JPH02232344A - Stainless steel excellent in resistance to sticking of marine organism - Google Patents

Stainless steel excellent in resistance to sticking of marine organism

Info

Publication number
JPH02232344A
JPH02232344A JP5317589A JP5317589A JPH02232344A JP H02232344 A JPH02232344 A JP H02232344A JP 5317589 A JP5317589 A JP 5317589A JP 5317589 A JP5317589 A JP 5317589A JP H02232344 A JPH02232344 A JP H02232344A
Authority
JP
Japan
Prior art keywords
resistance
stainless steel
corrosion resistance
sticking
marine organism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5317589A
Other languages
Japanese (ja)
Inventor
Hideaki Yuki
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5317589A priority Critical patent/JPH02232344A/en
Publication of JPH02232344A publication Critical patent/JPH02232344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve resistance to the sticking of marine organism by combinedly adding specific amounts of Cu and one or more elements among As, Bi, Sb, and Sn to a high-Cr and high-Mo ferritic stainless steel having a specific composition. CONSTITUTION:This ferritic stainless steel has a composition consisting of, by weight, <=0.02% C, <=1.5% Si, <=3.0% Mn, 25.0-30.0% Cr, 0.5-4.0% Ni, 3.5-6.0% Mo, 0.05-0.5% Cu, <=0.02% N, <=0.03% P, <=0.002% S, 0.03-0.5% of one or more elements among As, Bi, Sb, and Sn, and the balance Fe. This steel has superior resistance to the sticking of marine organism and also has excellent seawater corrosion resistance, such as crevice corrosion resistance and seawater erosion resistance. In the above steel, Cu has functions of improving acid resistance and reducing the amount of marine organism sticking, but the effects are insufficient when Cu content is below the lower limit and an adverse effect is produced on corrosion resistance when Cu content is over the upper limit. As, Bi, etc., are noxious to marine organism and produce a remarkable effect of inhibiting the sticking of marine organism by coexistence with Cu. Moreover, intergranular corrosion resistance can be improved by further adding prescribed amounts of one or more elements among Ti, Nb, and Zr.

Description

【発明の詳細な説明】 《産業上の利用分野冫 本発明は、海洋構造物や海水を使用する機器類の材料と
して好通な耐生物付着性及び耐海水性に優れたフェライ
ト系ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to ferritic stainless steel that has excellent biofouling resistance and seawater resistance and is popular as a material for marine structures and equipment that uses seawater. It is something.

く従来技術とその課題〉 近年、各地において様々な海洋構造物が建設されるよう
になり、海水を使用する機器類も大幅な増加傾向を見せ
ているが、これに伴って海水環境で優れた耐食性を発揮
する鋼材の研究も著しい進歩を遂げ、例えば“スーパー
ステンレス鋼”と呼ばれる耐海水性に優れた高Cr・高
Moステンレス鋼が実用化されるに至っている。
Conventional technology and its issues In recent years, various offshore structures have been constructed in various places, and the number of equipment that uses seawater is also increasing significantly. Research into steel materials exhibiting corrosion resistance has also made remarkable progress, and for example, high Cr/high Mo stainless steel with excellent seawater resistance called "super stainless steel" has been put into practical use.

しかしながら、このようなスーパーステンレス鋼には貝
類或いは藻類等の生物付着が著しいことが指摘されてお
り、例えば復水器管等の熱交換器に上記スーパーステン
レス鋼を適用した場合には薬注(環境海水中へ塩素等を
注入する処理)やメカニカルクリーニング(スポンジボ
ールの挿入等によって行われる)を実施せざるを得ない
状況にあった。ところが、海中生物の付着に対して採ら
れる上述の如き“環境側や運転上からの対策”は設備管
理や経費の面で多大な不利を招くものであり、このよう
な不都合を軽減できる“設備材料側からの対策”が強く
望まれていた。
However, it has been pointed out that such super stainless steel has a significant amount of biofouling such as shellfish and algae, and for example, when the super stainless steel is applied to heat exchangers such as condenser tubes, chemical injection ( There was no choice but to carry out mechanical cleaning (processing by injecting chlorine, etc. into the environmental seawater) and mechanical cleaning (carried out by inserting sponge balls, etc.). However, the above-mentioned "environmental and operational measures" taken to prevent the adhesion of marine organisms bring about great disadvantages in terms of equipment management and costs, and there is a need for "equipment measures" that can alleviate such inconveniences. Countermeasures from the material side were strongly desired.

