q). 23.5 (t) . 22.2 (q) . 17.9 (q) . 17 .6 (q) h)溶解性 可溶:クロロホルム、メタノール、 ン、エタノール 不rJ:n−ヘキサン、水 l》呈色反応 陽性:沃素蒸気との反応 アセト 陰性:ニンヒドリン反応、モリッシェ反応、塩化第二鉄
反応 』》物買の性貿 中性物賞 以上の理化学的性買および別途研究の結果から、W F
 2015AおよびBの化学構造は前記のように決定さ
れた. 次に、W2015AおよびBの生物学的な性貢を下記試
験例により説明する. フィブロネクチンで被覆した96六マイクロタイタープ
レートに、15%牛胎児血清100ug/mI ECG
S(Endothellal cell growth
 xupple−ment)および10ug/m′1ヘ
バリンを含むMCDB151培地を加えた後、一定濃度
のWF2015AまたはWF2015Bのメタノール溶
液を加え種々の濃度の希釈液を作製した.さらに、上記
成分を含むMCDB151培地を用いて人mire静脈
内皮細胞液を調製し、2X10’個の割合で各穴(fi
nal volui+s2 0 0 μ1)に接種し、
C’O.’lインキエベーター中で37℃.5日間培養
した.培養後MTT法T.MosmanHJ.Ismu
nol.Methods 65.55.1983)によ
り細胞増殖度合を測定し、W F 2015AまたはW
F2015Bに対する血管内皮細胞の増殖抑制率を算出
した. その結果、W F 2015AおよびW F 2015
Bは血管内皮細胞の増殖に対して強い抑制効果を示し、
それらのICS。値は共に2X10”pg/■lであっ
た. 溶液2.5μlと0.1%メチルセルロース水溶液2.
5μlを混合し、乾燥させて作製したサンプルディスク
を漿尿膜上に置き、再び窓をスキンクロージャでふさい
で37℃で靜卵を続けた.さらに、3日後に漿尿膜に新
生される血管の発達状態からW F 2015Aの血管
新生に対する阻害作用を観察した. その結果、W F 2015Aの10μg投与群では、
ほぼ完全な(約100%)血管新生阻害作用が観察され
た. 3日令の鶏受精卵から無菌的に注射針で卵白を約1■l
抜き取り、歯科用ドリ)レで漿尿膜を傷っけないように
卵殻に傷をつけ、ピンセットで殻を破フて約1 c+*
”の窓を開け、スキンクロージャーで窓をふさいで37
℃で岬卵した.24時間後に、あらかじめ一定濃度のW
 F 2015Aメタノール1豊正月: 兎角膜内での血管新生作用は、M.^,Gimbron
eらの方法(Journal National Ca
ncer Institute52,413.1974
)により検討υた.すなわち、兎(ニュージーランドホ
ワイト種、雌9週令)を用いてネンブタール麻酔下、角
膜中央部にメスで約2mmの切れ目を入れ、その切れ目
から眼科用虹彩スバテルで角膜間買部にポケット状構造
を作った.そのポケット底に、あらかじめ作製しておい
た一定量のW F 2015Aを含むElvax (+
tlzylenevInyl ac@tate)ペレッ
ト( 1 mm角)を挿入し、さらにF G F ( 
Flbroblast Growth Factor,
クシ脳由来》1μgを含有するElvaxペレットを続
いて挿入し、角膜輪郎からFGFベレットに向かって延
びてくる新生血管を経日的に(2週間)観察した. そ
の結果、W F 2GISAはFGFによって新生され
る血管を200μg投与群では完全に(約100%)阻
害した. W F 2015AまたはBの生理食塩水溶液を、1日
1回5日間、ICR系マウス5匹(雌性、5週令)の腹
腔内に投与(1回投与量100■g/kg )した.そ
の結果、マウスに異゛常な症状は認められなかった. 以上の試験例から明らかなように、この発明の血管新生
阻害剤は顕著な血管新生阻害作用を有し、血管の異常増
殖によって引き起される疾患、例えば、糖尿病性網膜症
、リュウマチ性関節炎、未熟児網膜症、老人性黄班部変
性等の予防または治療に使用される. この発明の血管新生阻害剤の有効成分は医薬として許容
しうる担体と混合して、例えば、カプセル、錠剤、顆粒
剤、粉剤、口内錠、舌下錠、液剤などの製剤の形でヒト
を含む咄乳動物に経口または非経口的に投与できる. 医薬として許容しうる担体としては、製薬の目的に慣用
される種々の有機または無機担体、たとえば賦形剤(た
とえば、スクロース、でん粉、マンニット、ソルビット
、ラクトース、グルコース、セルロース、タルク、りん
酸カルシウム、炭酸カルシウム等)、結合剤(セルロー
ス、メチルセルロース、ヒドロキシブロビルセルロース
、ポリブロビルビロリドン、ゼ)チン、アラビアゴム、
ポリエチレングリコール、スクロース、でん粉等》、崩
壊剤(たとえば、でん粉、カルボキシメチルセルロース
、カルボキシメチルセルロースカルシク゛ム、ヒドロキ
シブロビルでん粉、グリコールでん粉ナトリウム、重炭
酸ナトリウム、りん酸カルシウム、くえん酸カルシウム
等》.′、滑沢剤(たとえば、ステアリン酸マグネシウ
ム、エーロジル、タルク、ラウリル硫酸ナトリウム等)
、矯味剤(たとえば、くえん酸、メントール、グリシン
、オレンジ粉末等)、保存剤(安息香酸ナトリウム、重
亜硫酸ナトリウム、メチルバラベン、プロビルバラベン
等)、安定剤(くえん酸、くえん酸ナトリウム、酢酸等
)、懸濁化剤(たとえば、メチルセルロース、ポリビニ
ルピロリドン、ステアリン酸アルミニウム等)、分散剤
(たとえば、界面活性剤等)、水性希釈剤(たとえば、
水)、油類(たとえば、ごま油等)、基剤ワックス(た
とえば、カカオ脂、ポリエチレングリコール、白色ワセ
リン等》等が包含されうる.有効成分の用量は、疾患の
′種類、患者の体重および/または年令、さらには投与
経路等の種々の因子に応じて変更すべきである. W F 2015AまたはBの好ましい用量は、通常、
