JPH0223252B2 - - Google Patents

Info

Publication number
JPH0223252B2
JPH0223252B2 JP19729181A JP19729181A JPH0223252B2 JP H0223252 B2 JPH0223252 B2 JP H0223252B2 JP 19729181 A JP19729181 A JP 19729181A JP 19729181 A JP19729181 A JP 19729181A JP H0223252 B2 JPH0223252 B2 JP H0223252B2
Authority
JP
Japan
Prior art keywords
semi
forming
cylindrical member
bearing
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19729181A
Other languages
Japanese (ja)
Other versions
JPS58100932A (en
Inventor
Yoshio Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP19729181A priority Critical patent/JPS58100932A/en
Publication of JPS58100932A publication Critical patent/JPS58100932A/en
Publication of JPH0223252B2 publication Critical patent/JPH0223252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/10Making other particular articles parts of bearings; sleeves; valve seats or the like

Description

【発明の詳細な説明】 本発明は半円筒形摺動軸受の製造方法に関し、
特に製造工程数を減らして高速加工化、大量生産
化、所望素材選択の自由度の増大化、品質の安定
化、製作価格の低減化を達成できる半円筒形摺動
軸受の製造方法に係るものである。本発明の製造
方法で作成した半円筒形摺動軸受はそのまゝ実用
に供することもできるが、更に一側又は両側に鍔
を形成して片側又は両側鍔付半円筒形摺動軸受と
することもできる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semi-cylindrical sliding bearing,
In particular, it relates to a manufacturing method for semi-cylindrical sliding bearings that can reduce the number of manufacturing steps and achieve high-speed processing, mass production, increased freedom in selecting desired materials, stabilization of quality, and reduction in manufacturing costs. It is. The semi-cylindrical sliding bearing produced by the manufacturing method of the present invention can be put to practical use as is, but it can also be provided with a flange on one or both sides to produce a semi-cylindrical sliding bearing with a flange on one or both sides. You can also do that.

以下、第1図乃至第10図を参照して、従来の
半円筒形摺動軸受の製法を説明する。第1図乃至
第8図は遠心鋳造方式と称せられる製法を説明す
る図であり、第9図、第10図はベンデイング・
フオーミング方法と称せられる製法を説明する図
である。
Hereinafter, a method for manufacturing a conventional semi-cylindrical sliding bearing will be explained with reference to FIGS. 1 to 10. Figures 1 to 8 are diagrams explaining the manufacturing method called the centrifugal casting method, and Figures 9 and 10 are diagrams explaining the manufacturing method called the centrifugal casting method.
It is a figure explaining the manufacturing method called a forming method.

(1) 遠心鋳造方式と称せられる従来法は、第1図
の斜視図で示したような両側鍔付円筒体100
を鋼塊から鍛造によつて作成する。第2図はこ
の円筒体100を一部断面で示した正面図であ
る。第1図、第2図においては、説明の便宜上
両側に鍔付のものを鍛造することにしたが、こ
れは片側に鍔付のものもあり、全然鍔を有しな
いものもあり、それは軸受の使用目的にとつて
任意に採択されるところである。鍛造工程の後
に、鍛造によつて円筒体100の内外全表面に
亘つて形成されてしまつた酸化被膜(黒皮)を
切削又は研摩などによつて除去して第3図で示
したごとき円筒体101に成形する。
(1) The conventional method called the centrifugal casting method uses a cylindrical body 100 with flanges on both sides as shown in the perspective view of Fig. 1.
is created by forging from a steel ingot. FIG. 2 is a partially sectional front view of this cylindrical body 100. In Figures 1 and 2, for the convenience of explanation, we have forged a bearing with flanges on both sides, but some have flanges on one side, and others have no flanges at all. They are chosen voluntarily depending on the purpose of use. After the forging process, the oxide film (black skin) formed on the entire inner and outer surfaces of the cylindrical body 100 due to forging is removed by cutting or polishing to obtain a cylindrical body as shown in FIG. 3. Shape into 101.

次に、第4図に示すように円筒体101の側
面に、軸受合金溶湯注入孔103を有する鉄板
又は鋼板102を溶接などの手段によつて取付
固定する。その後、第5図で示すように、鉄板
又は鋼板102の注入孔103からホワイトメ
タル(バビツトメタル)軸受合金または高融点
合金のケルメツトなどの銅基軸受合金の溶湯を
注入し、遠心鋳造によつて円筒体101の内面
に軸受合金層104を被着形成させる。軸受合
金としては、上記したホワイトメタル、銅基合
金にほヾ限られるのであつて、アルミ基合金は
使用し得ない。その理由は、鋳造中に鉄−アル
ミニウムの脆い化合物が生成されてしまい、軸
受合金層が剥離されやすく、実用に供し得ない
ものとなるからである。
Next, as shown in FIG. 4, an iron plate or steel plate 102 having a bearing alloy molten metal injection hole 103 is attached and fixed to the side surface of the cylindrical body 101 by means such as welding. Thereafter, as shown in FIG. 5, a molten metal of a copper-based bearing alloy such as a white metal (Bavitt metal) bearing alloy or a high melting point alloy Kelmet is injected through the injection hole 103 of the iron plate or steel plate 102, and a cylindrical shape is formed by centrifugal casting. A bearing alloy layer 104 is formed on the inner surface of the body 101 . Bearing alloys are limited to the above-mentioned white metals and copper-based alloys, and aluminum-based alloys cannot be used. The reason is that a brittle iron-aluminum compound is generated during casting, and the bearing alloy layer is likely to peel off, making it impractical.

