JPH02232523A - Flow-rate measuring apparatus - Google Patents

Flow-rate measuring apparatus

Info

Publication number
JPH02232523A
JPH02232523A JP5302389A JP5302389A JPH02232523A JP H02232523 A JPH02232523 A JP H02232523A JP 5302389 A JP5302389 A JP 5302389A JP 5302389 A JP5302389 A JP 5302389A JP H02232523 A JPH02232523 A JP H02232523A
Authority
JP
Japan
Prior art keywords
differential pressure
temperature
flow rate
signal
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5302389A
Other languages
Japanese (ja)
Inventor
Takuji Tawara
卓兒 田原
Masanori Goto
正徳 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5302389A priority Critical patent/JPH02232523A/en
Publication of JPH02232523A publication Critical patent/JPH02232523A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease errors due to temperature change and to make it possible to use this apparatus in all environments by correcting an electric signal which is sent from a differential pressure transmitting device by the temperature of a heat reserving case which is obtained from an ambient temperature detector. CONSTITUTION:A differential pressure transmitting device 3 is contained in a heat reserving case 2. An ambient temperature detector 11 is provided in the vicinity of the differential pressure transmitting device 3. The obtained temperature signal is sent into an electronic computer 5 through a process input/output device 4 by the same way as a differential pressure signal. The electronic computer 5 corrects the error in the differential pressure signal from the inputted temperature signal. In this way, the flow-rate measuring apparatuses can be provided under various environments, and errors in flow rates can be decreased by the temperature correction.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は流量センサより得られるデータを入力し、誤差
補正する流量測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a flow rate measuring device that inputs data obtained from a flow rate sensor and corrects errors.