注射の場合には0.Ol〜10■g/kg/日、゛また
経口投与の場合には0.5〜sogeg/kg/日の用
量範囲から適宜選択される. 以下の製造例は、この発明の血管新生阻害剤の有効成分
の具体的な製造法を説明するためのものである. 鼠遺班工 可溶性でん粉2%、とうもろこしでん粉1%、グルコー
ス1%、綿実粉1%、乾燥酵母1%、ペブトン0.5%
、コーンスチーブリカ−0.5%および炭酸カルシウム
0.2%を含有する水性培地(pl16.0 )  (
 1 6 0ml)を、500■l容三角フラスコ19
本に分注し、120℃で20分間滅菌した.スコレコバ
シデイウム・アレナリウムScolecoba−sid
ium arenarium)  F − 2015徴
工研条寄第1520号の斜面培養物1白金耳を各培地に
接種し、25℃で3日間振盪培!!ゝした.得られた培
養物を、あらかじめ120℃で20分間滅菌した20O
It容ジャーファーメンター中の可溶性でん粉3%、グ
ルコース1%、小麦の胚芽1%、綿実粉0.5%および
炭酸カルシウム0.2%を含有する水性培地(120f
t)に接種し、25℃で3日間培養した. こうして得た培養液を、珪藻±( 2 0 kg)を用
いて濾過した.濾液(954!)を酢酸エチル(9 5
1)で抽出した.この抽出操作を2回行い、抽出液を合
せた.無水硫酸マグネシウムで脱水後、酢酸エチル層を
減圧下に濃縮した.濃縮物をシリカゲルクロマトグラフ
ィーカラム(11)に付した.カラムをn−へキサン(
3A)およびn−ヘキサンー酢酸エチル混液(1:1、
3IL)で洗った.活性画分を酢酸エチル(4A)で溶
出し、ついで減圧下に濃縮した.これをさらにシリカゲ
ルカラム(400ml)に付した.クロロホルム(1.
24!)およびクロロホルムーメタノール混液(1 0
0 : 1、1.2Jl!.)でカラムを洗浄したのち
、クロロホルムーメタノー)レ混液(75:1、50:
1、および25:1)で段階的に溶出した.活性画分を
減圧下に濃縮し、残渣を逆相シリカゲルODS逆カラム
クロマトグラフィーに付した.カラムをメタノールー水
温液(1:1、300■l)で洗浄したのち、メタノー
ルー水混液(3;2および7:3、各300ml)で段
階的に展開した.活性画分を減圧下に蒸発乾固して、精
製された無色油状のW F 2015A ( 9 2 
mg)を得た. ■遺旦ユ スコレコバシディウム・アレナリウムF − 2015
(徴工研条寄IJ 1520号)の斜面培養物の1白金
耳を、可溶性でん粉2%、とうもろこしでん粉1%、グ
リコース1%、綿実粉1%、乾燥酵母1%、ペブトン0
.5%、コーンスチーブリカ一0.5%、NaC1  
3%およびCaCO..0.2%を含有する穏培地(p
ns.o )  ( 1 6 0■1》を20本の50
01容三角フラスコの各々へ分注し常法通り滅菌したも
のに接種し、回転振盪機を用いて2 5 0 rpi+
にて25℃で72時間培養した.得られた種培養液を、
ステンレス製2001ジャー・ファーメンター中に上記
と同じ滅菌培地160JL中へ接種し、ファーメンター
を20orpm,25℃で48時間攪拌した.こうして
得た種培養901を、さらに、可溶性でん粉3%、グル
コース1%、綿実粉0.5%、小麦の胚#.1%NaC
I  3%およびCaC0,0.2%を含有する400
0flili製ファーメンター中の滅菌生産培地300
0ftに接種した.3ooofL/分の通気および13
0rp■の攪拌のもとに、25℃で72時間培養を行な
った. 培養液《285ofL》を珪藻土(askg)ヲ用いて
濾過した.濾液を、活性炭(6001)のカラムに通し
た.カラムを脱イオン水180ftで洗い、80%アセ
トン水(taogで溶出した.溶出液を減圧下に体積1
71まで濃縮した.濃縮物を酢酸エチル181で抽出し
た.酢酸エチル層を分離し、減圧乾固して、粉末(61
.3g )を得た.この粗製粉末をシリカゲル0.3 
1と混合した.混合物をシリカゲル(3′j!)を用い
るカラムクロマトグラフィーに付した.カラムをヘキサ
ンtojlで、ついでヘキサンー酢酸エチル(1:1)
IOjLで洗浄し、酢酸エチル101で溶出した.活性
画分を集め、蒸発乾固して粉末を得、この粉末をシリカ
ゲルと混合した.混合物を、シリカゲル(11)を用い
るカラムクロマトグラフィーに付した.カラムをクロロ
ホルム3IL,ついでクロロホルムーメタノール(10
0:1)31で展開し、クロロホルムーメタノール(7
5:1)3J!で溶出した.溶出液を減圧乾固して粉末
(16.4g )を得、この粉末を逆相シリカゲルOD
S30mlと混合した.混合物を逆相シリカゲルODS
(600+wl)カラムにかけ、メタノールー水(1:
1)2.41で洗浄した.カラムをメタノールー水(3
 : 2)で溶出した.活性画分を集め、減圧下に濃縮
して、油状のWF2015B(305ag)を得た.
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a novel angiogenesis inhibitor.
More specifically, the present invention relates to an angiogenesis inhibitor containing WF 2015A and/or WF2015B as an active ingredient. The growth is