さて、鋳造後、第6図に示されているように
鉄板又は鋼板102を取り外し、円筒体101
の内面に遠心鋳造された軸受合金層104を所
定の肉厚に切削加工して、削除された合金を回
収し、然る後に、円筒体101の鍔間、幅、外
径及び鍔外径等を機械加工して所定の寸法に旋
削する。
Now, after casting, as shown in FIG. 6, the iron plate or steel plate 102 is removed and the cylindrical body 101 is
The bearing alloy layer 104 centrifugally cast on the inner surface of the cylindrical body 101 is cut to a predetermined thickness, the removed alloy is recovered, and the spacing, width, outer diameter, outer diameter of the flange, etc. of the cylindrical body 101 are then cut. is machined and turned to the specified dimensions.

次に、第7図に示されているように、円筒体
101を半割りして鍔付半円筒体105,10
5とし、更に、第8図に示されているように半
割面を所定寸法に平滑面に機械加工して鍔付半
円筒形摺動軸受106,106′を得るのであ
る。以上の説明は遠心鋳造方式の骨子を述べた
ものだが、現実の工程は更に複雑なものであつ
て、製品に到るまで実に31工程もの多くの工程
を経過しなければならず、高速加工、量産、品
質安定、軸受合金の選択の自由度、製品価格い
ずれをとつても多くの問題を含む製造方法であ
つた。
Next, as shown in FIG.
5, and further machine the half-split surfaces into predetermined dimensions and smooth surfaces to obtain flanged semi-cylindrical sliding bearings 106, 106'. The above explanation describes the gist of the centrifugal casting method, but the actual process is even more complex, with a total of 31 steps required to reach the product, high-speed processing, This manufacturing method involved many problems in terms of mass production, quality stability, freedom of choice of bearing alloy, and product price.

(2) ベンデイング・フオーミング方式と称せられ
る従来法は、第9図に示されているように、ま
ず、平らな軸受素材(単体の軸受部材又は裏金
と、裏金上の軸受層とでなる複合軸受材料等)
110をポンチ108とダイ107を用いてベ
ンデイングする。次に、第10図に示したよう
に、ベンデイングされた素材110′切口面1
11にフオーミングブロツク112と両切口面
111,111付近間にセグメント113を挿
入して、素材110′を破線で示したものから
実線で示したものへ、切口面111,111を
フオーミングブロツク112で押圧するととも
にセグメント113で素材110′の内周面を
ダイ107に押圧しながら成形し、所定形状、
所定寸法の半円筒形摺動軸受を得るのである。
かような工程を骨子として成るベンデイング・
フオーミング方式は、第9図で示したように
R1がポンチ108の半径R2より小さくなると
いう現象が生じ、素材110の中心部に無理な
曲げが生じ、且つ109で示したようにダイ1
07の端縁と素材110とが接触して素材11
0に接触きずが生ずるのである。素材110の
中心部にもたらされた無理な曲げのために、第
10図の114で示すように、フオーミング工
程において、亀裂が生ずる惧れがある。また、
115で示したように、ベンデイング工程にお
いて素材の外面の成形が不完全になされている
ために、ここに合金偏肉がでる具れがある。更
に、切口面付近が第10図の実線で示したごと
く偏肉大となる惧れがある。上述したような問
題は、実験によつて確認すると、軸受素材の肉
厚Tと造られる軸受の外径Dとの関係がT/D< 0.07の範囲にあるものについては、さほど大き
な欠点として顕出しないが、T/D≧0.07の範囲 になると、この欠点は極めて顕著になつてくる
ことが判明する。従つて、ベンデイング・フオ
ーミング方式はT/D≧0.07においては、満足し 得る製品を提供できないという問題があつたの
である。
(2) The conventional method called the bending forming method, as shown in Figure 9, first creates a flat bearing material (a composite bearing consisting of a single bearing member or backing metal and a bearing layer on the backing metal). materials, etc.)
110 is bent using a punch 108 and a die 107. Next, as shown in FIG. 10, the bent material 110' cut surface 1
11, a segment 113 is inserted between the forming block 112 and both cut surfaces 111, 111, and the cut surfaces 111, 111 are moved from the material 110' shown by the broken line to the solid line. At the same time, the segment 113 presses the inner peripheral surface of the material 110' against the die 107 and molds it into a predetermined shape.
A semi-cylindrical sliding bearing with predetermined dimensions is obtained.
Bending, which is based on the above process,
The forming method is as shown in Figure 9.
A phenomenon occurs in which R 1 becomes smaller than the radius R 2 of the punch 108, causing an unreasonable bending in the center of the material 110, and as shown at 109, the die 1
The edge of the material 110 contacts the material 11
A contact flaw occurs on the 0. Due to the forced bending introduced to the center of the blank 110, there is a risk of cracking during the forming process, as shown at 114 in FIG. Also,
As shown at 115, since the outer surface of the material is incompletely formed during the bending process, uneven thickness of the alloy may occur here. Furthermore, there is a risk that the thickness will be uneven near the cut surface as shown by the solid line in FIG. When confirmed through experiments, the above-mentioned problem does not appear to be a major drawback for bearings where the relationship between the thickness T of the bearing material and the outer diameter D of the manufactured bearing is in the range T/D < 0.07. However, it turns out that this drawback becomes extremely noticeable when T/D≧0.07. Therefore, there was a problem that the bending forming method could not provide a satisfactory product when T/D≧0.07.

