JPH02232617A - Light beam scanning device - Google Patents

Light beam scanning device

Info

Publication number
JPH02232617A
JPH02232617A JP1053234A JP5323489A JPH02232617A JP H02232617 A JPH02232617 A JP H02232617A JP 1053234 A JP1053234 A JP 1053234A JP 5323489 A JP5323489 A JP 5323489A JP H02232617 A JPH02232617 A JP H02232617A
Authority
JP
Japan
Prior art keywords
light beam
scanning
scanning device
beam scanning
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1053234A
Other languages
Japanese (ja)
Inventor
Yuji Mori
祐二 森
Kazuyuki Funahata
一行 舟幡
Keiji Nagae
慶治 長江
Tadahiko Hashimoto
橋本 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1053234A priority Critical patent/JPH02232617A/en
Publication of JPH02232617A publication Critical patent/JPH02232617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To make the moving speed of a light beam high and uniform and to shorten a write time for one image plane by providing a means for changing the rate of change of a driving signal for driving a light beam scanning means in accordance with a distance which should be scanned with the light beam. CONSTITUTION:The rate of change of a lamp signal which is added to galvanomirrors 3 and 5 as the driving signal is changed in accordance with the moving distance of the light beam. By respectively using the two galvanomirrors 3 and 5 for the scanning in the respective axis directions of two dimension, for example, the moving speed of the light beam becomes the square of that of the light beam at the time of using one galvanomirror in the respective axis directions, so that high speed write is accomplished. Thus, a light beam scanning device in which the rising of the moving speed of the light beam is fast is obtained and the write time for the image plane full of character and symbol, etc., is especially shortened.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は,光ビーム走査装置に係り、特に光ビームをベ
クトル走査する光ビーム走査装置の走査を高速化する手
段に関するものである.〔従来の技術〕 レーザなとで発生した光ビームにより任意の2点をつな
いでいわゆるベクトル走査しながら2次元走査する光ビ
ーム走査装置は,レーザを用い壁面等に表示するディス
プレイ,またはスメクチック液晶素子を用いた熱書込み
液晶投射型ディスプレイ,さらには各種光計測分野にお
いて広く利用されている.ベクトル走査方式の光ビーム
走査には、主にミラーの角度を変化させて光ビームを走
査するガルバノミラーが用いられている.このガルバノ
ミラーの制御には,テレビジョン学会技術報告IPD6
6−1 (1982年)第1頁から第6頁に記されてい
るように、傾き一定のランプ信号が使用されている. ?発明が解決しようとする課題〕 ガルバノミラーを用いた従来の光ビームの走査装置にお
ける駆動信号と光ビームの走査面上の動きについて説明
する. 第12図は、従来技術における光ビーム走査装置の郡動
信号と光ビームの動きとの関係を示す図である.第12
図は,上から、翻動信号波形,光ビームの位置変化,光
ビームの移動速度の時間変化を示している.一般に、任
意の2点間を走査するベクトル走査方式光ビーム走査装
置の駆動信号として、変化率Δa/Δtを一定としたラ
ンプ信号波形が用いられる. 図において,走査面上の任意の点Aに静止した状態から
比較的遠い点Bに移動して停止するまでを1回の走査と
する.Il動信号I■は点Aと点Bの距離に相当する駆
動信号振幅a,まで立上り時間t3で変化する.この駆
動信号工,の変化に追随して、ガルバノミラーが動き、
光ビームが移動する.この動きを点Aから点Bまでの光
ビームの位置変化x3として示す.さらにこの光ビーム
の移?速度をV,として示す.光ビームは卵動信号■1
に従って点Aから動き始めるが、ガルバノミラーの機械
遅れ要素のため.すぐには等速運動にならず,加速期間
tr3の間に徐々に速度を上げ,やがて最高速である等
速運動に入り、等速期間tm,が終わると徐々に速度を
下げ、減速期間tf■の後、点Bに到達し,静止する.
次に,点Aから比較的近い点Cに移動する場合について
説明する.翻動信号■.は立上り時間t4で点Aと点C
の距離に相当する移動量b,に対応する駆動信号振11
11Ta4まで変化する.この時の変化率Δa/Δtは
叩動信号I,と同じである.この光ビームの位置変化を
X4として,また速度の変化を■,として示す.点Aか
ら点Cまでの光ビームの移動時も,やはりガルバノミラ
ーの機械遅れ要素のため、加速期間tr,に速度は上昇
するが、移動量が非常に小さい場合(b,<b,)は,
等速運動に入らずに減速期間tf.に入り、やがて静止
する. この時の最高速度v4は点Aから点Bへの移動時の最高
速度(等速期間)Vmより低い.従って,移動に要する
時間t tota Qはそれぞれ、点A→点Bがtto
taR,= t r,+ t rr+,+ t f,と
なり,点A→点CがttotaQ4=t r’4+t 
f4となるが、第4図に示したようにtr,とtr4、
tf3とtf.はそれほど差がなく、結局、t tot
a Q 4/ttotau,>b4/bs (=a*/
aa)になり、近傍点間の移動は、遠点間の移動と比較
して,相対的に時間がかかることになる。この結果、従
来の光ビーム走査装置では、近傍点間の移動が多い文字
やシンボルの書込みに要する時間が長くなり,1画面当
りの書込み時間が長くなってしまっていた. また、遠点間の移動と近傍点間の移動では、その移動速
度に大きな差が生じてしまい,例えば熱書込み液晶ディ
スプレイに適用した場合は、書込まれた線の太さに差が
生ずる欠点があった。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a light beam scanning device, and more particularly to a means for speeding up the scanning of a light beam scanning device that performs vector scanning of a light beam. [Technology] A light beam scanning device that connects arbitrary two points with a light beam generated by a laser and performs two-dimensional scanning in a so-called vector scan is used for displays that use lasers to display on walls, etc., or for displays that use smectic liquid crystal elements. It is widely used in thermal writing liquid crystal projection displays, as well as in various optical measurement fields.Vector scanning type light beam scanning mainly uses galvano mirrors that scan the light beam by changing the angle of the mirror. The control of this galvano mirror is based on the Technical Report IPD6 of the Television Society of Japan.
6-1 (1982), pages 1 to 6, a ramp signal with a constant slope is used. ? Problems to be Solved by the Invention] The drive signal and movement of the light beam on the scanning surface in a conventional light beam scanning device using a galvano mirror will be explained. FIG. 12 is a diagram showing the relationship between the collective motion signal of the light beam scanning device and the movement of the light beam in the prior art. 12th
The figure shows, from the top, the rolling signal waveform, changes in the position of the light beam, and changes in the moving speed of the light beam over time. Generally, a ramp signal waveform with a constant rate of change Δa/Δt is used as a drive signal for a vector scanning type optical beam scanning device that scans between two arbitrary points. In the figure, one scan is defined as the period from standing still at an arbitrary point A on the scanning surface to moving to a relatively distant point B and stopping. The dynamic signal I■ changes to a drive signal amplitude a corresponding to the distance between points A and B at a rise time of t3. Following changes in this drive signal, the galvanometer mirror moves,
The light beam moves. This movement is shown as a position change x3 of the light beam from point A to point B. Furthermore, the movement of this light beam? Denote the velocity as V. The light beam is an egg movement signal■1
However, due to the mechanical delay element of the galvanometer mirror. It does not become uniform motion immediately, but gradually increases its speed during the acceleration period tr3, and eventually enters the maximum speed of uniform motion, and when the uniform velocity period tm ends, the speed gradually decreases, and the speed reaches the deceleration period tf. After ■, it reaches point B and stops.
Next, we will explain the case of moving from point A to relatively nearby point C. Moving signal ■. is the point A and point C at the rise time t4.
The drive signal amplitude 11 corresponds to the amount of movement b, which corresponds to the distance of
It changes up to 11Ta4. The rate of change Δa/Δt at this time is the same as the beating signal I. The position change of this light beam is shown as X4, and the speed change is shown as ■. When the light beam moves from point A to point C, the speed increases during the acceleration period tr, due to the mechanical delay element of the galvano mirror, but if the amount of movement is very small (b, < b,) ,
The deceleration period tf does not enter uniform motion. It enters and eventually comes to rest. The maximum speed v4 at this time is lower than the maximum speed (uniform velocity period) Vm when moving from point A to point B. Therefore, the time required for movement t tota Q is tto from point A to point B, respectively.
taR, = t r, + t rr+, + t f, and point A → point C becomes ttotaQ4 = t r'4 + t
f4, but as shown in Figure 4, tr, and tr4,
tf3 and tf. There is not much difference, and in the end, t tot
a Q 4/ttotau,>b4/bs (=a*/
aa), and moving between nearby points takes a relatively long time compared to moving between far points. As a result, with conventional light beam scanning devices, it takes a long time to write characters and symbols that often move between neighboring points, resulting in a long writing time per screen. In addition, there is a large difference in the speed of movement between far points and movement between nearby points, resulting in a disadvantage that, for example, when applied to a thermal writing liquid crystal display, there is a difference in the thickness of the written line. was there.