(従来の技術) 差圧伝送器を恒温槽に入れたオリフイス板を用いた差圧
式流量測定装置の従来構成を第4図に示す. オリフィス板を用いた差圧式流量測定装置は、配管1に
オリフイス板2を取り付けることにより、出口側の圧力
P8を低下させる如く構成され,その圧力P2は入口側
の圧力P1とともに差圧伝送器3に送られる. 差圧伝送器3では,受けとった圧力P,,,P,の差圧
が電気信号に変換され、プロセス入出力装n4を介して
電子計算機5に送出される.この差圧伝送器3は,ファ
ン6,ヒータ7を備えた恒温槽8の中に入れられ,温度
変化による変動を少なくするため温度が一定に保たれる
. 電子計算機5に送られてきた電気信号は,入力走査手段
9にて一定周期で瞬時値が読みとられ,演算手段lOに
て補正を加えた計算が行なわれて流量が求められる. 次に,従来の補正演算方法を第5図のブロック図を参照
しながら説明する. なお、回中、Fは流量、Qは流量方程式による流量、Δ
Pya^は測定装置からの差圧信号、ΔPは単位変換後
の差圧、ΔP′は器差補正後の差圧、ΔPTは測定装置
における変換最大差圧,Ioは測定装置の信号ゼロ点出
力値、I1oaは測定装置の信号100%出力値、ΔP
maxは設計最大差圧,F Ilaxは設計最大流量、
■Dは設計温度と圧力による比容積.Tfは流体の温度
,Pfは流体の圧力、Eはノズル材質の線膨張係数,T
は熱膨張補正基準温度を表わす. まず,演算手段IOで受けとった差圧信号ΔP■Aは実
際の差圧に直すため単位変換手段201で単位変換(m
A−nmH,O)が行なわれてΔPが求められる.しか
し、このΔPには差圧伝送鼎自体がもつ誤差が含まれて
いるため,器差補正手段202で器差補正が行なわれ,
比較器203でΔP′が求められる. ここで器差補正が加えられた差圧信号ΔP′は、設計最
大差圧をΔPmax,ΔPより求められる器差補正をf
(ΔP)(%)とすると, で求められる. ΔP′より流量方程式を用いて流量算出手段204で流
量Qが求められる. 次に,圧縮補正手段205にて流量Qに流体の圧縮性に
よる圧縮補正と、膨張補正手段206にてノズル熱膨張
に対する膨張補正が行なわれて流量Fが求められる. 流体の圧縮性による補正は,流体の温度をTf、流体の
圧力をPf.補正後の流量をQ′とすると、となる.上
式(7)VSC(Tf, Pf)は温度Tfと圧力Pf
における比容積を求める関数である,ノズル熱膨張によ
る補正は,ノズル材質線膨張係数をE,熱膨張補正基準
温度をTとすると、F=Q’ (1+E・(Tf−T)
)”弁Q (1+2E・(Tf−T))    ・・・
(3)で求められる. このように、従来は,恒温槽にて温度を一定に保つとい
う条件のもとに,上記の補正が行なわれて流量値が求め
られていた. (発明が解決しようとしている課1i!)しかしながら
、恒温槽にて温度を保っているとはいえ,周囲環境によ
り周囲温度に変動が生じ,その結果誤差を生じてしまう
.又,恒温槽がヒータやファンを備えているため大型化
し、その動力源も必要となってしまい,ある一定の条件
下でしか使用できないという問題があった. そこで本発明は、温度変化による誤差を少なくし,あら
ゆる環境で使用できる流量測定装置を提供することを目
的とする. [発明の構成] (課題を解決するための手段) 本発明は,差圧伝送器を保温箱に収納し,差圧伝送器の
近傍に雰囲気温度検出優を設けて温度を測定し、その温
度による補正を従来の演算式に・加味するようにしたも
のである. (作 用) これにより,流量測定装置を様々な環境下に設置するこ
とができ、温度補正により、測定した流量の誤差を少な
くすることができる。
(Prior art) Figure 4 shows the conventional configuration of a differential pressure flow rate measuring device using an orifice plate with a differential pressure transmitter placed in a constant temperature bath. The differential pressure type flow measuring device using an orifice plate is configured to reduce the pressure P8 on the outlet side by attaching the orifice plate 2 to the piping 1, and the pressure P2 is transmitted to the differential pressure transmitter 3 along with the pressure P1 on the inlet side. Sent to. In the differential pressure transmitter 3, the differential pressure between the received pressures P, , P, is converted into an electrical signal and sent to the electronic computer 5 via the process input/output device n4. This differential pressure transmitter 3 is placed in a constant temperature bath 8 equipped with a fan 6 and a heater 7, and the temperature is kept constant to reduce fluctuations due to temperature changes. The instantaneous value of the electric signal sent to the electronic computer 5 is read at regular intervals by the input scanning means 9, and the calculation means 10 performs calculations with corrections to determine the flow rate. Next, the conventional correction calculation method will be explained with reference to the block diagram in Fig. 5. In addition, during circulation, F is the flow rate, Q is the flow rate according to the flow rate equation, and Δ
Pya^ is the differential pressure signal from the measuring device, ΔP is the differential pressure after unit conversion, ΔP' is the differential pressure after instrumental error correction, ΔPT is the maximum converted differential pressure in the measuring device, Io is the signal zero point output of the measuring device value, I1oa is the signal 100% output value of the measuring device, ΔP
max is the design maximum differential pressure, F Ilax is the design maximum flow rate,
■D is the specific volume due to design temperature and pressure. Tf is the temperature of the fluid, Pf is the pressure of the fluid, E is the coefficient of linear expansion of the nozzle material, T
represents the thermal expansion correction reference temperature. First, the differential pressure signal ΔP■A received by the calculation means IO is converted into an actual differential pressure by unit conversion means 201 (m
A-nmH, O) is performed to find ΔP. However, since this ΔP includes the error of the differential pressure transmission itself, the instrumental error correction means 202 performs instrumental error correction.
Comparator 203 determines ΔP'. Here, the differential pressure signal ΔP′ to which the instrumental error correction has been added is the design maximum differential pressure ΔPmax, and the instrumental error correction obtained from ΔP is f
If (ΔP) (%), it can be found by . The flow rate calculation means 204 calculates the flow rate Q using the flow rate equation from ΔP'. Next, the compression correction means 205 performs a compression correction on the flow rate Q based on the compressibility of the fluid, and the expansion correction means 206 performs an expansion correction on the thermal expansion of the nozzle to determine the flow rate F. Correction based on the compressibility of the fluid is performed by setting the temperature of the fluid to Tf and the pressure of the fluid to Pf. If the corrected flow rate is Q', then The above formula (7) VSC (Tf, Pf) is the temperature Tf and pressure Pf
Correction by nozzle thermal expansion, which is a function for determining the specific volume in
)" Valve Q (1+2E・(Tf-T))...
It is found by (3). In this way, conventionally, the flow rate value was determined by performing the above correction under the condition that the temperature was kept constant in a constant temperature bath. (Issue 1i that the invention is trying to solve!) However, even though the temperature is maintained in a constant temperature bath, the ambient temperature fluctuates depending on the surrounding environment, resulting in errors. Furthermore, since the thermostatic chamber is equipped with a heater and a fan, it becomes large and requires a power source, which poses the problem that it can only be used under certain conditions. Therefore, an object of the present invention is to provide a flow rate measuring device that reduces errors caused by temperature changes and can be used in any environment. [Structure of the Invention] (Means for Solving the Problems) The present invention stores a differential pressure transmitter in a heat insulation box, and measures the temperature by providing an ambient temperature detector near the differential pressure transmitter. The correction is added to the conventional calculation formula. (Function) As a result, the flow rate measuring device can be installed in various environments, and the error in the measured flow rate can be reduced by temperature correction.