なお、第10図において、セグメント113
はフオーミングブロツク112に図示しないボ
ルトによつて下から締付けられたものである
が、両者は一体構造であつても良いし、又接着
剤などで連結されたものであつてもかまわな
い。
In addition, in FIG. 10, segment 113
is fastened to the forming block 112 from below with bolts (not shown), but the two may be of integral construction or may be connected with adhesive or the like.

本発明は、従来の遠心鋳造方式の上述した多く
の問題を解決し、工程をわずかにして安易に半円
筒形摺動軸受を作る方法を提供するものであり、
他方、従来のベンデイング・フオーミング方式に
おける欠点を克服し、特にT/D≧0.07の範囲にお ける軸受においても、従来法によつて生じてしま
うごとき、切口面の偏肉、外面における偏肉、内
面中央部における亀裂といつた問題を除去し得る
ようにした半円筒形摺動軸受を作る方法を提供す
るものである。
The present invention solves many of the above-mentioned problems of the conventional centrifugal casting method, and provides a method for easily manufacturing semi-cylindrical sliding bearings with a few steps.
On the other hand, it overcomes the shortcomings of the conventional bending forming method, especially in bearings in the range of T/D≧0.07. The present invention provides a method for making a semi-cylindrical sliding bearing that eliminates problems such as cracks in the parts.

T/D≧0.07にある軸受素材を「超厚肉」、0.07> T/D≧0.04にある軸受素材を「中肉」、0.04>T/D ≧0.015にある軸受素材を「薄肉」のものと一応
指称することによれば、本発明の利点は特に「超
厚肉」のものにおいて著しいが、本発明はこれに
限るものではなく、中肉、薄肉のものにも適用さ
れて良好な効果をもたらすものである。
Bearing materials where T/D≧0.07 are “ultra-thick wall”, bearing materials where 0.07>T/D≧0.04 are “medium wall”, and bearing materials where 0.04>T/D≧0.015 are “thin wall”. In other words, the advantages of the present invention are particularly remarkable in "ultra-thick" products, but the present invention is not limited to this, and can also be applied to medium- and thin-walled products with good effects. It brings about.

本発明の特徴を概説するならば、本発明は、一
対のローラ上面と上下移動可能なダイクツシヨン
上面に平板でなる軸受素材(単体又は複合体のい
ずれで成るものでもよい)を載置し、該素材の上
面に上下移動可能なポンチを当て、該ポンチで前
記素材を押圧しながら、他方前記ダイクツシヨン
で該素材を支持しながら下方に移動せしめること
により、該一対のローラ間を通過させ、これによ
り、該ポンチの外周面に沿つて前記素材をほヾ半
円筒形に曲げ成形する工程を必須の工程として含
み、次に、従来のベンデイング・フオーミング方
式と同様に、ベンデイング及びフオーミングする
製法である。本発明によつて、鍔付半円筒形摺動
軸受を形成することも、鍔無し半円筒形摺動軸受
を形成することも所望により自在である。
To summarize the features of the present invention, in the present invention, a flat bearing material (which may be made of either a single material or a composite material) is placed on the upper surface of a pair of rollers and the upper surface of a dictation that is movable up and down. A vertically movable punch is applied to the upper surface of the material, and while pressing the material with the punch, the material is moved downward while being supported by the duct, thereby allowing the material to pass between the pair of rollers. This manufacturing method includes a step of bending and forming the material into a semi-cylindrical shape along the outer peripheral surface of the punch as an essential step, and then bending and forming as in the conventional bending and forming method. According to the present invention, it is possible to form a semi-cylindrical sliding bearing with a flange or a semi-cylindrical sliding bearing without a flange, as desired.

以下、第11図〜第19図を参照して、本発明
の実施例について説明する。第11図〜第15図
は本発明に従つて鍔のない半円筒形摺動軸受を製
造する工程を説明するものであり、第16図は得
られた製品の斜視図、第17図は製品の断面図で
ある。第18図、第19図は第16図に示された
製品より両側に鍔を加工した鍔付半円筒形摺動軸
受の側面図、底面図である。
Embodiments of the present invention will be described below with reference to FIGS. 11 to 19. Figures 11 to 15 explain the process of manufacturing a semi-cylindrical sliding bearing without a flange according to the present invention, Figure 16 is a perspective view of the obtained product, and Figure 17 is a diagram of the product. FIG. 18 and 19 are a side view and a bottom view of a flanged semi-cylindrical sliding bearing with flanges machined on both sides from the product shown in FIG. 16.