本発明の目的は、光ビームの移動がより高速かつ均一で
1画面書込みの時間が短い光ビーム走査装置を提供する
ことである. 〔課題を解決するための手段〕 上記目的は、特に近傍点間の光ビームの移動に注目し、
第1に、駆動信号であるランプ信号の傾きを光ビームの
移動距離に応じて変化させ、第2に,一つの光ビームの
一つの偏向方向について複数の光ビーム偏向手段を重ね
合せて用い、第3に,一連の光ビームの移動の際に光ビ
ームが静止することを極力減らすことにより,達成され
る.すなわち、本発明は、上記目的を達成するために.
光ビームを出力する光ビーム発生手段と.!I械遅れ要
素を含む走査機構により前記光ビームをベクトル走査す
る光ビーム走査手段と、光ビーム発生手段および光ビー
ム走査手段を制御し文字等の図形を書かせる制御部とを
有する光ビーム走査装置において,前記制御部が,光ビ
ーム走査手段を能動する駆動信号の変化率を光ビームが
走査すべき距離に応じて変化させる手段を備えた光ビー
ム走査装置を提案するものである. 前記走査すべき距離と変化率との対応関係は、廃動パタ
ーンとして予め記憶部に記憶しておき、走査時にいちい
ち計算しないで呼び出すようにしても良い. 廃動パターンは,滑らかである必要はなく、走査すべき
距離をいくつかに区分し,それぞれを一定の変化率と対
応させる折線近似を採用することも可能である. 本発明は,また、光ビームを出方する光ビーム発生手段
と、機械遅れ要素を含む走査機構により前記光ビームを
ベクトル走査する光ビーム走査手段と,光ビーム発生手
段および光ビーム走査手段を制御し文字等の図形を書か
せる制御部とを有する光ビーム走査装置において、前記
光ビーム走査手段が、一つの光ビームの一つの偏向方向
について重ね合せて用いられる複数の光ビーム偏向手段
を備えた光ビーム走査装置を提案するものである。
An object of the present invention is to provide a light beam scanning device in which the movement of the light beam is faster and more uniform, and the writing time for one screen is shorter. [Means for solving the problem] The above purpose focuses on the movement of a light beam between neighboring points,
Firstly, the slope of the ramp signal, which is a drive signal, is changed according to the moving distance of the light beam, and secondly, a plurality of light beam deflectors are used in a superimposed manner for one deflection direction of one light beam, Thirdly, this is achieved by minimizing the number of times the light beam remains stationary during the movement of a series of light beams. That is, the present invention aims to achieve the above objects.
A light beam generating means for outputting a light beam. ! A light beam scanning device comprising a light beam scanning means for vector scanning the light beam by a scanning mechanism including an I-mechanical delay element, and a control section for controlling the light beam generating means and the light beam scanning means to write figures such as characters. proposes a light beam scanning device in which the control unit includes means for changing the rate of change of a drive signal for activating the light beam scanning means in accordance with the distance to be scanned by the light beam. The correspondence relationship between the distance to be scanned and the rate of change may be stored in advance in the storage unit as a waste movement pattern, and may be recalled without being calculated each time the scan is performed. The waste movement pattern does not need to be smooth; it is also possible to use a broken line approximation that divides the distance to be scanned into several parts and makes each part correspond to a constant rate of change. The present invention also provides a light beam generating means for emitting a light beam, a light beam scanning means for vector scanning the light beam by a scanning mechanism including a mechanical delay element, and controlling the light beam generating means and the light beam scanning means. In the light beam scanning device, the light beam scanning means includes a plurality of light beam deflection means that are used in a superposed manner in one deflection direction of one light beam. This paper proposes a light beam scanning device.

