JPH0223342B2 - - Google Patents

Info

Publication number
JPH0223342B2
JPH0223342B2 JP58220092A JP22009283A JPH0223342B2 JP H0223342 B2 JPH0223342 B2 JP H0223342B2 JP 58220092 A JP58220092 A JP 58220092A JP 22009283 A JP22009283 A JP 22009283A JP H0223342 B2 JPH0223342 B2 JP H0223342B2
Authority
JP
Japan
Prior art keywords
parts
layer
acid
vibration damping
petroleum resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58220092A
Other languages
Japanese (ja)
Other versions
JPS60110443A (en
Inventor
Tatsuya Murachi
Junichi Sato
Kunihisa Shigenobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP58220092A priority Critical patent/JPS60110443A/en
Publication of JPS60110443A publication Critical patent/JPS60110443A/en
Publication of JPH0223342B2 publication Critical patent/JPH0223342B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈技術分野〉 この発明は、車両床面等、振動する金属製基体
上に貼着して振動の源衰を図る制振シートであつ
て、粘着剤層の上面に、石油系炭化水素樹脂、無
機フイラー及び可塑剤類を含有する配合物で拘束
層が形成されているものに関する。 〈背景技術〉 制振シートにおける拘束層用材料は、大きな制
振力を得るために、剛性の高いことは勿論、粘着
剤層に対する密着性が良好であることが望まれる
とともに、作業性の観点から加熱溶融時良好な流
動性を示すことが要望され、さらには、制振シー
トは悪路走行中に飛石等により車両床面を介して
衝撃を受けることが多く、耐衝撃性も要求され
る。耐衝撃性に乏しくて拘束層にクラツクが入つ
たりすると制振力が大幅に減殺される。 上記諸要求を満たすために、本願出願人と同一
人に係る特許願(特願昭58−170109号、出願日:
昭和58年9月15日(特開昭60−65929号公報参
照))において、拘束層用材料として石油樹脂、
無機フイラー及び可塑剤類を含有する配合物が提
案されている。この配合物で拘束層を形成した場
合、大きな制振力が得られかつ耐衝撃性も優れて
いるが、可塑剤類を含むも配合物の流動性が十分
でなく、成形時等における作業性が必ずしも良好
とは言えなかつた。可塑剤類を十分な流動性が得
られるように多量に添加すれば、上記問題点は解
決するが、逆に拘束層の剛性が、即ち制振力が大
きく低下して望ましくない。 〈発明の開示〉 この発明は、上記にかんがみて、石油樹脂、無
機フイラー及び可塑剤類を含有する配合物で拘束
層が形成されている制振シートにおいて、制振力
の低下をほとんど招かずに拘束層の流動性を向上
させることを目的とする。 この発明の制振シートは、この目的を、拘束層
用配合物中に、酸変性ジエン重合体類(エステル
化物を含む)を石油樹脂100重量部に対して0.5〜
8重量部含有させることにより達成するものであ
る。 〈各構成の説明〉 以下の説明で配合部数「部」は、特にことわら
ない限り重量単位である。 第1図に示すように、制振シートは、粘着剤層
1と、その上面に形成された拘束層2とからな
る。 粘着剤層1は従来の粘着シートと同様にして形
成される。即ち、各種ゴム配合物又はそれらにア
スフアルトを配合したものをニーダー等で混練し
押出し成形したものからなる。ここでゴム材料
は、NBR、IIR、EPDM、SBR等の各種ゴム又
はそれらの再生ゴムを使用できる。この粘着剤層
1の厚みは、厚くする方が制振効果が大きいが軽
量化の見地から通常0.05〜5mm(望ましくは0.2
〜2mm)とする。 拘束層2は、下記石油樹脂(A)、無機フイラー
(B)、可塑剤類(C)及び酸変性ジエン重合体類(D)を含
有する配合物を溶融混合したものを、粘着剤層1
の上面に流し塗り、刷毛塗り、ロール塗り等の塗
布手段により所定厚みに形成する。拘束層2は厚
い方が制振力が大きいが、車両の重量軽減の見地
から、その厚みは拘束作用を奏する範囲内ででき
るだけ薄い方が望ましく、通常0.05〜10mm(望ま
しくは0.2〜3mm)とする。 (A) 石油樹脂…軟化点60〜130℃の上市されてい
るものでよく、合成ポリテルペン系、脂肪族
系、芳香族系、環状脂肪族系、不飽和炭化水素
系及びそれらの水添物等を例示できる。ここで
拘束層の耐衝撃性(可撓性)の見地から芳香族
系以外のものが望ましい。これらの石油樹脂
は、拘束層の母材となるが、それ自体強い粘着
性を有するので、粘着剤層と良好に密着し、確
実に拘束効果を奏し、制振性の向上に寄与す
る。 (B) 無機フイラー…SiO2を主体とするケイ素化
合物群及び炭酸カルシウム(重質・軽質)又は
硫酸バリウム(バライト粉・沈降性)から選ば
れる1種の又は2種以上を混合したもの。 無機フイラーの形態は、粉粒体(粉末状、フレ
ーク状、顆粒状等)又は繊維いずれでもかまわな
いが、前者の大きさは0.5〜500μm、後者の長さ
は<25mmとする。上記SiO2を主体とするケイ素
化合物群としては、粉粒体状のクレー(ハード・
ソフト)、タルク、ミルドガラス、ガラスフレー
ク、繊維状のガラス繊維等を挙げることができ、
さらに特殊なものとして嵩比重<0.6のシラスバ
ルーン、ガラスバルーン、発泡石等の無機発泡体
も使用できる。この無機発泡体を使用した場合は
拘束層を軽量化できる効果を奏する。この無機フ
イラーは、拘束層の剛性を高め制振力を増大させ
るとともに、理由は不明であるが―一般に無機フ
イラーはポリマーの耐衝撃性を低下させる傾向に
ある―、石油樹脂の耐衝撃性を改善する。無機フ
イラーの配合量は、これらの効果達成及び混合作
業性等の見地から、石油樹脂100部に対して通常
100〜800部(望ましくは200〜500部)とする。 (C) 可塑剤類…各種エステル系可塑剤及びプロセ
スオイルの他に、アマニ油、綿実油、大豆油、
ヒマシ油等の天然油脂、ポリブテン油、ポリブ
タジエン油、ポリペンタジエン油などのポリマ
油、液状炭化水素樹脂、液状テルペン樹脂、液
状ロジンなどの液状樹脂、及びアルキツド樹
脂、キシレン樹脂等を含む。 エステル系可塑剤としては石油樹脂と一般的に
相溶性が良好なジブチルフタレート、ジ(2−エ
チルヘキシル)フタレート(DOP)、ジ−n−ブ
チルアジペート、ジメチルイソフタレート、ジ−
n−ブチルセバケート、ジ−n−ブチルヌレー
ト、ジ−n−ブチルフマレート、ジ−n−ブチル
ステアレート等が望ましく、またプロセスオイル
としては上記石油樹脂と相溶性の良好なパラフイ
ン系又はナフテン系が望ましい。この可塑剤類
は、無機フイラーの配合による溶融粘度の上昇を
押さえ、また、拘束層の耐衝撃性を改善する。可
塑剤類の配合量は、これらの効果達成及び制振力
保持の見地から石油樹脂100部に対して通常3〜
25部(望ましくは8〜20部)とする。 (D) 酸変性ジエン重合体類…液状の共役ジエン重
合体をエチレン性不飽和カルボン酸(無水物を
含む)で変性した酸変性ジエン重合体及びそれ
らのエステル化物をいう。 ここで、共役ジエン重合体とは、1,3−ブタ
ジエン、1,3−ペンタジエン、イソプレン等の
共役ジエンを単重合若しくは共重合、又はそれら
とエチレ、プロピレン等のオレフイン類及び/又
はスチレン、α−メチルスチレン等のビニルモノ
マ類を共重合させたものをいい、分子量n=
200〜15000(好ましくは300〜1000)の液状のもの
を使用する。α,β−不飽和カルボン酸として
は、アクリル酸、メタクリル酸、マレイン酸、フ
マル酸、イタコン酸、シトラコン酸、無水マレイ
ン酸、イタコン酸無水物、シトラコン酸無水物、
テトラヒドロ無水フタル酸、エンドメチレンテト
ラヒドロ無水フタル酸等を例示できる。エチレン
性不飽和カルボン酸の使用量は、反応生成物であ
る酸変性ジエン重合体のケン化価が5〜160(望ま
しくは20〜140)の範囲となるようなものとする。 この酸変性ジエン重合体類は、拘束層の流動性
を少量の配合で改善させる作用を奏し、その配合
量は石油樹脂100部に対して0.5〜8部(望ましく
は2〜6部)とする。0.5部未満では上記流動性
改善ができず、8部を超えると耐衝撃性に悪影響
を与えるとともに、加熱溶融時の粘度が低下しす
ぎて無機フイラーの沈降を生じやすくなり望まし
くない。 上記構成の制振シートは、第2図に示すように
車両床面3にセツト後、乾燥炉内を通して加熱処
理を行なうと、熱軟化又は流動化して車両床面に
十分なじみ、続いて冷却されると拘束層2は略剛
体化して、第2図に示すように車両床面3に貼着
される。 〈実施例〉 粘着剤層は、上記組成の配合物をニーダで混練
後、厚さ1mmのシート状物として押出し、それを
200mm口に裁断して形成した。 配合組成: 再生ブチルゴム 100部 粘着付与剤(芳香族系炭化水素樹脂;軟化点
100℃) 80部 重質炭酸カルシウム 300部 ポリブテン 50部 DOP 50部 拘束層は、第1表に示す各酸変性ジエン重合体
類を用いた下記組成の拘束層用配合物を、200℃
で30分溶融混合し、それを粘着剤層の上面に流し
塗りして厚さ2mmのものを形成した。なお、比較
例は実施例の配合組成において、酸変性ジエン重
合体類を0とし、DOPを15部としたものである。 配合組成: 脂肪族系炭化水素樹脂 100部 (軟化点95℃) 重質炭酸カルシウム 350部 DOP 10部 酸変性ジエン重合体類 5部 上記各制振シートを鉄板基体(0.8mmt)上に