さて、まず、第11図〜第15図を参照して本
発明により鍔の無い円筒形摺動軸受を製造する場
合の実施例について説明する。鋼板(S10C)上
にライニング(焼結後、圧延)された銅基軸受合
金(KJ3)からなる合金層の厚さ0.75mm、総肉厚
14.95mmの複合板1を一対のローラ2,2とダイ
クツシヨン3の上に第11図に示すごとく載置
し、ポンチ4をダイクツシヨン3に対して複合板
1の反対側表面に当接させる。次に、第12図に
示すようにポンチ4を下降させるとともにダイク
ツシヨン3も下降させて、その間隙が180mmで配
置された一対のローラ2,2間に複合板1を押圧
しながら、複合板1を曲げ加工(第1次ベンデイ
ング)させる。このようにして、所定の距離まで
ポンチ4とダイクツシヨン3とを下降させて、
ほヾ厚肉円筒状複合部材1′に曲げ加工された状
態が第13図に示されている。このようにして得
られた厚肉半円筒状複合部材1′はポンチ4及び
ローラ2,2間から取り外されると、鋼板の弾性
によつて、その外径はローラ2,2間の間隙180
mmよりも若干ひろがる。
Now, first, an embodiment in which a cylindrical sliding bearing without a collar is manufactured according to the present invention will be described with reference to FIGS. 11 to 15. The thickness of the alloy layer is 0.75mm, which is made of copper-based bearing alloy (KJ3) lined (rolled after sintering) on a steel plate (S10C), total wall thickness.
A 14.95 mm composite plate 1 is placed on a pair of rollers 2, 2 and a dictation 3 as shown in FIG. 11, and a punch 4 is brought into contact with the surface of the composite plate 1 opposite to the dictation 3. Next, as shown in FIG. 12, the punch 4 is lowered and the dictation 3 is also lowered, and the composite plate 1 is pressed between a pair of rollers 2, 2 arranged with a gap of 180 mm. is subjected to bending processing (first bending). In this way, the punch 4 and the dictation 3 are lowered to a predetermined distance,
FIG. 13 shows a state in which the thick-walled cylindrical composite member 1' is bent. When the thus obtained thick-walled semicylindrical composite member 1' is removed from the punch 4 and between the rollers 2 and 2, its outer diameter is reduced to 180 mm between the rollers 2 and 2 due to the elasticity of the steel plate.
It is slightly wider than mm.

次に、この複合部材1′を所定寸法を有する円
弧形状のポンチ5と半円形状の凹部6を有するダ
イ7(内径180mm)間でなじむまで、即ち前述し
た鋼板の曲げ応力が除去されるまで、押圧して
(第2次ベンデイング)第14図に示したような
半円筒形複合部材11′を得る。その後、第15
図に示すようにダイ7とセグメント9付きフオー
ミングブロツク10を用いて、第10図で前に説
明したのと同様に、半円筒形複合部材11′の切
口面を押圧成形し、半円筒形摺動軸受11を得
る。得られた軸受11は第16図、第17図に示
されているように、外側に銅裏金属13を有し、
内側に軸受合金層12を有するものであつて、外
径180mmの正確な形状寸法を持つものである。そ
して、軸受合金層12には亀裂、偏肉など、また
裏金には接触傷、偏肉など何らの欠陥は認められ
ない、品質良好な半円筒形摺動軸受を得ることが
できる。
Next, this composite member 1' is pressed between a circular arc-shaped punch 5 having predetermined dimensions and a die 7 (inner diameter 180 mm) having a semicircular recess 6 until the composite member 1' is bent, that is, until the bending stress of the steel plate described above is removed. , and pressing (second bending) to obtain a semi-cylindrical composite member 11' as shown in FIG. After that, the 15th
As shown in the figure, using a die 7 and a forming block 10 with segments 9, the cut surface of a semi-cylindrical composite member 11' is press-formed into a semi-cylindrical shape in the same manner as previously described in FIG. A sliding bearing 11 is obtained. As shown in FIGS. 16 and 17, the obtained bearing 11 has a copper backing metal 13 on the outside,
It has a bearing alloy layer 12 on the inside, and has a precise shape and dimension of an outer diameter of 180 mm. Then, it is possible to obtain a semi-cylindrical sliding bearing of good quality in which no defects such as cracks, uneven thickness, etc. are observed in the bearing alloy layer 12, and no defects such as contact scratches or uneven thickness are observed on the backing metal.

上述した実施例においては、鋼板と鋼板上に被
着された銅基軸受合金層とを有する複合板を用い
ることを前提として説明してきたが、裏金層は鋼
に限ることなく鉄その他のものが任意に採用し
得、また、軸受合金層としても、銅基合金層に限
られることなく、アルミニウム基合金層など任意
のものが所望により採用し得る。更にまた、裏金
層付のものに限定されることもなく、単体の軸受
素材を用いることもできることは勿論である。加
えて更に、複合板としても上記実施例に示したも
ののように軸受合金層が一層であるものに限るこ
となく、これが多層で成る所謂多層摺動軸受にお
いても本発明方法が上述したところと同様に適用
されて品質良好な製品をもたらし得ることは言う
までもない。
In the above-mentioned embodiments, the explanation has been made on the assumption that a composite plate having a steel plate and a copper-based bearing alloy layer deposited on the steel plate is used, but the backing metal layer is not limited to steel and may be made of iron or other materials. Any material may be used as the bearing alloy layer, and the bearing alloy layer is not limited to a copper-based alloy layer, and any material such as an aluminum-based alloy layer may be used as desired. Furthermore, it is needless to say that the bearing material is not limited to one with a metal backing layer, and a single bearing material can also be used. In addition, the method of the present invention is not limited to a composite plate having a single bearing alloy layer as shown in the above embodiment, but can also be applied to a so-called multilayer sliding bearing having multiple layers. Needless to say, it can be applied to produce products of good quality.