もっとも、海水使用機器類への海中生物付着防止策とし
て該機器類の材料に銅合金を使用するのが有効であると
の報告もあるが、銅合金は耐エロジョン性が十分でない
上、熱交換器の場合には耐食性の関係でプロセス流体の
種類が制約されることもあって、この方法は根本的な問
題解決手段とはならないものであった。
However, there are reports that it is effective to use copper alloys as materials for equipment that uses seawater to prevent marine organisms from adhering to them; however, copper alloys do not have sufficient erosion resistance, and In the case of exchangers, the type of process fluid is restricted due to corrosion resistance, so this method has not been a fundamental solution to the problem.

このようなことから、本発明の目的は、耐食性や耐エロ
ージョン性の点で優れる前記耐海水性高Cr・高Moス
テンレス鋼(スーパーステンレスa)の耐生物付着性を
鋼材組成面から改善し、例えば熱交喚媒体等に対する耐
食性が優れることは勿論、海水環境での耐食性,耐エロ
ージョン性及び耐生物付着性の何れについても十分に優
れた性能を発揮する耐海水性材料を提供することに置か
れた。
Therefore, the purpose of the present invention is to improve the biofouling resistance of the seawater-resistant high Cr/high Mo stainless steel (super stainless steel a), which is excellent in terms of corrosion resistance and erosion resistance, from the viewpoint of steel material composition, For example, our goal is to provide a seawater-resistant material that not only has excellent corrosion resistance against heat exchange media, but also exhibits sufficiently excellent performance in terms of corrosion resistance, erosion resistance, and biofouling resistance in a seawater environment. It was written.

く諜題を解決するための手段) 本発明者は、前記目的を達成すべく数多くの実験を繰り
返しながら研究を重ねた結果、(al  海水環境材料
として数々の優れた特性を有する高Cr・高Moステン
レス鋼(スーパーステンレス鋼)においては、海水中で
の耐隙間腐食性は一般にオーステナイト系よりもフェラ
イト系の方が優れており、従って海水環境機器類に対し
てはフェライト系高Cr・高ガ0ステンレス鋼を適用す
るのが有利であること, 山) この高Cr・高Moフェライト系ステンレス鋼に
特定量のCuを添加し、かっAs, Bi, sb又は
Snの1種以上を複合添加すると、高Cr・高Moフェ
ライト系ステンレス鋼の有用特性に格別な悪影響なしに
海水中での生物の付着が格段に少なくなってしまうこと
, (C)  更に、上記高Cr・高Moフェライト系ステ
ンレス鋼に所定量のTi. Nb及びZrの1種以上を
含有量させると耐粒界腐食性も一段と改善され、より優
れた耐海水性材料になること, 等の新しい知見を得ることができた。
As a result of repeated research and repeated numerous experiments in order to achieve the above object, the inventors of the present invention discovered (al) a high Cr/high Regarding Mo stainless steel (super stainless steel), ferritic type is generally better in crevice corrosion resistance in seawater than austenitic type, and therefore ferritic type high Cr/high galvanic type is recommended for seawater environment equipment. It is advantageous to apply 0 stainless steel, Yama) If a specific amount of Cu is added to this high Cr/high Mo ferritic stainless steel, and one or more of As, Bi, sb or Sn is added in combination. (C) Furthermore, the above-mentioned high Cr/high Mo ferritic stainless steel has a significantly reduced adhesion of living things in seawater without any particular adverse effect on the useful properties of the high Cr/high Mo ferritic stainless steel. A predetermined amount of Ti. We were able to obtain new findings such as the fact that when one or more of Nb and Zr is contained, intergranular corrosion resistance is further improved, resulting in a material with better seawater resistance.