本発明は、さらに,光ビームを出方する光ビーム発生手
段と,機械遅れ要素を含む走査機簿により前記光ビーム
をベクトル走査する光ビーム走査手段と、前記光ビーム
発生手段および光ビーム走査手段を制御し文字等の図形
を書かせる制御部とを有する光ビーム走査装置において
、前記制御部が、一画面に書くべき複数の図形を線分に
分解し各図形に共通な走査方向については一度に走査す
るように走査順序を決定する手段を備えた光ビーム走査
装置を提案するものである. これらの手段は、単独でも効果があるが,組み合わせて
用いることもできる. なお,前記走査開始時に,光ビーム走査手段の機械遅れ
を補償するために、偏向量は少ないが機械遅れのない音
響光学偏向素子を用い、その後の大きな走査は前記機械
遅れを伴った光ビーム走査手段に担当させるように複合
的な構成を採用することも可能である. 〔作用〕 上記各手段の作用について説明する. まず,M動信号としてガルバノミラーに加えるランプ信
号の変化率を光ビームの移動距離に応じて変化させるこ
とについて説明する.ランプ信号の振幅を一定として変
化率を変化させていくと、ある変化率以上では、ガルバ
ノミラーが動作しなくなる限界がある.従来は,光ビー
ムが移動する最大幅を与えるランプ信号の振幅で安定に
動作するランプ信号の変化率に固定し,光ビームの移動
距離の変化に対しては変化率一定として振幅のみ変化さ
せていた.しかし,第12図に示したように、2点間の
距離が短く,等速領域もないような微小振幅のランプ信
号ではランプ信号の変化率のより大きな領域までガルバ
ノミラーが安定に動作することがわかった.そこで,文
字やシンボルの書込み時の近傍点間の移動の際は,ガル
バノミラーに加える駆動信号であるランプ信号の変化率
を大きくすると,静止した光ビームが移動しはじめる際
の加速期間が短縮され,文字やシンボルの近傍点間の走
査がより短時間になされる.次に,複数の光ビーム走査
手段を重ね合せ単一方向の走査を行なうことについて説
明する.例えば,2次元の各軸方向の走査にそれぞれ2
個のガルバノミラーを用いる.この構成では、光ビーム
の移動速度は,各軸方向に1個のガルバノミラーを用い
た時の光ビームの移動速度の2乗になり、高速書込みが
可能となる.また,各ガルバノミラーに要求される最大
振れ幅も1個の場合の1/2になり、翻動信号としての
ランプ信号の変化率よりも大きくできる.他の構成とし
ては、音響光学偏向素子とガルバノミラーを重ねて用い
る.音響光学偏向素子には機械遅れが無く、ほとんど瞬
時に光ビームの移動ができる. さらに光ビームの一連の動きの間,例えば熱書込み液晶
投射型ディスプレイにおいて、l画面の画像を書き終わ
るまでの間に生じる光ビームの静止を減らせば、加速期
間も減速期間も減り,最高速度で移動する等速期間が増
し、書込みの時間が短縮される。
The present invention further provides a light beam generating means for emitting a light beam, a light beam scanning means for vector scanning the light beam by a scanning device including a mechanical delay element, and the light beam generating means and the light beam scanning means. In the light beam scanning device, the control unit breaks down a plurality of figures to be written on one screen into line segments, and once determines the scanning direction common to each figure. This paper proposes a light beam scanning device that is equipped with a means for determining the scanning order so that the light beams are scanned in the same way. These measures are effective when used alone, but they can also be used in combination. In addition, at the start of the scanning, an acousto-optic deflection element with a small deflection amount but no mechanical delay is used to compensate for the mechanical delay of the light beam scanning means, and the subsequent large scan is performed by the light beam scanning with the mechanical delay. It is also possible to adopt a complex configuration in which the means are in charge. [Operation] The operation of each of the above means will be explained. First, we will explain how the rate of change of the lamp signal applied to the galvanometer mirror as the M dynamic signal is changed according to the distance traveled by the light beam. If the amplitude of the ramp signal is kept constant and the rate of change is varied, there is a limit at which the galvano mirror stops operating above a certain rate of change. Conventionally, the rate of change of the lamp signal is fixed to operate stably with the amplitude of the lamp signal that provides the maximum width that the light beam moves, and only the amplitude is changed with the rate of change constant as the distance the light beam moves. Ta. However, as shown in Figure 12, when the distance between two points is short and the ramp signal has a very small amplitude and there is no constant velocity region, the galvanometer mirror operates stably even in regions where the rate of change of the ramp signal is large. I found out. Therefore, when moving between neighboring points when writing characters or symbols, increasing the rate of change of the ramp signal, which is the drive signal applied to the galvanometer mirror, will shorten the acceleration period when the stationary light beam starts moving. , scanning between neighboring points of a character or symbol can be done in a shorter time. Next, we will explain how multiple light beam scanning means are superimposed to perform scanning in a single direction. For example, for scanning in each 2D axis direction, 2
Galvanometer mirrors are used. In this configuration, the speed of movement of the light beam is the square of the speed of movement of the light beam when one galvanometer mirror is used in each axis direction, making high-speed writing possible. In addition, the maximum swing width required for each galvano mirror is 1/2 that of a single galvano mirror, and can be larger than the rate of change of the lamp signal as a swing signal. Another configuration uses an acousto-optic deflection element and a galvano mirror. Acousto-optic deflection elements have no mechanical delay and can move the light beam almost instantaneously. Furthermore, by reducing the rest of the light beam that occurs during a series of movements of the light beam, for example in a thermal writing liquid crystal projection display, until the image on the screen is completely written, the acceleration and deceleration periods can be reduced, and even at maximum speed. The period of constant movement is increased, and the writing time is shortened.

〔実施例〕〔Example〕

次に、本発明の実施例を詳細に説明する.第1図から第
4図まではランプ信号の傾きを変える手段に関する実施
例と動作例である.第1図は光ビーム走査装置の構成を
示す図,第2図は駆動信号と光ビームの動作を示す図、
第3図および第4図は動作状態を示す図である. 第1図に示した光ビーム走査装置の構成を説明する.レ
ーザ1が発生した光ビーム2は、ミラー3により反射さ
れる.ミラー3は、ミラー味動部4によりその角度を変
えられるガルバノミラーである.ミラー3で反射された
光ビーム2は,ミラー5でさらに反射される.ミラー5
は、ミラー能動部6によりその角度を変えられるガルバ
ノミラーである.ミラー5で反射された光ビーム2は,
集光レンズ7により微小スポットに集光され,走査面8
上を走査する.ミラー駆動部4及びミラー駆動部6を睨
動する信号とレーザ1を制御する信号とは.制御部9か
ら出力される.光ビーム2がミラー3の角度変化により
走査される方向とミラー5の角度変化により走査される
方向とは直交しており,光ビーム2は2次元走査される
.光ビーム2を走査面8上の点Aに静止している状態か
ら水平方向の遠点にあたる点Bまで移動させる場合と、
同じく点Aに静止している状態から近傍点にあたる点C
まで移動させる場合の動作例を第2図により説明する.
第2図は、上から、ミラー駆動に与える駆動信号波形、
光ビームの位置変化、光ビームの移動速度変化を示して
いる.破線は点Aから点Bへの移動、実線は点Aから点
Cへの移動の場合を示す.点Aから点Bまで移動する場
合,ミラー叩動部に加える叩動信号Iエは,振幅aエで
立上り時間t1のランプ信号である。この駆動信号工、
をミラー耶動部に加えると,光ビームは点Aから点Bに
位置変化X1にそって移動量Xm,移動し、静止する.
この場合,移動速度v1は翻動信号工、が立上り始めて
trエは加速期間11で徐々に速度を上げ,速度Vrn
に達したところで等速度で移動する.等速期間tmエ1
2の後、減速期間tf113で徐々に速度を下げ、点B
に到達して静止する.したがって,点Aから点Bに光ビ
ームが移動して静止するまでの時間ttot1.,はt
totaml: t r,+ t m1+ t flと
なる.一方、点Aから点Cに光ビームが移動する場合は
、ミラー駐動部に駆動信号工2を加える.第3図に示す
ように、駆動信号■2の振幅a2は移動量に比例して小
さくなっているが、立上り時間t2?より短かくなって
おり、変化率a,/t,は駆動信号工、の変化率az/
tlより大きくなっている.駆動信号I2を加えると、
光ビームは,移動量xm■だけ移動し、点Cで静止する
.この時の移動速度v2は、加速期間tr,で速度を上
げ,速度Vmで等速移動する.等速期間tm,の後、減
速期間tf■に入り徐々に速度を下げ点Cで静止する.
この時の移動に要する時間ttota.gはt tot
a.,= t r,+ b m,+ t f,となる。
Next, embodiments of the present invention will be described in detail. Figures 1 to 4 show embodiments and operation examples of means for changing the slope of the ramp signal. Fig. 1 is a diagram showing the configuration of the light beam scanning device, Fig. 2 is a diagram showing the drive signal and the operation of the light beam,
Figures 3 and 4 are diagrams showing the operating state. The configuration of the light beam scanning device shown in Figure 1 will be explained. A light beam 2 generated by a laser 1 is reflected by a mirror 3. The mirror 3 is a galvanometer mirror whose angle can be changed by a mirror moving part 4. The light beam 2 reflected by the mirror 3 is further reflected by the mirror 5. mirror 5
is a galvanometer mirror whose angle can be changed by a mirror active part 6. The light beam 2 reflected by the mirror 5 is
The light is focused on a minute spot by the condensing lens 7, and the light is focused on the scanning surface 8.
Scan above. What are the signals that move the mirror drive units 4 and 6 and the signals that control the laser 1? It is output from the control unit 9. The direction in which the light beam 2 is scanned by changing the angle of the mirror 3 and the direction in which it is scanned by changing the angle of the mirror 5 are perpendicular to each other, and the light beam 2 is scanned two-dimensionally. A case where the light beam 2 is moved from a stationary state at a point A on the scanning surface 8 to a point B which is a far point in the horizontal direction;
Similarly, point C, which is a nearby point, from a state where it is stationary at point A
An example of the operation when moving up to
FIG. 2 shows, from the top, the drive signal waveforms applied to the mirror drive,
It shows changes in the position of the light beam and changes in the speed of movement of the light beam. The broken line indicates movement from point A to point B, and the solid line indicates movement from point A to point C. When moving from point A to point B, the striking signal I to be applied to the mirror striking part is a ramp signal with an amplitude of a and a rise time of t1. This drive signal engineer,
When is applied to the mirror sliding part, the light beam moves from point A to point B by an amount of movement Xm along the positional change X1, and then comes to rest.
In this case, the moving speed v1 starts to rise as the rolling signal begins to rise, and tr gradually increases its speed during the acceleration period 11, and the speed Vrn
When it reaches , it moves at a constant speed. Constant velocity period tm 1
After 2, the speed is gradually reduced during the deceleration period tf113, and the speed is gradually reduced to point B.
It reaches and stops. Therefore, the time it takes for the light beam to move from point A to point B until it stops is ttot1. , is t
totaml: t r, + t m1 + t fl. On the other hand, when the light beam moves from point A to point C, a drive signal device 2 is added to the mirror parking part. As shown in FIG. 3, the amplitude a2 of the drive signal 2 becomes smaller in proportion to the amount of movement, but the rise time t2? The rate of change a,/t is the rate of change az/t of the drive signal.
It is larger than tl. Adding the drive signal I2,
The light beam moves by a moving amount xm■ and comes to rest at point C. At this time, the moving speed v2 increases during the acceleration period tr, and moves at a constant speed Vm. After the constant velocity period tm, the vehicle enters a deceleration period tf■ and gradually lowers its speed and comes to a standstill at point C.
The time required for this movement is ttota. g is t tot
a. , = t r, + b m, + t f.