次に、両側に鍔がついた半円筒形摺動軸受を作
る本発明の実施例につき、第18図、第19図を
参照して説明する。鍔がない半円筒形摺動軸受を
作るまでの方法は第11図〜第15図で説明した
ところと同じであるから繰返さない。かようにし
て得られた鍔なし半円筒形摺動軸受11に、ま
ず、高さ中仕上げ工程、肉厚中仕上げ工程及び幅
仕上げ工程を施す。次に第18図、第19図に示
すように、鋼裏金層13の外周面を両端部15を
残して内側に向け切削して(14で示すように)、
該両端部15のところを両鍔に形成することによ
り両側鍔付(鍔間隔寸法84mm)半円形摺動軸受1
1″を得ることができる。かようにして得られた
軸受11″には所望により、外周溝加工、止り溝、
通し溝、油溜加工、或いは、軸受合金層12上に
So10%、Pb残部でなる組成を有する表面層(オ
ーバーレイ)を0.02〜0.03mm被覆する、といつた
ような工程を目的に応じて適用し得ることは勿論
である。
Next, an embodiment of the present invention for producing a semi-cylindrical sliding bearing with flanges on both sides will be described with reference to FIGS. 18 and 19. The method for making a semi-cylindrical sliding bearing without a flange is the same as that explained in FIGS. 11 to 15, so it will not be repeated. The flanged semi-cylindrical sliding bearing 11 thus obtained is first subjected to a medium height finishing process, a medium thickness finishing process, and a width finishing process. Next, as shown in FIGS. 18 and 19, the outer peripheral surface of the steel back metal layer 13 is cut inward leaving both ends 15 (as shown at 14).
By forming both ends 15 into both flanges, a semicircular sliding bearing 1 with flanges on both sides (flange spacing 84 mm) is obtained.
1" can be obtained. The bearing 11" thus obtained can be provided with outer circumferential grooves, stop grooves, etc. as desired.
Through groove, oil sump processing, or on the bearing alloy layer 12
Of course, a process such as coating a surface layer (overlay) having a composition of 10% So and the balance Pb with a thickness of 0.02 to 0.03 mm can be applied depending on the purpose.

以上の実施例において、軸受素材の肉厚Tと得
られる軸受の外径Dとの比T/Dは0.111であつた が、かような厚肉のものにおいても、本発明によ
るときには何ら欠陥のない良好な品質を有する製
品を得ることができた。他方、本発明者は同じ厚
肉素材(T/D=0.111)を用いて従来のベンデイン グ・フオーミング方式を用いて軸受を製作して本
発明によつて作られたものと対比してみたが、従
来のベンデイング・フオーミング方式によつたも
のは、軸受合金層に亀裂、偏肉、裏金に接触傷、
偏肉が顕著に認められ、また切口面付近における
偏肉も極めて大であつた。
In the above embodiment, the ratio T/D between the wall thickness T of the bearing material and the outer diameter D of the resulting bearing was 0.111, but even with such a thick wall, there is no defect when using the present invention. Not able to get a product with good quality. On the other hand, the present inventor manufactured a bearing using the conventional bending forming method using the same thick material (T/D = 0.111) and compared it with the bearing made according to the present invention. The conventional bending/forming method causes cracks and uneven thickness in the bearing alloy layer, contact scratches on the backing metal,
A significant thickness deviation was observed, and the thickness deviation near the cut surface was also extremely large.

本発明は上記したごとき構成により、下記の通
りの作用効果を奏する。
The present invention achieves the following effects through the configuration described above.

(a) 従来の遠心鋳造方式に比して、工程数を激減
することができ、高速加工化、量産化、コスト
低減化を達成できる。更に、遠心鋳造方式によ
つたのでは、アルミニウム軸受合金層を備える
ことが冶金学上の理由で困難であるのに対し、
本発明は所望の軸受合金層を有する素材から出
発すればよいのであるから、あらゆる軸受用途
に適用し得る製品を得ることができる。
(a) Compared to the conventional centrifugal casting method, the number of steps can be drastically reduced, and high-speed processing, mass production, and cost reduction can be achieved. Furthermore, with the centrifugal casting method, it is difficult to provide an aluminum bearing alloy layer for metallurgical reasons.
Since the present invention only needs to start from a material having a desired bearing alloy layer, it is possible to obtain a product that can be applied to any bearing application.

(b) 従来のベンデイング・フオーミング方式によ
つたのでは、特にT/D≧0.07の素材に対して、 軸受合金層の亀裂、偏肉、裏金の接触傷、偏肉
が顕著に生じてしまうが、本発明によれば、そ
のような厚肉の素材であつても、高品質で安定
した製品を得ることができる。
(b) If the conventional bending forming method is used, cracks in the bearing alloy layer, uneven thickness, contact scratches on the backing metal, and uneven thickness will occur, especially for materials with T/D≧0.07. According to the present invention, a high-quality and stable product can be obtained even from such a thick material.