本発明は上記知見等に基づいてなされたものであり、 rc:0.02%以下(以降、成分割合を表わす%は重
量割合とする) Si : 1.5%以下,    Mn : 3.0%
以下,Cr : 25.0〜30.0%,   Ni 
: 0.5〜4.0%,Mo : 3.5〜6.0%,
    Cu : 0.05〜0.5%N 7 0.0
2%以下,    P:0.03%以下,S : 0.
002%以下, As. Bi + Sb及びSnの1種以上: 0.0
3〜0.5%を含む{但し、Cr(X) + 3 Mo
(χ)≧38.01か、或いは更に Ti,Nb及びZrの1種以上: 0.03〜0.8%
をも含有すると共に、残部がFe及び不可避不純物から
成る成分組成にフェライト系ステンレス鋼を構成するこ
とによって、該ステンレス鋼に優れた耐生物付着性及び
耐海水性を付与せしめた点」を特徴とするものである。
The present invention has been made based on the above findings, etc. rc: 0.02% or less (hereinafter, % representing component ratio is expressed as weight percentage) Si: 1.5% or less, Mn: 3.0%
Below, Cr: 25.0-30.0%, Ni
: 0.5~4.0%, Mo: 3.5~6.0%,
Cu: 0.05-0.5%N7 0.0
2% or less, P: 0.03% or less, S: 0.
002% or less, As. Bi + one or more of Sb and Sn: 0.0
Contains 3-0.5% {However, Cr(X) + 3Mo
(χ)≧38.01, or one or more of Ti, Nb, and Zr: 0.03 to 0.8%
It also contains ferritic stainless steel with the balance consisting of Fe and unavoidable impurities, giving the stainless steel excellent biofouling resistance and seawater resistance. It is something to do.

以下、本発明において鋼の成分組成を前記の如くに限定
した理由を、各成分の作用と共に詳述する。
Hereinafter, the reason why the composition of the steel is limited as described above in the present invention will be explained in detail together with the effects of each component.

(作用〉 a)  C Cはクロム炭化物として結晶粒界に析出し腐食に対する
鋭敏化を促進するのでC量は低い方が望ましい。そして
、C含有量が特に0.02%を超えた場合には鋼の靭性
及び耐粒界腐食性が所望値以下に低下するため、C含有
量は0.02%以下と限定した。
(Function) a) C Since C precipitates at grain boundaries as chromium carbide and promotes sensitization to corrosion, it is desirable that the amount of C be low. In particular, when the C content exceeds 0.02%, the toughness and intergranular corrosion resistance of the steel decrease below the desired values, so the C content was limited to 0.02% or less.

b) St St成分は耐酸性及び耐孔食性改善に有効な元素ではあ
るが(この点からすれば少なくとも0.04%の含有量
を確保するのが望ましい)、1.5%を超えて含有させ
ると鋼の溶接性及び熱間加工性が劣化することから、S
i含有量は1.5%以下と定めた。
b) St Although the St component is an effective element for improving acid resistance and pitting corrosion resistance (from this point of view, it is desirable to ensure a content of at least 0.04%), it should not be contained in an amount exceeding 1.5%. S
The i content was set at 1.5% or less.

c) Mn Mn成分は鋼の脱酸剤として有効であるが、3.0%を
超えて含有させると硫化物の生成量が増大して耐孔食性
の劣化を招くようになるため、Mn含有量は3.0%以
下と定めた。
c) Mn The Mn component is effective as a deoxidizing agent for steel, but if it is contained in an amount exceeding 3.0%, the amount of sulfides produced will increase, leading to deterioration of pitting corrosion resistance. The amount was set at 3.0% or less.