A variety of angiogenesis inhibitors have been known in the past, but these did not necessarily have properties that would satisfy them as pharmaceuticals. Therefore, the inventors set out to develop a new type of angiogenesis inhibitor. It is shown that these are the active ingredients of the angiogenesis inhibitor of this invention. (means WF2015B) The compound represented by the above general formula (I) is, for example, disclosed in Japanese Patent Application No. 63
It can be produced by the method described in No.-262044, more specifically by the method shown in the production example below. WF 2015A and B obtained in the production examples described below have the following physical and chemical properties: (1) WF2015A ●》Molecular weight 41G [FAB-MS: s/x 411 (M
+H)] b) Elemental analysis C84. ss: H a. oa: 0 27.
39 (calculated as the difference) C) Specific rotation [α1 -52@O (C-1.0, C}130H) d) UV absorption spectrum terminal absorption (CICI, middle) e) IR absorption spectrum 1170.112G, 1100.1070.1050,
1000. 980, 920, 880.
830 cm-'lf) HNMR absorption spectrum (CDCIs) δ: 8.
95 (IH, dd, J-15.5 and 4.5HZ)
.. 6.20 (IH.dd, J-15.5 and 2Hx
). 5.70 (IH, wide S》, 5.20 (IH, wide t, J-7}1x), 4.31
(IH 劃》, 3.90 (IH 劃). 3.68 (IH, dd, J-11 and 3Hz) , 3
.. 44 (3Ls). 2.98 (IH, d, J-4.21). 2J2 (IH
.. dd. J-6.5 and l! Hz), 2.58(I
H, d, J-4.2tlz), 2.36 (III, m)
.. 2.18 (1B, +s), 2.10 (1B, +a), 2.00 (IN, m), 1.98 (IH, d, J-11Hx), 1.87 (IH
, m). 1.74 (3H, d, J-1+1z) . 1.86
(3}1, d, J-1+1z) . 1.21 (3H.s
). 1.14 (311, d, J-8.5HZ). 1.07(
1}1. @), g) “C NMR absorption spectrum (CDCli) δ
: 1B5.8(S). 146.6(d). 135.0 ($). 121. ll(d). 118.3 (d). 79. 4 (d), 74.5 (d). 69.9(.d), 66.3(d), 81.1(d). 59.4 (s). 5L9 (S). sa. 7 (q). 50.7 (t), 48.2 (d), 29.2 (t), 27.2 (t), 25.6 (q). 25.6 (t), 17.9 (+1). 17.1 (q), 13.7 (q), h》Solubility Soluble: Chloroform, methanol, acetone, ethanol Insoluble: n-hexane, water》Positive color reaction: Reaction with iodine vapor Negative: Ninhydrin Reaction, Morisch reaction, ferric chloride reaction”) Purchase properties Neutral substances (2) WF2015B a》Molecular weight 447 [F^tMS: m/z 469 (M+Na
)] b) Elemental analysis C 58.03: I% 1.94. Clf. '・3l
: 0 2B. 72 Calculated as C difference) C》Specific optical rotation d) e》 UV absorption spectrum terminal absorption (in CHCIs) IR absorption spectrum CHCIs: 35?0. 3400, ν max×2820. 1?10, 1440, 1400, 1300, 1270, 1080, 1020. 910 cm-' 29150, 1,660. 1380. 1220. 980. 2940, 2870. 1560.14B0, 1360,1340, 1170,1120, 960,940, f) 18 NMR (400Mllz.CDCls)δ
: 6.99 (III, dd, J-5 and ls.!J
z), 6.20 (IL(ld, J-2 and 15.5
Hz), 5.55 (IH)), s. ta (to, haze). 4.36 (IH, fat), 3.98 (IH, dq, J-4 and 6Hz) .3.