以上説明したように、本発明は従来技術の欠点
を克服し、高品質の半円筒形摺動軸受を安易に得
られる方法を提供するものであつて、産業上極め
て有用なものである。
As explained above, the present invention overcomes the drawbacks of the prior art and provides a method for easily obtaining a high-quality semi-cylindrical sliding bearing, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は従来の遠心鋳造方式による
厚肉鍔付半円筒形摺動軸受の製法を説明するため
の図であり、第1図は両側鍔付円筒体の斜視図、
第2図は第1図の円筒体を一部断面で示した正面
図、第3図は黒皮を切削除去した円筒体を一部断
面で示した正面図、第4図は鉄板又は鋼板で成る
側板を円筒体の両側に溶接した状態を示す一部断
面で示した正面図、第5図は側板の孔より溶湯を
流し込んで軸受合金層を備えた状態を示す一部断
面で示した正面図、第6図は側板を除去し軸受合
金層を所定の肉厚に切削加工した状態を示す一部
断面で示した正面図、第7図は円筒体を半割した
状態を示す斜視図、第8図は半割面を所定寸法に
平滑面に機械加工して製品とした状態を示す斜視
図、第9図及び第10図は従来のベンデイング・
フオーミング方式を説明するための図であり、第
9図はダイとポンチ間において素材が半円筒状に
曲げられつつある状態を示す説明図、第10図は
ダイとセグメント付きフオーミングブロツクによ
つて素材が半円形摺動軸受に加工される状態を示
す説明図、第11図乃至第19図は本発明の実施
例を説明するものであつて、第11図から第13
図は1次ベンデイング工程を、第14図は2次ベ
ンデイング工程を、第15図はフオーミング工程
をそれぞれ説明する図、第16図は本発明の方法
によつて作られた鍔なしの半円筒形摺動軸受の斜
視図、第17図は第16図の軸受を断面で示す
図、第18図は鍔を備えるために鋼裏金層が切削
された状態の軸受の側面図、第19図は第18図
で示した軸受の底面図である。 1……複合板、2……ローラ、3……ダイクツ
シヨン、4,5……ポンチ、6……凹部、7……
ダイ、9……セグメント、10……フオーミング
ブロツク、11,11′……半円筒形摺動軸受、
12……軸受合金層、13……鋼裏金、14……
切欠部、15……端部(鍔部)。
1 to 8 are diagrams for explaining the manufacturing method of a semi-cylindrical sliding bearing with thick-walled flanges using a conventional centrifugal casting method, and FIG. 1 is a perspective view of a cylindrical body with flanges on both sides;
Figure 2 is a partially cross-sectional front view of the cylindrical body shown in Figure 1, Figure 3 is a partially cross-sectional front view of the cylinder with the black crust removed, and Figure 4 is an iron plate or steel plate. Fig. 5 is a partially cross-sectional front view showing the side plates welded to both sides of the cylindrical body, and Fig. 5 is a partially cross-sectional front view showing the state in which molten metal is poured through the holes in the side plates to provide a bearing alloy layer. Figure 6 is a partially cross-sectional front view showing the side plate removed and the bearing alloy layer cut to a predetermined thickness, and Figure 7 is a perspective view showing the cylindrical body cut in half. Fig. 8 is a perspective view showing a product obtained by machining a half-cut surface into a smooth surface with predetermined dimensions, and Figs. 9 and 10 show a conventional bending process.
These are diagrams for explaining the forming method. Figure 9 is an explanatory diagram showing a state in which the material is being bent into a semi-cylindrical shape between the die and the punch, and Figure 10 is an explanatory diagram showing the state where the material is being bent into a semi-cylindrical shape between the die and the forming block with segments. 11 to 19 are explanatory diagrams showing the state in which a material is processed into a semicircular sliding bearing, and are for explaining embodiments of the present invention.
Figure 14 illustrates the primary bending process, Figure 14 illustrates the secondary bending process, Figure 15 illustrates the forming process, and Figure 16 illustrates a semi-cylindrical shape without a flange made by the method of the present invention. FIG. 17 is a cross-sectional view of the bearing shown in FIG. 16, FIG. 18 is a side view of the bearing with the steel back metal layer cut to provide a collar, and FIG. 19 is a perspective view of the sliding bearing. FIG. 19 is a bottom view of the bearing shown in FIG. 18; 1... Composite board, 2... Roller, 3... Dictionary, 4, 5... Punch, 6... Recess, 7...
Die, 9... segment, 10... forming block, 11, 11'... semi-cylindrical sliding bearing,
12...Bearing alloy layer, 13...Steel back metal, 14...
Notch, 15...end (flange).

Claims (1)