セツト後、140℃×60分の条件で熱処理を行ない、
各実施例、比較例の制振力・耐衝撃性試験用の試
験片とした。 制振効果は常温雰囲気における減衰法による測
定結果から算出される損失係数ηで判定した。耐
衝撃性は上記試験片を鉄板側を上にして橋かけ支
持した状態で、鋼球(通常50g)を鉄板上に落下
させ拘束層のクラツクの発生する“重さ×高さ
(g・cm)”で判定した。また、拘束層の流動性
は、各実施例(比較例)の配合物30gを200℃で
加熱溶融したものを4.5cmの高さからアルミニウ
ム板上に落下させ、落下後の配合物の広がりを測
定し、長径と短径の平均値で表示した。試験結果
を第2表に示す。 〈発明の効果〉 この発明の制振シートは、石油樹脂、無機フイ
ラー及び可塑剤類を含有する配合物で拘束層が形
成されている制振シートにおいて、上記拘束層用
配合物中に酸変性ジエン重合体類を加えることに
より、制振力の低下をほとんど招かずに拘束層の
流動性を向上させることができる。従つて、拘束
層用配合物の混合・塗布作業性、さらには床面へ
の貼着作業性が良好となる。 これは、上記実施例における第2表の試験結果
により裏付けられる。即ち、実施例は、いずれも
比較例(酸変性ジエン重合体類末添加)に比し
て、制振力(損失係数)の低下をほとんど招か
ず、耐衝撃性及び流動性、特に流動性が向上して
いる。これらの理由は、極性部分と無極性部分を
有する酸変性ジエン重合体類を拘束層用配合物中
に添加することにより、有極性の無機フイラーと
無極性の石油樹脂とのなじみ(相溶性)がよくな
るためと推定される。
<Technical Field> The present invention is a vibration damping sheet that is attached to a vibrating metal base such as a vehicle floor surface to attenuate the source of vibration, and the upper surface of the adhesive layer is coated with petroleum-based hydrocarbon resin, It relates to a constraining layer formed of a compound containing an inorganic filler and a plasticizer. <Background Art> In order to obtain a large vibration damping force, the material for the restraining layer in a vibration damping sheet is desired to have not only high rigidity but also good adhesion to the adhesive layer. Therefore, it is required to exhibit good fluidity when heated and melted, and furthermore, vibration damping sheets are often subjected to impact from flying stones etc. through the vehicle floor while driving on rough roads, so impact resistance is also required. . If the restraint layer cracks due to poor impact resistance, the damping force will be significantly reduced. In order to meet the above requirements, a patent application filed by the same person as the applicant (Japanese Patent Application No. 58-170109, filing date:
On September 15, 1980 (see Japanese Patent Application Laid-Open No. 60-65929), petroleum resin,
Formulations containing inorganic fillers and plasticizers have been proposed. When a restraining layer is formed with this compound, a large vibration damping force can be obtained and the impact resistance is also excellent, but even though it contains plasticizers, the fluidity of the compound is insufficient, making it difficult to work during molding etc. was not necessarily good. If a large amount of plasticizer is added to obtain sufficient fluidity, the above problem can be solved, but on the other hand, the rigidity of the constraining layer, that is, the vibration damping force is greatly reduced, which is not desirable. <Disclosure of the Invention> In view of the above, the present invention provides a vibration damping sheet in which a constraining layer is formed of a compound containing a petroleum resin, an inorganic filler, and a plasticizer, which hardly causes a decrease in damping force. The purpose is to improve the fluidity of the constrained layer. The vibration damping sheet of the present invention achieves this purpose by adding 0.5 to 0.5 to 100 parts by weight of acid-modified diene polymers (including esterified products) to 100 parts by weight of petroleum resin in the constraining layer formulation.
This is achieved by containing 8 parts by weight. <Description of each component> In the following description, the number of blended parts "parts" is a weight unit unless otherwise specified. As shown in FIG. 1, the damping sheet consists of an adhesive layer 1 and a restraining layer 2 formed on the upper surface thereof. The adhesive layer 1 is formed in the same manner as a conventional adhesive sheet. That is, it is made by kneading various rubber compounds or blending them with asphalt using a kneader or the like and extruding the mixture. As the rubber material here, various rubbers such as NBR, IIR, EPDM, and SBR, or recycled rubber thereof can be used. The thickness of this adhesive layer 1 is usually 0.05 to 5 mm (preferably 0.2
~2mm). Restriction layer 2 is made of the following petroleum resin (A) and inorganic filler.
(B), plasticizers (C), and acid-modified diene polymers (D) were melt-mixed into adhesive layer 1.