87 (1B, d, J-ILHz), 3.49 (IH,
d, J-1182). 3.31 (IH, +s), 3.30 (3H, s). 2.97 (IH, t, JJ. SH, z). 2.56-
2.40 (2B, @) . 2.17 (ILm), 2.05 (LH, s+), 1.90-1.75 (2H, l). 1.73 (3
H,s). 1.61! (3H,s), 1.41 (3Ls), 1.40 (IH, wide d, J-1411z), 1.2
0 (3M, d, J-611z) g) ”C NMR (loOMHx, CDCIs)
δ: 165.7 (s), 14L3 (d), 134.8 (s). 122.4 (d). 118.2(d). 78.7 (d). ? @. Z (a), 74.5 (d). 70.0 (d), 66.1 (d), 64.0 (s), 82.3 (d), 58.7 (d), 50.5 (t), 43.3 (d). 29.1 (t). 27. 5 (t), 25.8 (Q). 23.5 (t). 22.2 (q). 17.9 (q). 17. 6 (q) h) Solubility Soluble: Chloroform, methanol, n, ethanol (N-hexane, water) Positive color reaction: Reaction with iodine vapor Aceto Negative: Ninhydrin reaction, Molissche reaction, chloride chloride From the results of physical and chemical sex trade and separate research, WF
The chemical structures of 2015A and B were determined as described above. Next, the biological contributions of W2015A and B will be explained using the following test examples. 15% fetal bovine serum 100 ug/mI ECG in a 966 microtiter plate coated with fibronectin.
S (Endothelial cell growth
xupple-ment) and MCDB151 medium containing 10 ug/m'1 hebarin, and then a methanol solution of WF2015A or WF2015B at a fixed concentration was added to prepare dilutions of various concentrations. Furthermore, a human mire vein endothelial cell solution was prepared using MCDB151 medium containing the above components, and each well (fi
nal volui+s2 0 0 μ1),
C'O. 37°C in an ink evaporator. Cultured for 5 days. After culturing, MTT method T. MosmanHJ. Ismu
nol. Methods 65.55.1983) to measure the degree of cell proliferation, and WF 2015A or W
The inhibition rate of vascular endothelial cell proliferation against F2015B was calculated. As a result, WF 2015A and WF 2015
B shows a strong inhibitory effect on the proliferation of vascular endothelial cells,
Those ICS. Both values were 2×10” pg/■l. 2.5 μl of the solution and 2.5 μl of the 0.1% methylcellulose aqueous solution.
A sample disk prepared by mixing 5 μl and drying was placed on the chorioallantoic membrane, the window was again closed with a skin closure, and incubation was continued at 37°C. Furthermore, the inhibitory effect of WF 2015A on angiogenesis was observed from the state of development of new blood vessels in the chorioallantoic membrane after 3 days. As a result, in the WF 2015A 10 μg administration group,
Almost complete (approximately 100%) antiangiogenic effect was observed. Approximately 1 l of egg white is aseptically extracted from a 3-day-old fertilized chicken egg using a syringe needle.
Scratch the eggshell with a dental drill, taking care not to damage the chorioallantoic membrane, and break the shell with tweezers for about 1 c++.
”Open the window and cover it with a skin closure 37
Misaki eggs were incubated at ℃. After 24 hours, a certain concentration of W was added in advance.