点Aから点Bへの遠点間の移動時間t totatlは
第12図に示した従来と同じであるが、点Aから点Cま
での近傍点間の移動時間t tQt&lzは、従来例の
t 101114より短かくなる.すなわち、叩動信号
の傾きを大きくすることによって速度の上昇が早くなり
,近傍点間の移動の場合でも最高速度Vmまで速度が達
し、等速移動する領域ができて、移動時間が短縮される
. 第3図は,駆動信号の振幅と立上り時間の関係を示して
いる.参考として、従来の関係を破線で示す.従来は翻
動信号の振幅すなわち光ビームの移動量と立上り時間は
,比例関係にあった.本発明では,実線で示すように、
光ビームの移動距離が短かくなるに従い,立上り時間を
短かくしてある. これらの信号を用いて光ビームを移動させる時の光ビー
ムの移動量と移動に要する時間との関係を第4@に示す
.破線は従来の疑動信号で叩動した場合、実線は本発明
の場合である.従来の比例関係にある駆動信号では,近
傍点での移動に要する時間はほとんど一定となってしま
う.これに対して,本発明では、理想状態と比べてまだ
若干の遅れはあるものの,従来と比較して最高で時間が
約172に短縮されている.第3図に示したように,光
ビームの移動量により廓動信号の傾きa / tを変化
させるが、熱書込み液晶投射型ディスプレイ等のアドレ
ス点が1000×10oOドット以上の高精細画面の場
合,各移動量毎に傾きを設定するのは国難な場合がある
.この時,移動量をブロック分けし、傾きの変化を折線
で近似する. 第5図,第6図によりその方法について説明する.第5
図は折線近似するための制御回路例である.ガルバノミ
ラー駆動指令出力回路30は、光ビームの移動に対応し
た駆動信号を発生させるための指令信号を出力する.こ
の信号により駆動パターンメモリ31に予め記憶された
移動量に対応する駆動パターンを読み出す.読み出され
た駆動パターンをデジタルアナログ変換器32で変換し
て、アンブ33に送り,ミラー駆動部34を駆動する駆
動信号を得る.ミラー駆動部34はミラー35の角を変
化させ、光ビームを走査する.予め記憶された翻動パタ
ーンメモリ31の内容の一例を第6図に示す.本実施例
では、光ビームの移動量に応じて5つのパターンDエ〜
D,に分けている.ガルバノミラーの睨動能力と光ビー
ムの走査幅により、この分け方と分割数は任意である.
本実施例のように,能動信号の傾きを折線的にすると、
回路への負担が少なくなり,高速走査が可能となる. 第7図は、2次元ベクトル走査を行なう光ビーム走査装
置の実施例である.レーザ4oが発生した光ビーム41
はミラー42により反射される.ミラー42の角度はミ
ラー北動部43により変えられる.ミラー42で反射さ
れた光ビーム41は,レンズ44に入射し、さらにレン
ズ45に入射する.レンズ44及びレンズ45はリレー
レンズを形成し,ミラー42による光ビーム41の動き
をミラー46に伝える.ミラー46は,その角度をミラ
ー駆動部47により変えられる.ミラー46で反射され
た光ビーム41は集光レンズ48に入射し.走査面49
上を2次元走査する。制御部39はレーザ40,ミラー
廓動部43及び47を制御する.本実施例では.ミラー
42の動きによる光ビーム41の移動をリレーレンズと
なるレンズ44及びレンズ45によりミラー46の入射
角の変化に移すため.ミラー46の大きさを小さくでき
,走査が高速となり,加速期間も短縮される.次に、複
数のビーム偏向手段を用いる本発明の実施例を説明する
. 第8図においてレーザ5oが発生した光ビーム51はミ
ラー52により反射される.ミラー52はミラー駆動部
53によりその角度を変えられ、光ビーム51を第1の
方向へ偏向させる.ミラー52で反射された光ビーム5
1は,レンズ54及びレンズ55を透過し,ミラー56
により反射される.レンズ54及びレンズ55はリレー
レンズを形成しており、ミラー52の角度変化により走
査された光ビーム51の動きをミラー56への入射角の
変化に変換する. ミラー56はミラー馳動部57によりその角度を変えら
れ,光ビーム51を第2の方向に偏向させる.ミラー5
6で反射された光ビーム51は、レンズ58及びレンズ
59を透過し、ミラー60により反射される.レンズ5
8及びレンズ59はリレーレンズを形成し,ミラー52
及びミラー56の角度変化によって走査された光ビーム
51の動きをミラー60の入射角の変化に変換する。
The travel time ttotatl between far points from point A to point B is the same as the conventional example shown in FIG. It will be shorter than 101114. In other words, by increasing the slope of the tapping signal, the speed increases faster, and even when moving between neighboring points, the speed reaches the maximum speed Vm, creating an area where the object moves at a constant speed, and reducing the moving time. .. Figure 3 shows the relationship between the amplitude and rise time of the drive signal. For reference, the conventional relationship is shown with a dashed line. Conventionally, the amplitude of the oscillation signal, that is, the amount of movement of the light beam, and the rise time were in a proportional relationship. In the present invention, as shown by the solid line,
As the travel distance of the light beam becomes shorter, the rise time is shortened. The relationship between the amount of movement of the light beam and the time required for movement when moving the light beam using these signals is shown in Part 4. The dashed line is the case when a conventional suspicious motion signal is used, and the solid line is the case according to the present invention. With conventional drive signals that have a proportional relationship, the time required to move at nearby points is almost constant. On the other hand, in the present invention, although there is still some delay compared to the ideal state, the time is reduced to about 172 at most compared to the conventional method. As shown in Figure 3, the inclination a/t of the rotation signal changes depending on the amount of movement of the light beam, but in the case of a high-definition screen with address points of 1000 x 10oO dots or more, such as a thermal writing liquid crystal projection display. , it may be a national problem to set the slope for each amount of movement. At this time, the amount of movement is divided into blocks, and the change in inclination is approximated by a broken line. The method will be explained using Figures 5 and 6. Fifth
The figure is an example of a control circuit for polygonal line approximation. The galvanometer mirror drive command output circuit 30 outputs a command signal for generating a drive signal corresponding to the movement of the light beam. Using this signal, a drive pattern corresponding to the amount of movement stored in the drive pattern memory 31 in advance is read out. The read drive pattern is converted by the digital-to-analog converter 32 and sent to the amplifier 33 to obtain a drive signal for driving the mirror drive unit 34. The mirror drive unit 34 changes the angle of the mirror 35 to scan the light beam. An example of the contents of the pre-stored translation pattern memory 31 is shown in FIG. In this embodiment, there are five patterns D to D depending on the amount of movement of the light beam.
It is divided into D. The method and number of divisions can be determined arbitrarily, depending on the galvanometer mirror's scanning ability and the scanning width of the light beam.
If the slope of the active signal is made into a polygonal line as in this example,
This reduces the load on the circuit and enables high-speed scanning. FIG. 7 shows an embodiment of a light beam scanning device that performs two-dimensional vector scanning. Light beam 41 generated by laser 4o
is reflected by mirror 42. The angle of the mirror 42 can be changed by a mirror north moving part 43. The light beam 41 reflected by the mirror 42 is incident on a lens 44 and further incident on a lens 45. Lens 44 and lens 45 form a relay lens and transmit the movement of light beam 41 caused by mirror 42 to mirror 46. The angle of the mirror 46 can be changed by a mirror drive unit 47. The light beam 41 reflected by the mirror 46 enters the condenser lens 48. Scanning plane 49
Scan the top in two dimensions. A control section 39 controls a laser 40 and mirror moving sections 43 and 47. In this example. To transfer the movement of the light beam 41 due to the movement of the mirror 42 to a change in the angle of incidence on the mirror 46 by lenses 44 and 45, which serve as relay lenses. The size of the mirror 46 can be reduced, scanning can be made faster, and the acceleration period can be shortened. Next, an embodiment of the present invention using a plurality of beam deflection means will be described. In FIG. 8, a light beam 51 generated by a laser 5o is reflected by a mirror 52. The angle of the mirror 52 is changed by a mirror drive unit 53 to deflect the light beam 51 in a first direction. Light beam 5 reflected by mirror 52
1 passes through lenses 54 and 55, and passes through mirror 56.
reflected by. The lens 54 and the lens 55 form a relay lens, and convert the movement of the scanned light beam 51 by changing the angle of the mirror 52 into a change in the angle of incidence on the mirror 56. The angle of the mirror 56 is changed by a mirror moving part 57 to deflect the light beam 51 in a second direction. mirror 5
The light beam 51 reflected by the lens 6 passes through the lenses 58 and 59 and is reflected by the mirror 60. lens 5
8 and lens 59 form a relay lens, and mirror 52
The movement of the scanned light beam 51 is converted into a change in the incident angle of the mirror 60 by changing the angle of the mirror 56.