d) Cr Crは耐酸性,耐孔食性,耐隙間腐食性等の耐食性を改
善する有効な元素であるが、その含有量がが25.0%
未満では特に海水中での耐孔食性.耐隙間腐食性が十分
とはならず、一方、30.0%を超えて含有させるとシ
グマ相等の析出が著しくなり、熱間加工性が劣化すると
共に脆化が著しくなることから、Cr含有量は25.0
〜30.0%と定めた。
d) Cr Cr is an effective element for improving corrosion resistance such as acid resistance, pitting corrosion resistance, and crevice corrosion resistance, but its content is 25.0%.
If it is less than 100%, it is particularly resistant to pitting corrosion in seawater. The crevice corrosion resistance will not be sufficient, and on the other hand, if the content exceeds 30.0%, precipitation of sigma phase etc. will become significant, leading to deterioration of hot workability and significant embrittlement. is 25.0
It was set at ~30.0%.

e) Ni Ni成分はフェライト系ステンレス鋼の靭性を高める作
用を有しているが、その含有量が0.5%未満では前記
作用による所望の効果が得られず、一方、4.0%を超
える多量を含有させると鋼がフェライト・オーステナイ
ト2相!lJI織又はオーステナイト単相組織となり海
水中での耐隙間腐食性が劣化する.従って、所望の靭性
と優れた耐隙間腐食性を備えたフェライト単相鋼を実現
するため、Ni含有量は0.5〜4.0%と定めた。
e) Ni Ni component has the effect of increasing the toughness of ferritic stainless steel, but if its content is less than 0.5%, the desired effect due to the above effect cannot be obtained; If the amount exceeds that amount, the steel will have two phases: ferrite and austenite! It becomes a JI weave or austenite single-phase structure, and its crevice corrosion resistance in seawater deteriorates. Therefore, in order to realize a ferritic single phase steel with desired toughness and excellent crevice corrosion resistance, the Ni content was determined to be 0.5 to 4.0%.

f) Mo Moは、Crと同様、鋼の耐孔食性及び耐隙間腐食性を
改善するために欠かせない成分であるが、その含有量が
3.5%未満では海水中での隙間腐食惑受性が高まり、
一方、6.0%を超えてhOを含有させるとシグマ相の
析出が促進され脆化し易くなることから、Mo含有量は
3.5〜6.0%と定めた。
f) Mo Mo, like Cr, is an essential component for improving the pitting and crevice corrosion resistance of steel, but if its content is less than 3.5%, it will cause crevice corrosion in seawater. increased receptivity,
On the other hand, if hO is contained in an amount exceeding 6.0%, precipitation of the sigma phase is promoted and embrittlement is likely to occur. Therefore, the Mo content is set at 3.5 to 6.0%.

なお、耐孔食性及び耐隙間腐食性を改善するために欠か
せないCr並びにMoは、両者でCr(χ)+3Mo(
χ)≧38.0 なる条件を満足したときに耐孔食性,耐隙間腐食性の極
めて効果的な改善がなされる。
In addition, Cr and Mo, which are essential for improving pitting corrosion resistance and crevice corrosion resistance, are Cr(χ)+3Mo(
When the following condition is satisfied: χ)≧38.0, pitting corrosion resistance and crevice corrosion resistance are extremely effectively improved.

g) Cu Cuは、鋼の耐酸性を高めると共に生物付着量を低減す
るための必須成分である。しかし、Cu含有量が0.0
5%未満では上記効果が十分でなく、一方、0.5%を
超えてCuを含有させると析出物が増大して耐食性に悪
影響が及ぶようになることから、Cu含有量は0.05
〜0.5%と定めた。
g) Cu Cu is an essential component for increasing the acid resistance of steel and reducing the amount of biofouling. However, the Cu content is 0.0
If the Cu content is less than 5%, the above effects will not be sufficient. On the other hand, if the Cu content exceeds 0.5%, the precipitates will increase and the corrosion resistance will be adversely affected. Therefore, the Cu content should be 0.05%.
It was set at ~0.5%.

h) N Nは、Cと同様、フェライト系ステンレス鋼の靭性を低
下させると共にクロム窒化物析出に伴う鋭敏化を促進す
る有害元素であり極力少ない方が良い。そして、N含有
量が特に0.02%を超えた場合には上記有害性が著し
《高まることから、N含有量を0.02%以下と限定し
た。
h) N N, like C, is a harmful element that reduces the toughness of ferritic stainless steel and promotes sensitization due to chromium nitride precipitation, so it is better to reduce it as much as possible. In particular, when the N content exceeds 0.02%, the above-mentioned harmful effects are significantly increased, so the N content was limited to 0.02% or less.