It is formed to a predetermined thickness on the upper surface by a coating method such as flow coating, brush coating, or roll coating. The thicker the restraining layer 2, the greater the damping force, but from the perspective of reducing the weight of the vehicle, it is desirable that the thickness be as thin as possible within the range that still exerts the restraining effect, and is usually 0.05 to 10 mm (preferably 0.2 to 3 mm). do. (A) Petroleum resin...Any commercially available one with a softening point of 60 to 130°C may be used, such as synthetic polyterpene, aliphatic, aromatic, cycloaliphatic, unsaturated hydrocarbon, and hydrogenated products thereof. can be exemplified. From the viewpoint of impact resistance (flexibility) of the constraining layer, it is desirable to use a material other than aromatic. These petroleum resins serve as the base material of the constraining layer, and since they themselves have strong adhesive properties, they adhere well to the adhesive layer, reliably exert a constraining effect, and contribute to improving vibration damping properties. (B) Inorganic filler: one or a mixture of two or more selected from silicon compounds mainly composed of SiO 2 and calcium carbonate (heavy/light) or barium sulfate (barite powder/sedimentable). The form of the inorganic filler may be either powder (powder, flake, granule, etc.) or fiber, the former having a size of 0.5 to 500 μm, and the latter having a length of <25 mm. The group of silicon compounds mainly composed of SiO 2 mentioned above includes powdered clay (hard clay).
soft), talc, milled glass, glass flakes, fibrous glass fibers, etc.
Furthermore, as special materials, inorganic foams such as white glass balloons, glass balloons, and foam stones with a bulk specific gravity of <0.6 can also be used. When this inorganic foam is used, the weight of the constraint layer can be reduced. This inorganic filler increases the stiffness of the constraining layer and increases the damping force, and for unknown reasons - inorganic fillers generally tend to reduce the impact resistance of polymers - improves the impact resistance of petroleum resins. Improve. The amount of inorganic filler blended is usually set to 100 parts of petroleum resin from the viewpoint of achieving these effects and mixing workability.
100 to 800 parts (preferably 200 to 500 parts). (C) Plasticizers...In addition to various ester plasticizers and process oils, linseed oil, cottonseed oil, soybean oil,
Includes natural oils and fats such as castor oil, polymer oils such as polybutene oil, polybutadiene oil, and polypentadiene oil, liquid resins such as liquid hydrocarbon resins, liquid terpene resins, liquid rosins, alkyd resins, xylene resins, etc. Examples of ester plasticizers include dibutyl phthalate, di(2-ethylhexyl) phthalate (DOP), di-n-butyl adipate, dimethyl isophthalate, and di-butyl phthalate, which generally have good compatibility with petroleum resins.
Preferred are n-butyl sebacate, di-n-butyl nurate, di-n-butyl fumarate, di-n-butyl stearate, etc. As the process oil, paraffinic or naphthenic oils having good compatibility with the above petroleum resins are used. desirable. These plasticizers suppress the increase in melt viscosity caused by blending the inorganic filler, and also improve the impact resistance of the constraining layer. The blending amount of plasticizers is usually 3 to 3 parts per 100 parts of petroleum resin from the viewpoint of achieving these effects and maintaining damping force.
25 parts (preferably 8 to 20 parts). (D) Acid-modified diene polymers: refers to acid-modified diene polymers obtained by modifying liquid conjugated diene polymers with ethylenically unsaturated carboxylic acids (including anhydrides), and esterified products thereof. Here, the conjugated diene polymer refers to monopolymerization or copolymerization of conjugated dienes such as 1,3-butadiene, 1,3-pentadiene, and isoprene, or olefins such as ethylene and propylene, and/or styrene, α - Copolymerized vinyl monomers such as methylstyrene, molecular weight n=
200 to 15,000 (preferably 300 to 1,000) is used in liquid form. Examples of α,β-unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride,