ミラー60はミラー駆動部61.によりその角度を変え
られ,光ビーム51を第2の方向にさらに偏向させる.
ミラー60で反射された光ビーム51は,レンズ62及
びレンズ63を透過し,ミラー64により反射される.
レンズ62及びレンズ63はリレーレンズを形成し,ミ
ラー52,ミラー56,及びミラー60の角度変化によ
り走査された光ビーム51の動きをミラー64の入射角
の変化に変換する. ミラー64はミラー能動部65によりその角度を変えら
れ、光ビーム51を第1の方向にさらに偏向する.ミラ
ー64で反射された光ビームは集光レンズ66で集光さ
れ,走査面67上を走査する.レーザ50及び4つのミ
ラー駆動部53,57,61,及び65は制御部68か
らの信号により制御される. 本実施例では,2次元の第1の方向にはミラー52及び
ミラー64の角度変化を重ねて走査し、第2の方向には
ミラー56及びミラー60の角度変化を重ねて走査する
ので、1つのミラーのみによる走査の倍の角度で走査す
ることになり,光ビームの移動速度が速くなる. 複数のビーム偏向手段を用いる本発明の他の実施例を第
9図,第10図を用いて説明する。
The mirror 60 is connected to a mirror drive section 61. changes its angle, further deflecting the light beam 51 in a second direction.
The light beam 51 reflected by the mirror 60 passes through a lens 62 and a lens 63, and is reflected by a mirror 64.
Lens 62 and lens 63 form a relay lens, and the movement of scanned light beam 51 is converted into a change in the incident angle of mirror 64 by changing the angle of mirror 52, mirror 56, and mirror 60. The mirror 64 has its angle changed by a mirror active part 65 to further deflect the light beam 51 in a first direction. The light beam reflected by the mirror 64 is focused by a condenser lens 66 and scans on a scanning surface 67. The laser 50 and the four mirror drive units 53, 57, 61, and 65 are controlled by signals from a control unit 68. In this embodiment, in the two-dimensional first direction, the angle changes of the mirrors 52 and 64 are scanned while being scanned, and in the second direction, the angle changes of the mirrors 56 and 60 are scanned. The scanning angle is twice that of scanning with only one mirror, and the speed of the light beam becomes faster. Another embodiment of the present invention using a plurality of beam deflection means will be described with reference to FIGS. 9 and 10.

第9図は光ビーム走査装置の楕成を示している.レーザ
70が発生した光ビーム7lは,音響光学偏向素子72
に入射し、第1の方向に走査される。
Figure 9 shows the ellipse of the optical beam scanning device. The light beam 7l generated by the laser 70 is transmitted to the acousto-optic deflection element 72.
and is scanned in the first direction.

第1の方向に走査された光ビーム7lは、レンズ73及
びレンズ74を透過し,音響光学偏向素子75に入射す
る.レンズ73及びレンズ74はリレーレンズを形成し
、音響光学偏向素子72で走査された光ビーム7lの動
きを、音響光学偏向素子75の入射角の変化に変換する
. 音響光学偏向素子75は、光ビーム7lを第2の方向に
偏向し走査する.走査された光ビーム71はレンズ76
及びレンズ77を透過してミラー78で反射される.レ
ンズ76及びレンズ77はリレーレンズとして,音響光
学偏向素子72と音響光学偏向素子75によって偏向さ
れた光ビーム71の動きをミラー78に対する入射角の
変化に変換する. ミラー78の角度はミラー駆動部79により変えられ,
光ビーム71を第1の方向に走査する.ミラー78によ
って反射された光ビーム71はレンズ80及びレンズ8
1を透過してミラー82に入射する.レンズ8o及びレ
ンズ81はリレーレンズになっており,2つの音響光学
偏向素子72及び75とミラー78とにより走査された
光ビーム71の動きをミラー82に対する入射角の変化
に変換する. ミラー82はミラー駆動部83により角度を変えられ,
光ビーム71を第2の方向にさらに偏向する.ミラー8
2に反射された光ビーム71は集光レンズ84で集光さ
れ、走査面85上を2次元走査する.制御部86は,レ
ーザ70,2つの音響光学偏向素子72と75,及び2
つのミラー駆動部79.83を制御する. 第10図を用いて匪動方法について説明する。
The light beam 7l scanned in the first direction passes through a lens 73 and a lens 74, and enters an acousto-optic deflection element 75. The lens 73 and the lens 74 form a relay lens, and convert the movement of the light beam 7l scanned by the acousto-optic deflection element 72 into a change in the incident angle of the acousto-optic deflection element 75. The acousto-optic deflection element 75 deflects and scans the light beam 7l in a second direction. The scanned light beam 71 passes through the lens 76
The light passes through the lens 77 and is reflected by the mirror 78. The lens 76 and the lens 77 function as relay lenses and convert the movement of the light beam 71 deflected by the acousto-optic deflection element 72 and the acousto-optic deflection element 75 into a change in the angle of incidence on the mirror 78. The angle of the mirror 78 is changed by a mirror drive unit 79,
The light beam 71 is scanned in a first direction. The light beam 71 reflected by the mirror 78 passes through the lens 80 and the lens 8
1 and enters the mirror 82. The lens 8o and the lens 81 are relay lenses, and convert the movement of the light beam 71 scanned by the two acousto-optic deflection elements 72 and 75 and the mirror 78 into a change in the angle of incidence on the mirror 82. The angle of the mirror 82 can be changed by a mirror drive unit 83.
The light beam 71 is further deflected in a second direction. mirror 8
The light beam 71 reflected by 2 is condensed by a condenser lens 84 and scans a scanning surface 85 two-dimensionally. The control unit 86 includes a laser 70, two acousto-optic deflection elements 72 and 75, and two
Controls two mirror drive units 79 and 83. The sliding method will be explained using FIG. 10.