F 2015A Methanol 1 Harvest New Year: The angiogenic effect within the rabbit cornea is due to M. ^, Gimbron
e et al. method (Journal National Ca
ncer Institute52, 413.1974
) was investigated. Specifically, using a rabbit (New Zealand White breed, female, 9 weeks old), under Nembutal anesthesia, an approximately 2 mm incision was made in the central part of the cornea with a scalpel, and a pocket-like structure was made in the corneal part through the incision using an ophthalmological grade iris subatel. Had made. At the bottom of the pocket, Elvax (+
Insert a pellet (1 mm square), and then
Flbroblast Growth Factor,
An Elvax pellet containing 1 μg of comb brain origin was then inserted, and new blood vessels extending from the corneal ring toward the FGF pellet were observed over time (2 weeks). As a result, W F 2GISA completely inhibited (approximately 100%) blood vessels generated by FGF in the 200 μg administration group. A physiological saline solution of WF 2015A or B was intraperitoneally administered to five ICR mice (female, 5 weeks old) once a day for 5 days (one dose: 100 μg/kg). As a result, no abnormal symptoms were observed in the mice. As is clear from the above test examples, the angiogenesis inhibitor of the present invention has a remarkable angiogenesis inhibitory effect and is effective against diseases caused by abnormal proliferation of blood vessels, such as diabetic retinopathy, rheumatoid arthritis, etc. It is used to prevent or treat retinopathy of prematurity, senile macular degeneration, etc. The active ingredient of the angiogenesis inhibitor of the present invention is mixed with a pharmaceutically acceptable carrier and administered to humans in the form of a formulation such as a capsule, tablet, granule, powder, oral tablet, sublingual tablet, liquid, etc. It can be administered orally or parenterally to suckling animals. Pharmaceutically acceptable carriers include various organic or inorganic carriers customary for pharmaceutical purposes, such as excipients such as sucrose, starch, mannitol, sorbitol, lactose, glucose, cellulose, talc, calcium phosphate, etc. , calcium carbonate, etc.), binders (cellulose, methyl cellulose, hydroxybrobyl cellulose, polybrobyl pyrrolidone, ze)tin, gum arabic,
Polyethylene glycol, sucrose, starch, etc.], disintegrants (e.g., starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, hydroxybrobyl starch, sodium glycol starch, sodium bicarbonate, calcium phosphate, calcium citrate, etc.), Thickeners (e.g. magnesium stearate, Aerosil, talc, sodium lauryl sulfate, etc.)
, flavoring agents (e.g. citric acid, menthol, glycine, orange powder, etc.), preservatives (sodium benzoate, sodium bisulfite, methylbarben, probylbarben, etc.), stabilizers (citric acid, sodium citrate, acetic acid, etc.) ), suspending agents (e.g., methylcellulose, polyvinylpyrrolidone, aluminum stearate, etc.), dispersing agents (e.g., surfactants, etc.), aqueous diluents (e.g.,
water), oils (e.g., sesame oil, etc.), base waxes (e.g., cocoa butter, polyethylene glycol, white petrolatum, etc.), etc. The dosage of the active ingredient depends on the type of disease, the patient's weight and/or or age, and should be modified depending on various factors such as the route of administration. The preferred dose of WF 2015A or B is usually
0 for injections. In the case of oral administration, the dosage is appropriately selected from the range of 0.5 to sogeg/kg/day. The following production example is intended to explain a specific method for producing the active ingredient of the angiogenesis inhibitor of the present invention. Soluble starch 2%, corn starch 1%, glucose 1%, cottonseed flour 1%, dry yeast 1%, pebtone 0.5%
, an aqueous medium containing 0.5% corn stew liquor and 0.2% calcium carbonate (pl 16.0) (
160ml) in a 500μl Erlenmeyer flask19
The solution was dispensed into books and sterilized at 120°C for 20 minutes. Scolecoba-sidium Arenarium Scolecoba-sid
Inoculate 1 platinum loop of slant culture of F-2015 Chokoken Joyori No. 1520 into each medium and culture with shaking at 25°C for 3 days! ! I did. The resulting culture was incubated at 200°C, which had been previously sterilized at 120°C for 20 minutes.
Aqueous medium containing 3% soluble starch, 1% glucose, 1% wheat germ, 0.5% cottonseed flour and 0.2% calcium carbonate in a 120f jar fermenter
T) and cultured at 25°C for 3 days. The culture solution thus obtained was filtered using diatom ± (20 kg). The filtrate (954!) was diluted with ethyl acetate (95!
Extracted using 1). This extraction operation was performed twice and the extracts were combined. After dehydration over anhydrous magnesium sulfate, the ethyl acetate layer was concentrated under reduced pressure. The concentrate was applied to a silica gel chromatography column (11). The column was diluted with n-hexane (
3A) and n-hexane-ethyl acetate mixture (1:1,
3IL). The active fraction was eluted with ethyl acetate (4A) and then concentrated under reduced pressure. This was further applied to a silica gel column (400 ml). Chloroform (1.
24! ) and chloroform-methanol mixture (10
0: 1, 1.2 Jl! .. ) After washing the column with chloroform-methanol) mixture (75:1, 50:
1, and 25:1). The active fraction was concentrated under reduced pressure, and the residue was subjected to reverse phase silica gel ODS reverse column chromatography. The column was washed with a warm methanol/water solution (1:1, 300 ml), and then developed stepwise with a methanol/water mixture (3:2 and 7:3, 300 ml each). The active fraction was evaporated to dryness under reduced pressure to obtain purified colorless oil WF 2015A (92
mg) was obtained. ■Yuskoreko Basidium Arenarium F - 2015
1 platinum loop of slant culture (Shikoken Joyose IJ No. 1520) was added to 2% soluble starch, 1% corn starch, 1% glycose, 1% cottonseed powder, 1% dry yeast, and 0 pebtone.