Examples include tetrahydrophthalic anhydride and endomethylenetetrahydrophthalic anhydride. The amount of ethylenically unsaturated carboxylic acid used is such that the saponification value of the acid-modified diene polymer as a reaction product is in the range of 5 to 160 (preferably 20 to 140). These acid-modified diene polymers have the effect of improving the fluidity of the constrained layer when added in small amounts, and the amount added is 0.5 to 8 parts (preferably 2 to 6 parts) per 100 parts of petroleum resin. . If the amount is less than 0.5 parts, the fluidity cannot be improved, and if it exceeds 8 parts, the impact resistance will be adversely affected, and the viscosity upon heating and melting will be too low, making it easy for the inorganic filler to settle, which is not desirable. As shown in Fig. 2, the vibration damping sheet having the above structure is set on the vehicle floor surface 3 and then heat-treated through a drying oven, whereupon it becomes thermally softened or fluidized and fully conforms to the vehicle floor surface, and is then cooled. Then, the restraining layer 2 becomes substantially rigid and is adhered to the vehicle floor surface 3 as shown in FIG. <Example> The adhesive layer was made by kneading the above-mentioned composition in a kneader and then extruding it into a sheet with a thickness of 1 mm.
It was cut and formed into a 200mm opening. Blending composition: 100 parts recycled butyl rubber Tackifier (aromatic hydrocarbon resin; softening point
(100℃) 80 parts Heavy calcium carbonate 300 parts Polybutene 50 parts DOP 50 parts For the constraining layer, a formulation for the constraining layer with the following composition using each acid-modified diene polymer shown in Table 1 was heated at 200℃.
The mixture was melt-mixed for 30 minutes and poured onto the top of the adhesive layer to form a 2 mm thick layer. In addition, in the comparative example, the acid-modified diene polymer was set to 0 and the DOP was set to 15 parts in the blending composition of the example. Blend composition: Aliphatic hydrocarbon resin 100 parts (softening point 95°C) Heavy calcium carbonate 350 parts DOP 10 parts Acid-modified diene polymers 5 parts After setting each of the above damping sheets on a steel plate base (0.8 mmt) , heat treated at 140℃ x 60 minutes,
This was used as a test piece for vibration damping force and impact resistance tests for each of the Examples and Comparative Examples. The damping effect was determined by the loss coefficient η calculated from the measurement results using the damping method in a room temperature atmosphere. Impact resistance is measured by dropping a steel ball (usually 50 g) onto the iron plate with the above test piece supported on a bridge with the iron plate side up, and measuring the weight x height (g cm) at which cracks occur in the restraining layer. )”. In addition, the fluidity of the constrained layer was determined by heating and melting 30 g of the compound of each example (comparative example) at 200°C and dropping it onto an aluminum plate from a height of 4.5 cm, and checking the spread of the compound after falling. It was measured and expressed as the average value of the major axis and minor axis. The test results are shown in Table 2. <Effects of the Invention> The vibration damping sheet of the present invention has a restraining layer formed of a compound containing a petroleum resin, an inorganic filler, and a plasticizer. By adding diene polymers, the fluidity of the constrained layer can be improved with almost no reduction in damping force. Therefore, the mixing and coating workability of the composition for the constraining layer as well as the workability of adhering it to the floor surface are improved. This is supported by the test results in Table 2 in the above examples. In other words, in all of the Examples, compared to the Comparative Example (addition of acid-modified diene polymer powder), there was almost no decrease in damping force (loss coefficient), and impact resistance and fluidity, especially fluidity, were improved. It's improving. These reasons are due to the fact that by adding acid-modified diene polymers having a polar part and a non-polar part to the constraining layer formulation, compatibility between the polar inorganic filler and the non-polar petroleum resin can be improved. It is presumed that this is because the condition improves.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の制振シートの部分断面図、
第2図はこの発明の制振シートを車両床面へ貼着
した状態を示す断面図である。 1……粘着剤層、2……拘束層、3……車両床
面(金属製基体)。
FIG. 1 is a partial sectional view of the vibration damping sheet of this invention.
FIG. 2 is a sectional view showing a state in which the vibration damping sheet of the present invention is adhered to the floor surface of a vehicle. 1...Adhesive layer, 2...Restriction layer, 3...Vehicle floor surface (metal base).