簡単のため、水平方向の移動のみについて考える.ミラ
ー駆動信号工、はミラー能動部79に与える駆動信号で
あり、立上り時間t5で傾き一定に振幅a,まで立上る
.この駆動信号工,によりミラー駆動部79が動き、ミ
ラー80の角度を変化させて光ビーム71を偏向し、走
査面85上を走査する。この時の走査面85上の光ビー
ム71の動きは、中段のグラフに破線X,で示すように
なり、機械遅れが出ている。この時の光ビームの移動速
度の変化は、下段のグラフに破線で示した移動速度V,
のようになり、加速期間tr,の間に速度を上げ,等速
期間tm,に最高速度で等速移動した後、減速する. 高速で光ビームを走査する時,この加速期間tr,の短
縮が課題になる.この加速期間tp,の短縮は音響光学
偏向素子を用いて実現する。音響光学偏向素子は、超音
波により音動光学効果を有する結晶中に回折格子を形成
し、光を回折により偏向するものであり,機械遅れがな
いのが特徴である。光ビーム71の走査面85上の移動
が中段のグラフの実線X7になれば,光ビームは2点間
の全域で等速移動する。そこで、実線X7とミラーによ
る光ビームの移動破IIAx sの差を音響光学偏向素
子により補正する。ミラー註動信号I,を加えると同時
に、音響光学偏向素子能動信号■,を印加する.光ビー
ムは、音響光学偏向素子により一点破線で示したX,の
ように移動する.音響光学偏向素子による光ビームの移
動は、ミラーによる光ビームの移動が等速度になるまで
加速期間tr,の間続き,その移動量はX,は光ビーム
の実際の移動量X.とミラーのみによる光ビームの移動
量X,の差に等しい,ミラーの叩動信号工,の立上り時
間t,が経過すると.光ビームは走査の終点に到達する
.到達した瞬間にレーザを切ることにより2点間の走査
が完了し、この時,音響光学偏向素子の廂動信号■6も
オフとする。この過程での光ビームの移動速度は下段の
グラフの実腺V,ようになり,ミラー翻動信号■5が加
わった瞬間から光ビームは等速で移動する.本実施例に
よれば,いかなる距離間の光ビームの移動も等速移動と
なる.以上の各実施例における駆動方法の説明は水平走
査の場合であったが、垂直走査の場合,またはそれらを
組合せた斜め走査の場合も同様である. 次に,光ビームの静止を極力減らす走査方法を説明する
. 第11図は,四角形である図形1から図形4までを走査
面100に書込む場合を考える.マイクロプログラム等
でシンボル図形の相対座標を持っている場合,第11図
の例のように,4つの四角形状が並んでいる場合でも図
形1から図形2,図形3,そして図形4の順にそれぞれ
,マイクロプログラムの始点から四角形を書く.走査順
としては常左上隅の点から書き始める。
For simplicity, we will only consider movement in the horizontal direction. The mirror drive signal signal is a drive signal given to the mirror active section 79, and rises to a constant slope and amplitude a at a rise time t5. This drive signal moves the mirror drive unit 79, changes the angle of the mirror 80, deflects the light beam 71, and scans the scanning surface 85. The movement of the light beam 71 on the scanning surface 85 at this time is as shown by the broken line X in the middle graph, and there is a mechanical lag. The change in the moving speed of the light beam at this time is the moving speed V, which is shown by the broken line in the lower graph.
The vehicle increases its speed during the acceleration period tr, moves at the maximum speed during the constant speed period tm, and then decelerates. When scanning a light beam at high speed, shortening this acceleration period tr becomes an issue. This acceleration period tp is shortened by using an acousto-optic deflection element. The acousto-optic deflection element uses ultrasonic waves to form a diffraction grating in a crystal that has an acousto-optic effect, and deflects light by diffraction, and is characterized by no mechanical delay. When the movement of the light beam 71 on the scanning surface 85 becomes a solid line X7 in the middle graph, the light beam moves at a constant speed over the entire area between the two points. Therefore, the difference between the solid line X7 and the movement of the light beam by the mirror IIAxs is corrected by an acousto-optic deflection element. At the same time as applying the mirror annotation signal I, an acousto-optic deflection element active signal ■ is applied. The light beam moves as indicated by the dotted line X by the acousto-optic deflection element. The movement of the light beam by the acousto-optic deflection element continues for an acceleration period tr, until the movement of the light beam by the mirror reaches a constant speed, and the amount of movement is X, which is the actual amount of movement of the light beam X. When the rise time t of the mirror striking signal, which is equal to the difference between the amount of movement of the light beam due to the mirror alone and X, has elapsed. The light beam reaches the end of the scan. The scanning between the two points is completed by turning off the laser at the moment it reaches the point, and at this time, the vibration signal (6) of the acousto-optic deflection element is also turned off. The moving speed of the light beam during this process is as shown in the graph below, and the light beam moves at a constant speed from the moment the mirror movement signal ■5 is applied. According to this embodiment, the movement of the light beam over any distance is a constant movement. Although the driving method in each of the above embodiments has been explained in the case of horizontal scanning, the same applies to the case of vertical scanning or the case of diagonal scanning which is a combination thereof. Next, we will explain a scanning method that minimizes the stationary state of the light beam. FIG. 11 considers the case where figures 1 to 4, which are rectangles, are written on the scanning surface 100. If you have the relative coordinates of symbol figures in a microprogram, etc., even if there are four rectangular shapes lined up, as in the example in Figure 11, they will be changed in the order of figure 1, figure 2, figure 3, and figure 4, respectively. Draw a rectangle from the starting point of the microprogram. The scanning order always starts from the upper left corner point.