(実施例) 本発明の一実旅例による流量測定装釘を第1図に示す.
図中,第4図と同一機能部分については同一番号を付し
、説明は重複するため省略する.差圧伝送器3を保温箱
4に収納すると共に,この差圧伝送器3の近傍雰囲気温
度検出器11を設誼して温度を測定し、得られる温度信
号を差圧信号と同様にプロセス入出力装霞5を介し電子
計算機6に送る.電子計算機6は,送られてきた温度信
号により,差圧信号に対して誤差補正を実施する.次に
,本発明による温度補正法について説明する. 差圧伝送器は,第2図に示すような温度特性を持ってお
り,温度によりゼロ点が移動(A)した結果生じるゼロ
点誤差Coとスパン変動(B)した結果生じるスパン誤
差Csがあり、それぞれ次の様に表わすことができる. これらの誤差を実験により求め,下記のような表を作成
する. 但し,i=1〜n ゼロ点誤差表示式として, Co= a +bt             −<4
>スパン誤差表示式として、 Cs==:C+dt             −・−
(s)を仮定すれば,上記第1表を参照して最小二乗法
により、 (以下余白) ここで,差圧伝送器のt (’C)での出力値をIt、
t(”C)における誤差を含まない真の出力値を工とす
れば, が成立し、これを工について解くと, 100+Cs となる. 温度補正を行なった演算ブロック図を第3図に示す. なお、図中、第5図と同一符号は同一機能部分を示し,
301は温度補正手段、ΔP’llAは保温箱温度によ
る補正後の差圧信号,また、上述したように、COは保
温箱温度による信号ゼロ点誤差,Csは保温箱温度によ
る信号スパン誤差を表す.゛保温箱温度による誤差は,
差圧信号八Pa^に含まれているため、ΔPm^につい
て補正する必要がある.このため,温度補正手段301
にて上式(1l)に基づく温度補正が行われて,保温箱
温度による補正後の差圧信号ΔP’llAは、 100+Cs となる.温度補正値ΔP’s^が求まったのちは,第5
図で説明したのと同じ手法で流量Fが求まる.なお、上
式のゼロ点誤差C o ,スパン誤差Csは,実験デー
タにより求められるが、純定常状態一定条件(急激な温
度変化なし)においては,実験データの妥当性を検証で
きるため.ヒータ、ファンの無い保温箱に差圧伝送器を
収納するだけで流量測定が実施できる. これにより、流量測定器自身がコンパクト化する上に,
測定場所の周囲環境に影響されることなく,流量を測定
することができ,また,誤差を少なくすることができる
. なお、上記実施例では、オリフィス板を用いた流量測定
装置の場合を説明したが,ペンチェリービトー管等を使
用した流量測定装置についても可能であることは勿論で
ある. [発明の効果] 以上のように本発明によれば、測定する流量を正確に測
定することができ、また、必ずしも高温槽を用いる必要
がないことから装置がコンパクト化できる上,温度変化
のある環境下であっても設置することができる流量測定
装置が得られる.
(Example) Figure 1 shows a flow rate measuring nail according to an actual example of the present invention.
In the figure, the same functional parts as in Figure 4 are given the same numbers, and the explanation will be omitted since it is redundant. The differential pressure transmitter 3 is housed in a heat insulating box 4, and an ambient temperature sensor 11 in the vicinity of the differential pressure transmitter 3 is installed to measure the temperature, and the obtained temperature signal is input into the process in the same way as the differential pressure signal. It is sent to the electronic computer 6 via the output device 5. The electronic computer 6 performs error correction on the differential pressure signal using the sent temperature signal. Next, the temperature correction method according to the present invention will be explained. A differential pressure transmitter has temperature characteristics as shown in Figure 2, and there is a zero point error Co resulting from zero point movement (A) due to temperature, and a span error Cs resulting from span fluctuation (B). , can be expressed as follows. Determine these errors through experiments and create a table like the one below. However, i=1~n As a zero point error display formula, Co= a +bt −<4
> As a span error display formula, Cs==:C+dt −・−
(s), using the least squares method with reference to Table 1 above, (Leave below) Here, the output value of the differential pressure transmitter at t ('C) is It,
If the true output value that does not include the error at t ("C) is , then the following holds true, and solving this for ko gives 100+Cs. Figure 3 shows a calculation block diagram with temperature correction. In addition, in the figure, the same reference numerals as in FIG. 5 indicate the same functional parts.
301 is a temperature correction means, ΔP'llA is a differential pressure signal after correction based on the temperature of the insulation box, and as described above, CO represents a signal zero point error due to the temperature of the insulation box, and Cs represents a signal span error due to the temperature of the insulation box. ..゛The error due to the temperature of the insulation box is
Since it is included in the differential pressure signal 8Pa^, it is necessary to correct ΔPm^. Therefore, the temperature correction means 301
Temperature correction is performed based on the above equation (1l), and the differential pressure signal ΔP'llA after correction based on the temperature of the insulation box becomes 100+Cs. After finding the temperature correction value ΔP's^, the fifth
The flow rate F can be found using the same method as explained in the figure. Note that the zero point error Co and span error Cs in the above equations are obtained from experimental data, but the validity of the experimental data can be verified under pure steady-state constant conditions (no sudden temperature changes). Flow rate measurement can be performed simply by storing the differential pressure transmitter in a heat insulating box without a heater or fan. This not only makes the flow meter itself more compact, but also
Flow rate can be measured without being affected by the surrounding environment of the measurement location, and errors can be reduced. In the above embodiment, a flow rate measuring device using an orifice plate has been described, but it is of course possible to use a flow rate measuring device using a Pencherry Bitot tube or the like. [Effects of the Invention] As described above, according to the present invention, the flow rate to be measured can be accurately measured, and since it is not necessarily necessary to use a high-temperature bath, the device can be made more compact, and it is possible to A flow rate measuring device that can be installed even under environmental conditions can be obtained.