【特許請求の範囲】 1 所定間隔で備えられた一対のローラと該一対
のローラの軸を含む平面に対して垂直方向に往復
移動可能なダイクツシヨン上面に平板状の軸受素
材を載置し、該素材の該ダイクツシヨン上面に接
する側と反対側の表面にポンチを当接させ、該ポ
ンチで該素材を該垂直方向に押圧するとともに前
記ダイクツシヨンで該素材を支持しながら該ダイ
クツシヨンを該垂直方向に移動させて、前記素材
を該ポンチの外周面に沿わせてほぼ半円筒状に曲
げる1次ベンデイング工程と; 該1次ベンデイング工程を終つて取り出されて
ほぼ半円筒状にされた素材をポンチとダイ間で押
圧保持して該素材の弾性によつて生じた変形を修
正成形して半円筒形部材として形成する2次ベン
デイング工程と; 前記半円筒形部材をダイへ載置し、セグメント
及びフオーミングブロツクを用いて前記セグメン
トによつて前記半円筒形部材の半径方向内方への
変形を防止しながら該半円筒形部材の切口面とそ
の付近を前記フオーミングブロツクにより該ダイ
に押圧し所定形状及び所定寸法の半円筒形摺動軸
受に成形するフオーミング工程と; を有する半円筒形摺動軸受の製造方法。 2 所定間隔で備えられた一対のローラと該一対
のローラの軸を含む平面に対して垂直方向に往復
移動可能なダイクツシヨン上面に平板状の軸受素
材を載置し、該素材の該ダイクツシヨン上面に接
する側と反対側の表面にポンチを当接させ、該ポ
ンチで該素材を該垂直方向に押圧するとともに前
記ダイクツシヨンで該素材を支持しながら該ダイ
クツシヨンを該垂直方向に移動させて、前記素材
を該ポンチの外周面に沿わせてほぼ半円筒状に曲
げる1次ベンデイング工程と; 該1次ベンデイング工程を終つて取り出されて
ほぼ半円筒状にされた素材をポンチとダイ間で押
圧保持して該素材の弾性によつて生じた変形を修
正成形して半円筒形部材として形成する2次ベン
デイング工程と; 前記半円筒形部材をダイへ載置し、セグメント
及びフオーミングブロツクを用いて前記セグメン
トによつて前記半円筒形部材の半径方向内方への
変形を防止しながら該半円筒形部材の切口面とそ
の付近を前記フオーミングブロツクにより該ダイ
に押圧し所定形状及び所定寸法の半円筒形摺動軸
受に成形するフオーミング工程と; 前記軸受の高さ、肉厚および幅を所望寸法に機
械加工する工程と を有する半円筒形摺動軸受の製造方法。 3 所定間隔で備えられた一対のローラと該一対
のローラの軸を含む平面に対して垂直方向に往復
移動可能なダイクツシヨン上面に平板状の軸受素
材を載置し、該素材の該ダイクツシヨン上面に接
する側と反対側の表面にポンチを当接させ、該ポ
ンチで該素材を該垂直方向に押圧するとともに前
記ダイクツシヨンで該素材を支持しながら該ダイ
クツシヨンを該垂直方向に移動させて、前記素材
を該ポンチの外周面に沿わせてほぼ半円筒状に曲
げる1次ベンデイング工程と; 該1次ベンデイング工程を終つて取り出されて
ほぼ半円筒状にされた素材をポンチとダイ間で押
圧保持して該素材の弾性によつて生じた変形を修
正成形して半円筒形部材として形成する2次ベン
デイング工程と; 前記半円筒形部材をダイへ載置し、セグメント
及びフオーミングブロツクを用いて前記セグメン
トによつて前記半円筒形部材の半径方向内方への
変形を防止しながら該半円筒形部材の切口面とそ
の付近を前記フオーミングブロツクにより該ダイ
に押圧し所定形状及び所定寸法の半円筒形摺動軸
受に成形するフオーミング工程と; 前記軸受の外周面を内周面方向に向かつて両端
部又は一方端部を残して切削加工して両端鍔又は
片側鍔を形成する工程と を有する半円筒形摺動軸受の製造方法。 4 所定間隔で備えられた一対のローラと該一対
のローラの軸を含む平面に対して垂直方向に往復
移動可能なダイクツシヨン上面に平板状の軸受素
材を載置し、該素材の該ダイクツシヨン上面に接
する側と反対側の表面にポンチを当接させ、該ポ
ンチで該素材を該垂直方向に押圧するとともに前
記ダイクツシヨンで該素材を支持しながら該ダイ
クツシヨンを該垂直方向に移動させて、前記素材
を該ポンチの外周面に沿わせてほぼ半円筒状に曲
げる1次ベンデイング工程と; 該1次ベンデイング工程を終つて取り出されて
ほぼ半円筒状にされた素材をポンチとダイ間で押
圧保持して該素材の弾性によつて生じた変形を修
正成形して半円筒形部材として形成する2次ベン
デイング工程と; 前記半円筒形部材をダイへ隔置し、セグメント
及びフオーミングブロツクを用いて前記セグメン
トによつて前記半円筒形部材の半径方向内方への
変形を防止しながら該半円筒形部材の切口面とそ
の付近を前記フオーミングブロツクにより該ダイ
に押圧し所定形状及び所定寸法の半円筒形摺動軸
受に成形するフオーミング工程と; 前記軸受の高さ、肉厚および幅を所望寸法に機
械加工する工程と; 前記軸受の外周面を内周面方向に向かつて両端
部又は一方端部を残して切削加工して両側鍔又は
片側鍔を形成する工程と を有する半円筒形摺動軸受の製造方法。
[Claims] 1. A pair of rollers provided at a predetermined interval and a flat bearing material placed on the upper surface of a dictation that can reciprocate in a direction perpendicular to a plane containing the axes of the pair of rollers. A punch is brought into contact with the surface of the material on the side opposite to the side that contacts the upper surface of the dicing, and the punch presses the material in the vertical direction, and the dicing is moved in the vertical direction while supporting the material with the dicing. a primary bending step of bending the material into a substantially semi-cylindrical shape along the outer peripheral surface of the punch; a secondary bending step in which the deformation caused by the elasticity of the material is corrected and formed into a semi-cylindrical member; the semi-cylindrical member is placed on a die and segmented and formed; The forming block presses the cut surface of the semi-cylindrical member and its vicinity against the die to form a predetermined shape while preventing the semi-cylindrical member from deforming inward in the radial direction by the segments. and a forming step of forming a semi-cylindrical sliding bearing with predetermined dimensions; 2. A flat bearing material is placed on the upper surface of a dictation that can reciprocate in a direction perpendicular to a plane containing a pair of rollers provided at a predetermined interval and the axes of the pair of rollers, and a flat bearing material is placed on the upper surface of the dictation of the material. A punch is brought into contact with the surface on the opposite side to the contacting side, and the material is pressed in the vertical direction with the punch, and the dictation is moved in the vertical direction while supporting the material with the dictation, thereby removing the material. a primary bending step of bending the material into a substantially semi-cylindrical shape along the outer peripheral surface of the punch; pressing and holding the material taken out after the primary bending step and made into a substantially semi-cylindrical shape between a punch and a die; a secondary bending step in which the deformation caused by the elasticity of the material is corrected and formed into a semi-cylindrical member; the semi-cylindrical member is placed on a die and the segment is formed using a segment and a forming block; The forming block presses the cut surface of the semi-cylindrical member and its vicinity against the die while preventing the semi-cylindrical member from deforming inward in the radial direction, thereby forming a semi-cylindrical member of a predetermined shape and size. A method for manufacturing a semi-cylindrical sliding bearing, comprising: a forming step of forming the bearing into a shaped sliding bearing; and a step of machining the height, wall thickness, and width of the bearing to desired dimensions. 3. A flat bearing material is placed on the upper surface of a dictation that can reciprocate in a direction perpendicular to a plane containing a pair of rollers provided at a predetermined interval and the axes of the pair of rollers, and a flat bearing material is placed on the upper surface of the dictation of the material. A punch is brought into contact with the surface on the opposite side to the contacting side, and the material is pressed in the vertical direction with the punch, and the dictation is moved in the vertical direction while supporting the material with the dictation, thereby removing the material. a primary bending step of bending the material into a substantially semi-cylindrical shape along the outer peripheral surface of the punch; pressing and holding the material taken out after the primary bending step and made into a substantially semi-cylindrical shape between a punch and a die; a secondary bending step in which the deformation caused by the elasticity of the material is corrected and formed into a semi-cylindrical member; the semi-cylindrical member is placed on a die and the segment is formed using a segment and a forming block; The forming block presses the cut surface of the semi-cylindrical member and its vicinity against the die while preventing the semi-cylindrical member from deforming inward in the radial direction, thereby forming a semi-cylindrical member of a predetermined shape and size. A forming process for forming a shaped sliding bearing; and a process for turning the outer circumferential surface of the bearing toward the inner circumferential surface and cutting it leaving both ends or one end to form a both-end flange or one-side flange. Method of manufacturing cylindrical sliding bearings. 4. A flat bearing material is placed on the upper surface of a dictation that can reciprocate in a direction perpendicular to a plane containing a pair of rollers provided at a predetermined interval and the axes of the pair of rollers, and a flat bearing material is placed on the upper surface of the dictation of the material. A punch is brought into contact with the surface on the opposite side to the contacting side, and the material is pressed in the vertical direction with the punch, and the dictation is moved in the vertical direction while supporting the material with the dictation, thereby removing the material. a primary bending step of bending the material into a substantially semi-cylindrical shape along the outer peripheral surface of the punch; pressing and holding the material taken out after the primary bending step and made into a substantially semi-cylindrical shape between a punch and a die; a secondary bending step in which the deformation caused by the elasticity of the material is corrected and formed into a semi-cylindrical member; placing the semi-cylindrical member into a die and forming the segment using a segment and a forming block; The forming block presses the cut surface of the semi-cylindrical member and its vicinity against the die while preventing the semi-cylindrical member from deforming inward in the radial direction, thereby forming a semi-cylindrical member of a predetermined shape and size. a forming step for forming a shaped sliding bearing; a step for machining the height, wall thickness, and width of the bearing to desired dimensions; and a step of turning the outer circumferential surface of the bearing toward the inner circumferential surface and forming both ends or one end thereof. A method for manufacturing a semi-cylindrical sliding bearing, comprising: forming a both-side flange or a one-sided flange by cutting the bearing while leaving the remaining flange.
JP19729181A 1981-12-08 1981-12-08 Manufacture of semicylindrical sliding bearing Granted JPS58100932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19729181A JPS58100932A (en) 1981-12-08 1981-12-08 Manufacture of semicylindrical sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19729181A JPS58100932A (en) 1981-12-08 1981-12-08 Manufacture of semicylindrical sliding bearing