i) P Pは鋼中に不可避的に含まれる不純物元素であるが、溶
接性の低下や熱間加工性の劣化をもたらすためその含有
量は極力低くすることが望まれる.ただ、P含有量が特
に0.03%を超えると溶接性の低下が顕著となること
から、P含有量は0.03%以下と限定した。
i) PP Although P is an impurity element that is unavoidably contained in steel, it is desirable to keep its content as low as possible because it causes a decrease in weldability and hot workability. However, if the P content exceeds 0.03%, the weldability deteriorates significantly, so the P content was limited to 0.03% or less.

j)S Sは、Pと同様、鋼中に不可避的に含まれる不純物元素
であるが、特に孔食の起点となるMnSを形成し易いの
で極力低い方が好ましい。また、Sは熱間加工性にも悪
影響する有害元素である。そして、特にCr含有量の高
い本発明ステンレス鋼の場合に0.002%を超えるS
が含有されると熱間加工性の劣化が極めて著しくなるこ
とから、S含有量を0.002%以下と限定した。
j) S S, like P, is an impurity element that is unavoidably contained in steel, but it is preferably as low as possible because MnS, which is a starting point for pitting corrosion, is particularly likely to form. Furthermore, S is a harmful element that also has a negative effect on hot workability. In particular, in the case of the stainless steel of the present invention with a high Cr content, the S content exceeds 0.002%.
The S content was limited to 0.002% or less because the deterioration of hot workability becomes extremely significant when S is contained.

k) As, Bi. sb,及びSnこれらの元素は
何れも海中生物に対し有毒物として作用し、特にCuと
共存させることにより鋼表面への生物付着を抑制する著
しい効果を発揮する。
k) As, Bi. sb and Sn Both of these elements act as poisonous substances to marine organisms, and in particular, when they coexist with Cu, they exhibit a remarkable effect in suppressing the attachment of organisms to the steel surface.

従って、Cuとの複合添加を条件にこれら成分の1種又
は2種以上が含有せしめられるが、その含有量が合計で
0.03%未満の場合には生物付着抑制効果が十分では
なく、一方、多量添加は環境海水の水質保護の面から好
ましくなく、水質汚染を避ける意味から これら成分の
含有量を合計で0.5%以下にII限した。
Therefore, one or more of these components can be included under the condition of combined addition with Cu, but if the total content is less than 0.03%, the biofouling inhibiting effect will not be sufficient; The addition of large amounts of these components is not desirable from the perspective of protecting the quality of environmental seawater, and in order to avoid water pollution, the total content of these components was limited to 0.5% or less.

1) Ti. Nb,及びZr これらの元素には、何れも鋼中のC及びNを固定して安
定化させ、鋼の鋭敏化を抑制して耐粒界腐食性を更に改
善する作用があるので必要により1種又は2種以上含有
せしめられるが、上記成分の含有量が合計で0.03%
未満であるとC或いはNの固定が不十分となり、また該
成分の1種又は2種以上の総含有量が(C(χ)十N(
χ)}量の10倍以上でないとC及びNの固定・安定化
が十分とはならない。一方、上記成分は合計で0、8%
を超えて添加しても耐粒界腐食性の向上が飽和してしま
う。従って、Ti, Nb及びZrを添加する場合には
、その含有量をこれらの1種又は2種以上の合計含有量
で0.03〜0.8%であって、かつC(χ) + N
 (X) を満足する値と定めた。
1) Ti. Nb and Zr Each of these elements has the effect of fixing and stabilizing C and N in the steel, suppressing the sensitization of the steel, and further improving the intergranular corrosion resistance. A species or two or more species may be contained, but the total content of the above components is 0.03%.
If it is less than (C(χ)10N(
χ)} If the amount is not 10 times or more, the fixation and stabilization of C and N will not be sufficient. On the other hand, the above ingredients total 0.8%
Even if it is added in excess of 10%, the improvement in intergranular corrosion resistance will be saturated. Therefore, when adding Ti, Nb and Zr, the total content of one or more of these is 0.03 to 0.8%, and C(χ) + N
(X) was determined as the value that satisfies.