【図面の簡単な説明】 第1図は,本発明の一実施例を示すオリフィス板を用い
た流量測定装置の構成図、第2図は差圧伝送器の温度特
性図,第3図は第1図における流量の演算ブロック図、
第4図は従来のオリフィス板を用いた流量測定装置の構
成図、第5図は第4図における流量の}寅算ブロック図
である.4・・・保温箱, 5・・・プロセス入出力装
置、11・・・近傍雰囲気温度検出器. (7317)  代理人弁理士 則 近  憲 佑(8
869)  代理人弁理士 弟 子 丸  健第 図 第 図
[Brief Description of the Drawings] Fig. 1 is a configuration diagram of a flow rate measuring device using an orifice plate showing one embodiment of the present invention, Fig. 2 is a temperature characteristic diagram of a differential pressure transmitter, and Fig. 3 is a diagram showing the temperature characteristics of a differential pressure transmitter. Flow rate calculation block diagram in Figure 1,
Figure 4 is a configuration diagram of a conventional flow rate measuring device using an orifice plate, and Figure 5 is a block diagram for calculating the flow rate in Figure 4. 4...Heat insulation box, 5...Process input/output device, 11...Nearby atmosphere temperature detector. (7317) Representative Patent Attorney Noriyuki Chika (8)
869) Representative Patent Attorney Disciple Ken Maru Diagram Diagram