その手順の一例を従来例として(B)に示した.名称を
丸で囲んだ点は.ミラー等の動きが一度停止し、再度動
き始める点であることを示す。既に述べたように、一連
の走査をしている間にミラー等が停止することは,ミラ
ー耗動部の機械遅れのため,走査時間を長くする. そこで、一連の走査で書込むシンボルや文字などを線分
に分解し、走査の際に光ビーl1が移動する距離を可能
な限り短かくシ,ミラー等が停止する回数を可能な限り
減らせば.走査時間が短縮さわる.第11図(C)に示
し.本発明の走査j須によれば光ビームの移動距離は従
来例の約1割減となり,停止回数は19回が13回に減
り,走査時間の大幅な短縮が実現できる. 以上の各手段は,それぞれ単独でも効果はあるが,組合
せることによってさらに大きな効果が得られる.すなわ
ち、少なくとも3倍は高速化され、特に近傍点への移動
が多い漢字の表示等においては、総合的に約10倍の高
速化が達成された。
An example of the procedure is shown in (B) as a conventional example. The dots with the names circled are. This indicates the point at which the movement of a mirror, etc. once stops and then starts moving again. As already mentioned, if the mirror etc. stops during a series of scans, the scanning time becomes longer due to the mechanical delay in the mirror wear parts. Therefore, it is possible to break down the symbols, characters, etc. to be written in a series of scans into line segments, shorten the distance that the light beam l1 moves during scanning, and reduce the number of times the mirror etc. stops as much as possible. .. Scanning time is reduced. Shown in Figure 11(C). According to the scanning system of the present invention, the travel distance of the light beam is reduced by about 10% compared to the conventional example, and the number of stops is reduced from 19 to 13, making it possible to significantly shorten the scanning time. Each of the above methods is effective when used alone, but even greater effects can be obtained by combining them. That is, the speed has been increased by at least three times, and in particular, when displaying kanji characters that frequently move to neighboring points, an overall speedup of about 10 times has been achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ビームの移動速度の立上りが速い光
ビーム走査装置が得られ、特に,文字やシンボル等が多
い画面の書込み時間を最高で約10分の1に短縮できる
According to the present invention, it is possible to obtain a light beam scanning device in which the moving speed of the light beam rises quickly, and in particular, it is possible to reduce the writing time for a screen with many characters, symbols, etc. to about one-tenth at most.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光ビーム走査装置の一実施例の構
成を示す図,第2図は駆動信号と光ビームの動作を示す
図、第3図は光ビームの移動量と立上り時間との関係を
示す図,第4図は光ビームの移動量と移動に要する時間
との関係を示す図、第5図はガルバノミラーの祁動パタ
ーンを折線近似するための制御回路の一例を示す図、第
6図は駆動パターンメモリに記憶された折線近似パター
ンの一例を示す図、第7図は2次元ベクトル走査を行な
う光ビーム走査装置の実施例を示す図、第8図は複数の
光ビーム偏向手段を用いる本発明の実施例を示す図,第
9図はミラーと音響光学偏向素子とを併用する本発明の
実施例を示す図,第10図は第9図実施例の廓動方法を
示す図,第11図は光ビームの静止を極力減らす走査方
法を示す図,第12図は従来の光ビーム走査装置の翻動
方法を示す図である. 1・・・レーザ、2・・・光ビーム、3,5・・・ミラ
ー4,6・・・ミ.ラー騨動部、7・・・集光レンズ,
8・・・走査面、9・・・制御部、30・・・ガルバノ
ミラー關動指令出力回路、3l・・・駆動パターンメモ
リ,32・・・デジタルアナログ変換器、33・・・ア
ンプ、34・・・ミラー駆動部.35・・・ミラー,3
9・・・制御部、40・・・レーザ、41・・・光ビー
ム.42.46・・・ミラー,43.47・・・ミラー
駆動部.44.45・・・リレーレンズ、48・・・集
光レンズ,49・・・走査面、50・・・レーザ、51
・・・光ビーム,52.56・・・ミラー,53.57
・・・ミラー駆動部,54.55・・・リレーレンズ.
58.59・・・リレーレンズ、60.64・・・ミラ
ー、61.65・・・ミラー駆動部,62.63・・・
リレーレンズ、66・・・集光レンズ,67・・・走査
面,68・・・制御回路,70・・・レーザ、71・・
・光ビーム,72.75・・・音響光学偏向素子、73
,74,76,77,80.81・・・リレーレンズ,
78,82・・・ミラー 79,83・・・ミラー駆動
部.84・・・集光レンズ、85・・・走査面,86・
・・制御部,100・・・走査面.第1図
FIG. 1 is a diagram showing the configuration of an embodiment of a light beam scanning device according to the present invention, FIG. 2 is a diagram showing the drive signal and the operation of the light beam, and FIG. 3 is a diagram showing the relationship between the travel amount and the rise time of the light beam. FIG. 4 is a diagram showing the relationship between the amount of movement of the light beam and the time required for the movement. FIG. 5 is a diagram showing an example of a control circuit for approximating the movable movement pattern of the galvanometer mirror with a broken line. FIG. 6 is a diagram showing an example of a broken line approximation pattern stored in the drive pattern memory, FIG. 7 is a diagram showing an example of a light beam scanning device that performs two-dimensional vector scanning, and FIG. 8 is a diagram showing a plurality of light beam deflections. FIG. 9 is a diagram showing an embodiment of the present invention using a mirror and an acousto-optic deflection element, and FIG. 10 is a diagram showing a rotating method of the embodiment of FIG. 9. Figures 11 and 11 are diagrams showing a scanning method for minimizing the stationary state of a light beam, and Figure 12 is a diagram showing a method for swinging a conventional light beam scanning device. 1... Laser, 2... Light beam, 3, 5... Mirror 4, 6... Mi. 7. Condensing lens,
8... Scanning surface, 9... Control unit, 30... Galvanometer mirror movement command output circuit, 3l... Drive pattern memory, 32... Digital analog converter, 33... Amplifier, 34 ...Mirror drive unit. 35...mirror, 3
9...Control unit, 40...Laser, 41...Light beam. 42.46...Mirror, 43.47...Mirror drive section. 44.45...Relay lens, 48...Condensing lens, 49...Scanning surface, 50...Laser, 51
... light beam, 52.56 ... mirror, 53.57
...Mirror drive unit, 54.55...Relay lens.
58.59... Relay lens, 60.64... Mirror, 61.65... Mirror drive unit, 62.63...
Relay lens, 66... Condensing lens, 67... Scanning surface, 68... Control circuit, 70... Laser, 71...
・Light beam, 72.75... Acousto-optic deflection element, 73
, 74, 76, 77, 80.81... relay lens,
78, 82... Mirror 79, 83... Mirror drive section. 84... Condensing lens, 85... Scanning surface, 86...
...Control unit, 100...Scanning plane. Figure 1

Claims (1)