続いて、本発明の効果を実施例によって更に具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例冫 まず、真空溶解法によって第1表に示した化学成分組成
の各鋼1〜15を溶製し、通常通りの鍛造,熱間圧延,
熱処理及び冷却の後、固溶化熱処理を施して試験用板材
を得た。
<Example> First, steels 1 to 15 having the chemical composition shown in Table 1 were melted by vacuum melting method, and then forged, hot rolled, and then processed in the usual manner.
After heat treatment and cooling, solution heat treatment was performed to obtain a test plate.

次いで、得られた試験用板材から生物付着試験片(50
fl幅X100n長X3mm厚)、隙間腐食試験片(2
0鰭幅×30鰭長×3鰭厚及び12l1幅×30鶴長×
311厚)並びにエロージョン試験片(5011幅×1
00第  2  表 朋長×31m厚)を切り出し、耐生物付着性,耐隙間腐
食性及び耐エロージョン性を調査した。
Next, a biofouling test piece (50
fl width x 100n length x 3mm thickness), crevice corrosion test piece (2
0 fin width x 30 fin length x 3 fin thickness and 12l1 width x 30 crane length x
311 thickness) and erosion test piece (5011 width x 1
00 No. 2 surface length x 31 m thickness) was cut out and its biofouling resistance, crevice corrosion resistance, and erosion resistance were investigated.

これらの試験結果を、アルミ黄銅に対して同様の試験を
行った結果とも比較して第2表に示す。
The results of these tests are also compared with the results of similar tests performed on aluminum brass, and are shown in Table 2.

なお、隙間腐食試験は、第1図に側面図で示すように前
記大小2枚の試験片(1) , (21を重ね合わせ、
その中央部に開けた孔にチタン製ボルト(3)及びナッ
ト(4)を通して締めつけ、生海水中に半年間浸漬して
実施した。
In addition, in the crevice corrosion test, as shown in the side view in Fig. 1, the two large and small test pieces (1) and (21) are superimposed,
A titanium bolt (3) and nut (4) were passed through a hole drilled in the center and tightened, and the sample was immersed in raw seawater for half a year.

また、生物付着試験は、隙間腐食試験と同様に試験片を
生海水中に半年間浸漬し、試験終了後は付着した貝類を
削り取って付着量を調べる方法を採用した。
In addition, for the bioadhesion test, similar to the crevice corrosion test, the test piece was immersed in raw seawater for half a year, and after the test, the attached shellfish was scraped off to examine the amount of adhesion.

更に、エロージョン試験は、試験片面に垂直に流速5m
/secで人工海水(A S TM − D1141相
当)を噴射し、エロージョン状況を調査する方法で実施
した。
Furthermore, the erosion test was conducted at a flow rate of 5 m perpendicular to the surface of the test piece.
The test was carried out by injecting artificial seawater (equivalent to ASTM-D1141) at a speed of 1.5 m/sec and investigating the erosion situation.

第2表に示される結果からも明らかなように、本発明に
係るフェライト系ステンレス鋼には隙間腐食やエロージ
ョンの発生例は全く無く、また生物の付着も全く無いか
、或いは付着しても20mg以下の付着量でしかなく、
耐海水性及び耐生物付着性に著しく優れていることが分
かる。
As is clear from the results shown in Table 2, the ferritic stainless steel according to the present invention has no occurrence of crevice corrosion or erosion, and there is no adhesion of organisms at all, or even if there is adhesion, it is only 20 mg. The amount of adhesion is only below,
It can be seen that it has excellent seawater resistance and biofouling resistance.

一方、比較ステンレス鋼の場合には、何れも貝類の付着
量が多い結果となっている。そして、隙間腐食はCr(
χ)+3Mo(χ)量が38.0以上では発生しないが
(比較例12. 13)、38.0未満のものでは隙間
腐食の発生が見られる。
On the other hand, in the case of comparative stainless steels, the amount of shellfish adhesion was large. And crevice corrosion is Cr(
Crevice corrosion does not occur when the amount of χ)+3Mo(χ) is 38.0 or more (Comparative Examples 12 and 13), but when it is less than 38.0, crevice corrosion is observed.