.. 5%, cornstarch 0.5%, NaCl
3% and CaCO. .. A mild medium containing 0.2% (p
ns. o) (1 6 0 ■ 1) 20 pieces of 50
Dispense the mixture into 0.01-volume Erlenmeyer flasks, sterilize them in the usual manner, and inoculate them using a rotary shaker at 250 rpi+.
The cells were cultured at 25°C for 72 hours. The obtained seed culture solution was
160 JL of the same sterile medium as above was inoculated into a stainless steel 2001 jar fermenter, and the fermenter was stirred at 20 rpm and 25° C. for 48 hours. The thus obtained seed culture 901 was further added with 3% soluble starch, 1% glucose, 0.5% cottonseed flour, and wheat embryo #. 1% NaC
400 containing 3% I and 0.2% CaC
Sterile production medium 300 in Oflili fermenter
Inoculated at 0ft. 3ooofL/min ventilation and 13
Culture was carried out at 25° C. for 72 hours under stirring at 0 rpm. The culture solution <<285 of L>> was filtered using diatomaceous earth (askg). The filtrate was passed through a column of activated carbon (6001). The column was washed with 180 ft of deionized water and eluted with 80% acetone water (TAOG).
It was concentrated to 71. The concentrate was extracted with 181 ml of ethyl acetate. The ethyl acetate layer was separated and dried under reduced pressure to give a powder (61
.. 3g) was obtained. This crude powder was mixed with 0.3 silica gel.
Mixed with 1. The mixture was subjected to column chromatography using silica gel (3'j!). Fill the column with hexane tojl, then hexane-ethyl acetate (1:1).
It was washed with IOjL and eluted with ethyl acetate 101. The active fractions were collected and evaporated to dryness to obtain a powder, which was mixed with silica gel. The mixture was subjected to column chromatography using silica gel (11). The column was filled with 3 IL of chloroform, then chloroform-methanol (10
0:1) 31 and chloroform-methanol (7:1).
5:1) 3J! It was eluted. The eluate was dried under reduced pressure to obtain a powder (16.4 g), and this powder was purified by reverse phase silica gel OD.
Mixed with 30ml of S. Mixture on reversed phase silica gel ODS
(600+wl) column, methanol-water (1:
1) Washed with 2.41. Fill the column with methanol-water (3
: It was eluted in 2). The active fractions were collected and concentrated under reduced pressure to obtain oily WF2015B (305ag).

Claims (1)

【特許請求の範囲】[Claims] WF2015Aおよび/またはWF2015Bを有効成
分として含有する血管新生阻害剤。
An angiogenesis inhibitor containing WF2015A and/or WF2015B as an active ingredient.
JP5336889A 1989-03-06 1989-03-06 Angiogenesis inhibitor Expired - Lifetime JP2762522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5336889A JP2762522B2 (en) 1989-03-06 1989-03-06 Angiogenesis inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336889A JP2762522B2 (en) 1989-03-06 1989-03-06 Angiogenesis inhibitor

Publications (2)

Publication Number Publication Date
JPH02233610A true JPH02233610A (en) 1990-09-17
JP2762522B2 JP2762522B2 (en) 1998-06-04

Family

ID=12940874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336889A Expired - Lifetime JP2762522B2 (en) 1989-03-06 1989-03-06 Angiogenesis inhibitor

Country Status (1)

Country Link
JP (1) JP2762522B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103277A2 (en) 2007-02-16 2008-08-28 Amgen Inc. Nitrogen-containing heterocyclyl ketones and their use as c-met inhibitors
EP2341067A1 (en) 2003-07-18 2011-07-06 Amgen, Inc Specific binding agents to hepatocyte growth factor
US7989631B2 (en) 2006-02-10 2011-08-02 Amgen Inc. Hydrate forms of AMG706
WO2012129344A1 (en) 2011-03-23 2012-09-27 Amgen Inc. Fused tricyclic dual inhibitors of cdk 4/6 and flt3
EP2578583A1 (en) 2006-07-14 2013-04-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
EP2592093A1 (en) 2007-08-21 2013-05-15 Amgen, Inc Human c-fms antigen binding proteins
WO2013132044A1 (en) 2012-03-08 2013-09-12 F. Hoffmann-La Roche Ag Combination therapy of antibodies against human csf-1r and uses thereof
US8648199B2 (en) 2005-12-23 2014-02-11 Amgen Inc. Process for making a solid-state form of AMG 706
EP3170824A1 (en) 2008-01-15 2017-05-24 Amgen, Inc 6-([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)-1,6-naphthyridin-5(6h)-one derivatives as c-met inhibitors
WO2018119183A2 (en) 2016-12-22 2018-06-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2018217651A1 (en) 2017-05-22 2018-11-29 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019051291A1 (en) 2017-09-08 2019-03-14 Amgen Inc. Inhibitors of kras g12c and methods of using the same
WO2019213526A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019213516A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019217691A1 (en) 2018-05-10 2019-11-14 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
WO2019232419A1 (en) 2018-06-01 2019-12-05 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019241157A1 (en) 2018-06-11 2019-12-19 Amgen Inc. Kras g12c inhibitors for treating cancer
WO2020050890A2 (en) 2018-06-12 2020-03-12 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2020102730A1 (en) 2018-11-16 2020-05-22 Amgen Inc. Improved synthesis of key intermediate of kras g12c inhibitor compound