【特許請求の範囲】 1、光ビームを出力する光ビーム発生手段と、機械遅れ
要素を含む走査機構により前記光ビームをベクトル走査
する光ビーム走査手段と、前記光ビーム発生手段および
光ビーム走査手段を制御し文字等の図形を書かせる制御
部とを有する光ビーム走査装置において、 前記制御部が、前記光ビーム走査手段を駆動する駆動信
号の変化率を前記光ビームが走査すべき距離に応じて変
化させる手段を備えたことを特徴とする光ビーム走査装
置。 2、請求項1に記載の光ビーム走査装置において、前記
制御部が、走査すべき距離と変化率との対応関係を駆動
パターンとして予め記憶しておく記憶部を備えたことを
特徴とする光ビーム走査装置。 3、請求項1または2に記載の光ビーム走査装置におい
て、 前記制御部が、走査すべき距離をいくつかに区分し、そ
れぞれを一定の変化率と対応させる折線近似手段を備え
たことを特徴とする光ビーム走査装置。 4、光ビームを出力する光ビーム発生手段と、機械遅れ
要素を含む走査機構により前記光ビームをベクトル走査
する光ビーム走査手段と、前記光ビーム発生手段および
光ビーム走査手段を制御し文字等の図形を書かせる制御
部とを備えた光ビーム走査装置において、 前記光ビーム走査手段が、一つの光ビームの一つの偏向
方向について重ね合せて用いられる複数の光ビーム偏向
手段を備えたことを特徴とする光ビーム走査装置。 5、光ビームを出力する光ビーム発生手段と、機械遅れ
要素を含む走査機構により前記光ビームをベクトル走査
する光ビーム走査手段と、前記光ビーム発生手段および
光ビーム走査手段を制御し文字等の図形を書かせる制御
部とを備えた光ビーム走査装置において、 前記制御部が、一画面に書くべき複数の図形を線分に分
解し各図形に共通な走査方向については一度に走査する
ように走査順序を決定する手段を備えたことを特徴とす
る光ビーム走査装置。 6、請求項1〜3項のいずれか一項に記載の光ビーム走
査装置において、 前記光ビーム走査手段が、一つの光ビームの一つの偏向
方向について重ね合せて用いられる複数の光ビーム偏向
手段を有することを特徴とする光ビーム走査装置。 7、請求項1〜4または6項のいずれか一項に記載の光
ビーム走査装置において、 前記制御部が、一画面に書くべき複数の図形を線分に分
解し各図形に共通な走査方向については一度に走査する
ように走査順序を決定する手段を有することを特徴とす
る光ビーム走査装置。 8、光ビームを出力する光ビーム発生手段と、機械遅れ
要素を含む走査機構により前記光ビームをベクトル走査
する光ビーム走査手段と、前記光ビーム発生手段および
光ビーム走査手段を制御し文字等の図形を書かせる制御
部とを備えた光ビーム走査装置において、 前記光ビーム走査手段が、偏向量は少ないが機械遅れの
ない音響光学偏向素子を有し、当該音響光学偏向素子に
より前記走査開始時に前記機械遅れを補償し、前記機械
遅れ要素が立ち上がった後は当該機械遅れ要素を含む主
走査機構により走査することを特徴とする光ビーム走査
装置。 9、請求項1〜7項のいずれか一項に記載の光ビーム走
査装置において、 前記光ビーム走査手段が、偏向量は少ないが機械遅れの
ない音響光学偏向素子を有し、当該音響光学偏向素子に
より前記走査開始時に前記機械運れを補償し、前記機械
遅れ要素が立ち上がった後は当該機械遅れ要素を含む主
走査機構により走査することを特徴とする光ビーム走査
装置。
[Scope of Claims] 1. A light beam generating means for outputting a light beam, a light beam scanning means for vector scanning the light beam by a scanning mechanism including a mechanical delay element, and the light beam generating means and the light beam scanning means. In the light beam scanning device, the control unit controls the rate of change of the drive signal for driving the light beam scanning means according to the distance to be scanned by the light beam. What is claimed is: 1. A light beam scanning device characterized by comprising means for changing the light beam. 2. The light beam scanning device according to claim 1, wherein the control section includes a storage section that stores in advance a correspondence relationship between a distance to be scanned and a rate of change as a drive pattern. Beam scanning device. 3. The light beam scanning device according to claim 1 or 2, characterized in that the control section includes broken line approximation means that divides the distance to be scanned into several parts and makes each part correspond to a constant rate of change. A light beam scanning device. 4. A light beam generating means for outputting a light beam; a light beam scanning means for vector scanning the light beam by a scanning mechanism including a mechanical delay element; A light beam scanning device comprising a control unit for drawing a figure, characterized in that the light beam scanning means includes a plurality of light beam deflection means used in a superposed manner in one deflection direction of one light beam. A light beam scanning device. 5. A light beam generating means for outputting a light beam; a light beam scanning means for vector scanning the light beam by a scanning mechanism including a mechanical delay element; A light beam scanning device comprising a control unit for drawing figures, wherein the control unit breaks down a plurality of figures to be drawn on one screen into line segments, and scans a scanning direction common to each figure at once. A light beam scanning device comprising means for determining a scanning order. 6. The light beam scanning device according to any one of claims 1 to 3, wherein the light beam scanning means includes a plurality of light beam deflection means used in a superposed manner in one deflection direction of one light beam. A light beam scanning device comprising: 7. The light beam scanning device according to any one of claims 1 to 4 or 6, wherein the control unit decomposes a plurality of figures to be written on one screen into line segments and determines a common scanning direction for each figure. 1. A light beam scanning device, comprising means for determining a scanning order so that all the light beams are scanned at once. 8. A light beam generating means for outputting a light beam; a light beam scanning means for vector scanning the light beam by a scanning mechanism including a mechanical delay element; In the light beam scanning device, the light beam scanning means has an acousto-optic deflection element that has a small amount of deflection but no mechanical delay, and the acousto-optic deflection element allows the light beam to be scanned at the start of the scan. A light beam scanning device, wherein the mechanical delay is compensated for, and after the mechanical delay element starts up, scanning is performed by a main scanning mechanism including the mechanical delay element. 9. The light beam scanning device according to any one of claims 1 to 7, wherein the light beam scanning means has an acousto-optic deflection element having a small amount of deflection but no mechanical delay, and the acousto-optic deflection A light beam scanning device, wherein the mechanical movement is compensated by an element at the start of scanning, and after the mechanical delay element starts up, scanning is performed by a main scanning mechanism including the mechanical delay element.
JP1053234A 1989-03-06 1989-03-06 Light beam scanning device Pending JPH02232617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053234A JPH02232617A (en) 1989-03-06 1989-03-06 Light beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053234A JPH02232617A (en) 1989-03-06 1989-03-06 Light beam scanning device

Publications (1)

Publication Number Publication Date
JPH02232617A true JPH02232617A (en) 1990-09-14

Family

ID=12937121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053234A Pending JPH02232617A (en) 1989-03-06 1989-03-06 Light beam scanning device

Country Status (1)

Country Link
JP (1) JPH02232617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338450A (en) * 2004-05-27 2005-12-08 Harmonic Drive Syst Ind Co Ltd Driving method and system of galvanic scanner
JP2011175045A (en) * 2010-02-23 2011-09-08 Seiko Epson Corp Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338450A (en) * 2004-05-27 2005-12-08 Harmonic Drive Syst Ind Co Ltd Driving method and system of galvanic scanner
JP2011175045A (en) * 2010-02-23 2011-09-08 Seiko Epson Corp Image forming apparatus

Similar Documents

Publication Publication Date Title
US4455485A (en) Laser beam scanning system
US4810064A (en) Liquid crystal projection display having laser intensity varied according to beam change-of-axis speed
US4180307A (en) Two-dimensional scanning apparatus with constant speed scan
US4321564A (en) Sequential beam switching of acousto-optic modulator
US4044363A (en) Laser photocomposition system and method
US4378562A (en) Light beam scanning device
JPS6119018B2 (en)
JPS62237862A (en) Laser light scanning device
US5191187A (en) Laser machining device wherein a position reference laser beam is used besides a machining laser beam
US4089008A (en) Optical printer with character magnification
US4190867A (en) Laser COM with line deflection mirror inertia compensation
JPH02232617A (en) Light beam scanning device
JP2725828B2 (en) Method and apparatus for forming a photomask for image projection
JPS58179815A (en) Optical scanner
JP2688957B2 (en) Laser beam scanning control method and control device
WO1995021718A1 (en) Method of driving liquid crystal mask marker
JP2724016B2 (en) Display device
JPH07325262A (en) Laser microscopic device
JPS6031295B2 (en) Laser comb device
JPS5827709B2 (en) Light beam recording method
JPS61209424A (en) Device for correcting writing position of liquid crystal projection type display
SU1378085A1 (en) Apparatus for recording vide signal on moving photosensitive carrier
JP2583920B2 (en) Optical scanning device
JPH08309565A (en) Laser plotting device
Dewey Design of a fiber-optic laser scanning system for a smectic liquid crystal display