また、銅合金であるアルミ黄銅の場合には貝類等の生物
付着はないが、海水中で前面腐食することが確認でき、
また耐エロージョン性にも著しく劣ることが明らかであ
る。
In addition, in the case of aluminum brass, which is a copper alloy, there is no biological attachment such as shellfish, but it has been confirmed that the front surface corrodes in seawater.
It is also clear that the erosion resistance is significantly inferior.

く効果の総括〉 以上に説明した如く、本発明によれば、優れた耐生物付
着性を備えると共に、耐隙間腐食性や耐海水エロージョ
ン性等の耐海水性にも十分優れたフェライト系ステンレ
ス鋼を提供することができ、海洋構造物や海水を使用す
る機器類(例えば海水熱交換器,復水器管等)の性能向
上に大きく寄与し得るなど、産業上極めて有用な効果か
もたらされる。
Summary of Effects> As explained above, the present invention provides a ferritic stainless steel that not only has excellent biofouling resistance but also has sufficient seawater resistance such as crevice corrosion resistance and seawater erosion resistance. It can provide extremely useful effects industrially, such as greatly contributing to improving the performance of marine structures and equipment that uses seawater (for example, seawater heat exchangers, condenser pipes, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、隙間腐食試験片の組み立て説明図である。 図面において、 1・・・大寸試験片.    2・・・小寸試験片.3
・・・チタン製ボルト,  4・・・チタン製ナント。
FIG. 1 is an explanatory diagram of the assembly of a crevice corrosion test piece. In the drawings: 1...Large-sized test piece. 2...Small test piece. 3
...Titanium bolt, 4...Titanium Nantes.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%にて、 C:0.02%以下、Si:1.5%以下、Mn:3.
0%以下、Cr:25.0〜30.0%、Ni:0.5
〜4.0%、Mo:3.5〜6.0%、Cu:0.05
〜0.5%、N:0.02%以下、P:0.03%以下
、S:0.002%以下、As、Bi、Sb及びSnの
1種以上:0.03〜0.5%を含むと共に、残部がF
e及び不可避不純物から成り、かつ Cr(%)+3Mo(%)≧38.0 を満足する成分組成に構成されたことを特徴とする、耐
生物付着性及び耐海水性に優れたフェライト系ステンレ
ス鋼。
(1) In weight%, C: 0.02% or less, Si: 1.5% or less, Mn: 3.
0% or less, Cr: 25.0-30.0%, Ni: 0.5
~4.0%, Mo: 3.5~6.0%, Cu: 0.05
~0.5%, N: 0.02% or less, P: 0.03% or less, S: 0.002% or less, one or more of As, Bi, Sb and Sn: 0.03-0.5% and the remainder is F
A ferritic stainless steel with excellent biofouling resistance and seawater resistance, characterized in that it consists of E and unavoidable impurities and has a composition satisfying Cr (%) + 3Mo (%) ≧ 38.0. .
(2)重量%にて、 C:0.02%以下、Si:1.5%以下、Mn:3.
0%以下、Cr:25.0〜30.0%、Ni:0.5
〜4.0%、Mo:3.5〜6.0%、Cu:0.05
〜0.5%、N:0.02%以下、P:0.03%以下
、S:0.002%以下、As、Bi、Sb及びSnの
1種以上:0.03〜0.5%、Ti、Nb及びZrの
1種以上:0.03〜0.8%を含むと共に、残部がF
e及び不可避不純物から成り、かつ Cr(%)+3Mo(%)≧38.0 並びに [Ti(%)+Nb(%)+Zr(%)]/[C(%)
+N(%)]≧10を満足する成分組成に構成されたこ
とを特徴とする、耐生物付着性及び耐海水性に優れたフ
ェライト系ステンレス鋼。
(2) In weight%, C: 0.02% or less, Si: 1.5% or less, Mn: 3.
0% or less, Cr: 25.0-30.0%, Ni: 0.5
~4.0%, Mo: 3.5~6.0%, Cu: 0.05
~0.5%, N: 0.02% or less, P: 0.03% or less, S: 0.002% or less, one or more of As, Bi, Sb and Sn: 0.03-0.5% , Ti, Nb, and Zr: 0.03 to 0.8%, and the remainder is F.
and unavoidable impurities, and Cr (%) + 3Mo (%) ≧ 38.0 and [Ti (%) + Nb (%) + Zr (%)] / [C (%)
+N (%)] ≧10 A ferritic stainless steel having excellent biofouling resistance and seawater resistance.
JP5317589A 1989-03-06 1989-03-06 Stainless steel excellent in resistance to sticking of marine organism Pending JPH02232344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5317589A JPH02232344A (en) 1989-03-06 1989-03-06 Stainless steel excellent in resistance to sticking of marine organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5317589A JPH02232344A (en) 1989-03-06 1989-03-06 Stainless steel excellent in resistance to sticking of marine organism