Claims (1)

【特許請求の範囲】 1 粘着剤層の上面に石油樹脂、無機フイラー及
び可塑剤類を含有する配合物で拘束層が形成され
ている制振シートにおいて、前記配合物中に下記
酸変性ジエン重合体類(エステル化物を含む)(A)
を前記石油樹脂100重量部に対して0.5〜8重量部
含有することを特徴とする制振シート。 (A) 液状の共役ジエン系重合体をエチレン性不飽
和カルボン酸(無水物を含む)で変性した酸変
性ジエン重合体類。
[Scope of Claims] 1. A vibration damping sheet in which a restraining layer is formed on the upper surface of an adhesive layer with a compound containing a petroleum resin, an inorganic filler, and a plasticizer, and the following acid-modified diene polymer is included in the compound. Coalescings (including esterified products) (A)
A damping sheet containing 0.5 to 8 parts by weight of the above petroleum resin based on 100 parts by weight. (A) Acid-modified diene polymers made by modifying liquid conjugated diene polymers with ethylenically unsaturated carboxylic acids (including anhydrides).
JP58220092A 1983-11-22 1983-11-22 Vibration-damping sheet Granted JPS60110443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58220092A JPS60110443A (en) 1983-11-22 1983-11-22 Vibration-damping sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220092A JPS60110443A (en) 1983-11-22 1983-11-22 Vibration-damping sheet