WO2020106640A1 (en) 2018-11-19 2020-05-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2020106647A2 (en) 2018-11-19 2020-05-28 Amgen Inc. Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
WO2020132648A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
WO2020132649A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
WO2020132653A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
WO2020180768A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2020180770A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heterocyclyl compounds and uses thereof
WO2021026100A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Pyridine derivatives as kif18a inhibitors
WO2021026101A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021026098A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021081212A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
WO2021092115A1 (en) 2019-11-08 2021-05-14 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2021091956A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091967A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021097207A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021097212A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021108683A1 (en) 2019-11-27 2021-06-03 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2021142026A1 (en) 2020-01-07 2021-07-15 Revolution Medicines, Inc. Shp2 inhibitor dosing and methods of treating cancer
US11236091B2 (en) 2019-05-21 2022-02-01 Amgen Inc. Solid state forms
WO2022060836A1 (en) 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
WO2022060583A1 (en) 2020-09-03 2022-03-24 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
US11426404B2 (en) 2019-05-14 2022-08-30 Amgen Inc. Dosing of KRAS inhibitor for treatment of cancers
WO2022235866A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2022235864A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341067A1 (en) 2003-07-18 2011-07-06 Amgen, Inc Specific binding agents to hepatocyte growth factor
US8648199B2 (en) 2005-12-23 2014-02-11 Amgen Inc. Process for making a solid-state form of AMG 706
US7989631B2 (en) 2006-02-10 2011-08-02 Amgen Inc. Hydrate forms of AMG706
EP3093289A1 (en) 2006-07-14 2016-11-16 Amgen, Inc [1,2,4]triazolo[4,3-a]pyridine derivatives useful as inhibitors of the hepatocyte growth factor receptor
EP2578583A1 (en) 2006-07-14 2013-04-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
WO2008103277A2 (en) 2007-02-16 2008-08-28 Amgen Inc. Nitrogen-containing heterocyclyl ketones and their use as c-met inhibitors
EP3330292A1 (en) 2007-08-21 2018-06-06 Amgen, Inc Human c-fms antigen binding proteins
EP2592093A1 (en) 2007-08-21 2013-05-15 Amgen, Inc Human c-fms antigen binding proteins
EP3170824A1 (en) 2008-01-15 2017-05-24 Amgen, Inc 6-([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)-1,6-naphthyridin-5(6h)-one derivatives as c-met inhibitors
EP2937349A1 (en) 2011-03-23 2015-10-28 Amgen Inc. Fused tricyclic dual inhibitors of cdk 4/6 and flt3
WO2012129344A1 (en) 2011-03-23 2012-09-27 Amgen Inc. Fused tricyclic dual inhibitors of cdk 4/6 and flt3
WO2013132044A1 (en) 2012-03-08 2013-09-12 F. Hoffmann-La Roche Ag Combination therapy of antibodies against human csf-1r and uses thereof
WO2018119183A2 (en) 2016-12-22 2018-06-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11285135B2 (en) 2016-12-22 2022-03-29 Amgen Inc. KRAS G12C inhibitors and methods of using the same
EP4001269A1 (en) 2016-12-22 2022-05-25 Amgen Inc. Benzoisothiazole, isothiazolo[3,4-b]pyridine, quinazoline, phthalazine, pyrido[2,3-d]pyridazine and pyrido[2,3-d]pyrimidine derivatives as kras g12c inhibitors for treating lung, pancreatic or colorectal cancer
WO2018217651A1 (en) 2017-05-22 2018-11-29 Amgen Inc. Kras g12c inhibitors and methods of using the same
EP3974429A1 (en) 2017-05-22 2022-03-30 Amgen Inc. Precursors of kras g12c inhibitors
US11905281B2 (en) 2017-05-22 2024-02-20 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019051291A1 (en) 2017-09-08 2019-03-14 Amgen Inc. Inhibitors of kras g12c and methods of using the same
EP4141005A1 (en) 2017-09-08 2023-03-01 Amgen Inc. Inhibitors of kras g12c and methods of using the same
US11306087B2 (en) 2017-09-08 2022-04-19 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
US11766436B2 (en) 2018-05-04 2023-09-26 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019213516A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019213526A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11090304B2 (en) 2018-05-04 2021-08-17 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US11045484B2 (en) 2018-05-04 2021-06-29 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019217691A1 (en) 2018-05-10 2019-11-14 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
US10988485B2 (en) 2018-05-10 2021-04-27 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019232419A1 (en) 2018-06-01 2019-12-05 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11096939B2 (en) 2018-06-01 2021-08-24 Amgen Inc. KRAS G12C inhibitors and methods of using the same
EP4268898A2 (en) 2018-06-11 2023-11-01 Amgen Inc. Kras g12c inhibitors for treating cancer