Publications (1)

Publication Number Publication Date
JPH02232344A true JPH02232344A (en) 1990-09-14

Family

ID=12935524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5317589A Pending JPH02232344A (en) 1989-03-06 1989-03-06 Stainless steel excellent in resistance to sticking of marine organism

Country Status (1)

Country Link
JP (1) JPH02232344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392189A (en) * 2011-11-16 2012-03-28 钢铁研究总院 High-Cr ferrite stainless steel and manufacturing method thereof
WO2013132863A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Seawater-resistant stainless clad steel
CN115198175A (en) * 2022-06-17 2022-10-18 鞍钢集团北京研究院有限公司 960MPa grade ultra-high strength steel plate with marine organism adhesion resistance and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392189A (en) * 2011-11-16 2012-03-28 钢铁研究总院 High-Cr ferrite stainless steel and manufacturing method thereof
WO2013132863A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Seawater-resistant stainless clad steel
JPWO2013132863A1 (en) * 2012-03-08 2015-07-30 Jfeスチール株式会社 Seawater resistant stainless clad steel and method for producing seawater resistant stainless clad steel
US10774396B2 (en) 2012-03-08 2020-09-15 Jfe Steel Corporation Seawater-resistant stainless clad steel
CN115198175A (en) * 2022-06-17 2022-10-18 鞍钢集团北京研究院有限公司 960MPa grade ultra-high strength steel plate with marine organism adhesion resistance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4705648B2 (en) Austenitic steel and steel
EP0750053B1 (en) Duplex stainless steel excellent in corrosion resistance
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
CN1051807C (en) Austenitic stainless steel alloy
JP2789918B2 (en) Duplex stainless steel with excellent weather resistance
EP1263999B1 (en) Corrosion resistant austenitic alloy
JPH02232344A (en) Stainless steel excellent in resistance to sticking of marine organism
JP2003311472A (en) Wire for welding austenitic stainless steel having excellent sulfuric acid corrosion resistance and pitting corrosion resistance
US4500351A (en) Cast duplex stainless steel
JP2946992B2 (en) Method for producing duplex stainless steel excellent in strength, toughness and corrosion resistance
JP3598364B2 (en) Stainless steel
JPS59127991A (en) Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPH0148345B2 (en)
JPS58144460A (en) Two-phase cast stainless steel having high corrosion resistant and high fatique strength
JP3531351B2 (en) Welded structure and method of manufacturing the same
JP2004143576A (en) Low nickel austenitic stainless steel
JP2003213379A (en) Stainless steel having excellent corrosion resistance
JP3585505B2 (en) Fe-Cr alloy with excellent seawater resistance and bioadhesion resistance
JPS5952226B2 (en) Ferritic stainless steel with excellent rust and acid resistance
JP2833385B2 (en) Corrosion resistant austenitic Fe-based alloy
JP3205162B2 (en) Ferritic stainless steel with excellent machinability and corrosion resistance
JPH02115345A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JP4167547B2 (en) Polishing method of alloy for wire brush, wire brush and stainless steel.