Publications (2)

Publication Number Publication Date
JPS60110443A JPS60110443A (en) 1985-06-15
JPH0223342B2 true JPH0223342B2 (en) 1990-05-23

Family

ID=16745797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220092A Granted JPS60110443A (en) 1983-11-22 1983-11-22 Vibration-damping sheet

Country Status (1)

Country Link
JP (1) JPS60110443A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626826B (en) * 2012-04-26 2015-02-04 江苏大学 High efficiency apparatus and method based on laser shock wave for manufacturing micro grooves

Also Published As

Publication number Publication date
JPS60110443A (en) 1985-06-15

Similar Documents

Publication Publication Date Title
JP3951356B2 (en) Damping water-based paint composition
JP3231424B2 (en) Improved pressure sensitive bituminous composition
CN112080247B (en) Water-based silicone adhesive capable of bonding RTV silicone adhesive
JPH0223342B2 (en)
JPS6333788B2 (en)
JPH04224841A (en) Composition for vibration-damping sound-insulating material
JPS60115653A (en) Composition for restraining layer of vibration damping sheet
JPS639547B2 (en)
JPH06116333A (en) Improved asphalt composition for pavement
JPH0223341B2 (en)
CZ68994A3 (en) Damping materials
JPH08209001A (en) Modified asphalt composition
WO2007044257A2 (en) Sound damping composition
JPH0625333B2 (en) Sealing material
US3652467A (en) Mastic adhesive composition containing rosin pot residue or its zinc salt or glycol polyester
JPH0525264B2 (en)
JPH05239287A (en) Vibration-damping composition and vibration-damping laminate prepared therefrom
KR100228759B1 (en) Paste composition for using the sealing and vibration damping of automobile panel by spray coating
JP2714419B2 (en) Composition having damping properties and damping material molded therefrom
US3681268A (en) Mastic adhesive composition containing zinc salt of formaldehyde-modified rosin
JPS6065929A (en) Vibrationproof sheet
JPH06116500A (en) Improved paving asphalt composition
JPS6063147A (en) Vibration-damping sheet
JPH0221392B2 (en)
JPH0138821B2 (en)