WO2019241157A1 (en) 2018-06-11 2019-12-19 Amgen Inc. Kras g12c inhibitors for treating cancer
US11285156B2 (en) 2018-06-12 2022-03-29 Amgen Inc. Substituted piperazines as KRAS G12C inhibitors
WO2020050890A2 (en) 2018-06-12 2020-03-12 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11299491B2 (en) 2018-11-16 2022-04-12 Amgen Inc. Synthesis of key intermediate of KRAS G12C inhibitor compound
WO2020102730A1 (en) 2018-11-16 2020-05-22 Amgen Inc. Improved synthesis of key intermediate of kras g12c inhibitor compound
EP4234546A2 (en) 2018-11-16 2023-08-30 Amgen Inc. Improved synthesis of key intermediate of kras g12c inhibitor compound
US11439645B2 (en) 2018-11-19 2022-09-13 Amgen Inc. Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
WO2020106640A1 (en) 2018-11-19 2020-05-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2020106647A2 (en) 2018-11-19 2020-05-28 Amgen Inc. Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
US11918584B2 (en) 2018-11-19 2024-03-05 Amgen Inc. Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
US11053226B2 (en) 2018-11-19 2021-07-06 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2020132649A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
WO2020132648A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
US11236069B2 (en) 2018-12-20 2022-02-01 Amgen Inc. KIF18A inhibitors
WO2020132653A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
WO2020180768A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2020180770A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heterocyclyl compounds and uses thereof
US11426404B2 (en) 2019-05-14 2022-08-30 Amgen Inc. Dosing of KRAS inhibitor for treatment of cancers
US11827635B2 (en) 2019-05-21 2023-11-28 Amgen Inc. Solid state forms
US11236091B2 (en) 2019-05-21 2022-02-01 Amgen Inc. Solid state forms
WO2021026100A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Pyridine derivatives as kif18a inhibitors
WO2021026098A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021026101A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021081212A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
WO2021091967A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091956A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021092115A1 (en) 2019-11-08 2021-05-14 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2021097212A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021097207A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021108683A1 (en) 2019-11-27 2021-06-03 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2021142026A1 (en) 2020-01-07 2021-07-15 Revolution Medicines, Inc. Shp2 inhibitor dosing and methods of treating cancer
WO2022060583A1 (en) 2020-09-03 2022-03-24 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
WO2022060836A1 (en) 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
WO2022235864A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors
WO2022235866A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors

Also Published As

Publication number Publication date
JP2762522B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JPH02233610A (en) Vascularization inhibitor
CN109748881A (en) Cystathionie-γ-lyase (CSE) inhibitor
JPH09176019A (en) Carbohydrate-degradative/digestive enzyme inhibitor and medicine and food/beverage formulated therewith
JP2002316929A (en) Antiapoptotic agent composed of l-serine or glycine
JP5523663B2 (en) Pharmaceutical composition for promoting root-periodontal tissue formation
CN109503510B (en) Antibacterial thiazole compound for preventing caries and preparation method thereof
US5962480A (en) Drug for ameliorating brain diseases
JP2006515276A (en) Furan derivative having preventive and therapeutic effects on osteoporosis and pharmaceutical composition containing the same
JPS60120995A (en) Production of new amino acid derivative
KR19990071183A (en) Honggyeongcheon Extract with Efficacy and Prevention of Circulatory Diseases
CN111870685B (en) Application of movement-related polypeptide in preparation of medicine for preventing and treating ischemic heart disease
JPH0995445A (en) Medicine for treating cerebral neurocyte disorder
JP2001139483A (en) Protecting agent for brain cell or nerve cell, consisting of ginseng
JPH04230628A (en) Use of ten-memberedring lactone as lipid adjusting drug
JP2022537518A (en) Use of aminothiol compounds as cranial nerve or cardioprotective agents
GB2108383A (en) Compound and composition for use against herpes virus
EP0485232A1 (en) Neovascularisation inhibitors
EA008541B1 (en) Tetrapetide regulating blood glucose level in diabetes mellitus
CN106727495B (en) A kind of flavanone compound is preparing the application in myocardial preservation drug
KR20040084482A (en) A composition for treating hepatic fibrosis or cirrhosis containing tanshinone Ⅰ
US6160017A (en) Preventives and remedies for ulcerous colitis and/or crohn&#39;s disease
KR100731620B1 (en) Ginsenoside mixture for improving sexual activity and recovering from erectile dysfunction
JPH10306034A (en) Cutaneous remedy
JPH10203976A (en) Medicine comprising isoflavones or xanthones
RU2345761C2 (en) Application of kauran compounds for medicines production