Publications (2)

Publication Number Publication Date
JPS58100932A JPS58100932A (en) 1983-06-15
JPH0223252B2 true JPH0223252B2 (en) 1990-05-23

Family

ID=16372015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19729181A Granted JPS58100932A (en) 1981-12-08 1981-12-08 Manufacture of semicylindrical sliding bearing

Country Status (1)

Country Link
JP (1) JPS58100932A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634277B2 (en) * 2001-03-07 2005-03-30 大同メタル工業株式会社 Sliding bearing processing method and processing apparatus
KR102151023B1 (en) * 2019-12-31 2020-09-02 김동혁 Metal ring forming system

Also Published As

Publication number Publication date
JPS58100932A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US4023613A (en) Method of making a composite metal casting
US4005991A (en) Metal made of steel plate and aluminum material
JP2846263B2 (en) Manufacturing method of half machine parts
EP0396862B1 (en) A pair of cooling rolls for a twin-roll type cooling apparatus for producing rapidly solidified strip
JPH0571538A (en) Split bearing
US4446351A (en) Process for preparing a press die
US2376779A (en) Process for making antifriction bearings
US1956467A (en) Bearing manufacture
JPH0223252B2 (en)
JPH0420684B2 (en)
US3653109A (en) Method of producing composite bushings
US1944609A (en) Bearing manufacture
US1892173A (en) Method of making thin walled metal articles
US1753435A (en) Method of making lined bearings
JP2008173674A (en) Method of manufacturing metallic ring
JPS5834195A (en) Manufacture of aluminum alloy bearing
US1910221A (en) Lined bearing
JPS5817704B2 (en) Osmanthus Cylinder No. Seizouhouhou
SU1131594A1 (en) Method of obtaining bimetallic castings from iron-base alloys
US1892177A (en) Method of making bearing sleeves
JPS61286006A (en) Production of cladding metallic plate
SU1572772A1 (en) Method of producing cladded strip
JPS6225469B2 (en)
JPH06106365A (en) Sliding material and production thereof
JPH0360802A (en) Manufacture of angle steel