Claims (1)

【特許請求の範囲】[Claims] 配管内を流れる流体の差圧を検出し電気信号に変換して
伝送する保温箱に収納された差圧伝送器と、この差圧伝
送器から送られてくる電気信号を基に、差圧伝送器の器
差による補正、流体圧縮性による補正、ノズル膨張によ
る補正を施して流量を求める電子計算機とを具備する流
量測定装置において、前記差圧伝送器近傍に配置される
雰囲気温度検出器と、前記差圧伝送器から送られてくる
電気信号に前記雰囲気温度検出器から得られる保温箱温
度により補正を行なう補正手段とを設けたことを特徴と
する流量測定装置。
A differential pressure transmitter is housed in a heat insulation box that detects the differential pressure of the fluid flowing in the piping, converts it into an electrical signal, and transmits it. Differential pressure transmission is performed based on the electrical signal sent from the differential pressure transmitter. An ambient temperature detector disposed near the differential pressure transmitter; A flow rate measuring device comprising: a correction means for correcting the electrical signal sent from the differential pressure transmitter based on the heat insulation box temperature obtained from the ambient temperature detector.
JP5302389A 1989-03-07 1989-03-07 Flow-rate measuring apparatus Pending JPH02232523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5302389A JPH02232523A (en) 1989-03-07 1989-03-07 Flow-rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5302389A JPH02232523A (en) 1989-03-07 1989-03-07 Flow-rate measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02232523A true JPH02232523A (en) 1990-09-14

Family

ID=12931296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5302389A Pending JPH02232523A (en) 1989-03-07 1989-03-07 Flow-rate measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02232523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214012A (en) * 2001-01-22 2002-07-31 Teijin Ltd Ultrasonic gas concentration and flow rate measuring method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214012A (en) * 2001-01-22 2002-07-31 Teijin Ltd Ultrasonic gas concentration and flow rate measuring method and apparatus thereof

Similar Documents

Publication Publication Date Title
CA2442166C (en) Apparatus for the correction of temperature drift for a pressure sensor, a pressure control apparatus, and a pressure-type flow rate control apparatus
KR101375678B1 (en) Pressure-type flow rate control device
KR101253543B1 (en) Method of compensating for attitude sensitivity of thermal sensor coils and thermal mass flow measurement system
US20100229965A1 (en) Mass flow meter, mass flow controller, mass flow meter system and mass flow control system containing the mass flow meter and the mass flow controller
US8266957B2 (en) Thermal flow measuring apparatus including RTD sensor
KR20010052885A (en) Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
JP5110878B2 (en) Process pressure sensor calibration
US8849589B2 (en) Multivariable process fluid flow device with energy flow calculation
US20190049278A1 (en) Thermal type flowmeter
JP4669193B2 (en) Temperature measuring device for pressure flow control device
US6732596B2 (en) Critical gas flow measurement apparatus and method
US5214957A (en) Integrity and leak rate testing of a hermetic building
JPH02232523A (en) Flow-rate measuring apparatus
JP3891261B2 (en) Air supply system
Thomas et al. Micrometer U-tube manometers for medium-vacuum measurements
JP4852654B2 (en) Pressure flow control device
CN104296817B (en) A method of thermal mass flow meter measurement accuracy is improved by dynamic temp compensation
JP3719802B2 (en) Multipoint flow meter
CN112190804B (en) Breathing machine
US20230324270A1 (en) Method and device for determining a flow rate
SU838376A1 (en) Device for measuring level of liquid
JP2001174297A (en) Flow rate measuring method and device
RU8802U1 (en) STABILIZATION CAMERA
CN117389342A (en) High-precision constant-voltage control device and system
KR20210018471A (en) Pressure insensitive thermal flow meter