JPH02231784A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH02231784A
JPH02231784A JP5223789A JP5223789A JPH02231784A JP H02231784 A JPH02231784 A JP H02231784A JP 5223789 A JP5223789 A JP 5223789A JP 5223789 A JP5223789 A JP 5223789A JP H02231784 A JPH02231784 A JP H02231784A
Authority
JP
Japan
Prior art keywords
layer
buried
semiconductor
region
stripe region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5223789A
Other languages
Japanese (ja)
Inventor
Yoshito Ikuwa
生和 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5223789A priority Critical patent/JPH02231784A/en
Publication of JPH02231784A publication Critical patent/JPH02231784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable fundamental-mode oscillation up to a high output by forming a semiconductor layer preventing the discontinuity of a valence band on the substrate side of a first clad layer and shaping the buried region of the side face of a stripe region in the multilayer structure of a semiconductor layer having forbidden band width larger than that of a semiconductor substrate and a semiconductor layer having forbidden band width smaller than that of the active layer of the stripe region. CONSTITUTION:A P-GaInP layer 11 is inserted between a buffer layer 2 composed of P-GaAs and a first clad layer 3 consisting of P-AlGaInP in a stripe region 10, thus preventing the discontinuity of a valence band. Since the buffer layer 2 made up of P-GaAs and a first buried layer 12 composed of P-AlGaInP are brought into contact directly in a buried region, however, there is discontinuity in the valance band. Consequently, leakage currents flowing through the first buried layer 12 consisting of P-GaInP are reduced. Since the effective refractive index of an active layer is lowered, a higher mode is not excited even when the width of the stripe region is increased. Accordingly, fundamental- mode oscillation is enabled up to a high output.

Description

【発明の詳細な説明】 〔産業上の利用分胃〕 この発明は、半導体レーザ、特に可視光半導体レーザに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a semiconductor laser, particularly a visible light semiconductor laser.

〔従来の技術〕[Conventional technology]

第2図は、例えば゛特凋昭62−216386号公報に
示された従来の可視光半導体レーザを示す図であり.(
便宜上pとnは反転》、第3図は後述する活性層におけ
る横方向の屈折率分布を示す図である。
FIG. 2 is a diagram showing a conventional visible light semiconductor laser disclosed in, for example, Japanese Patent Publication No. 62-216386. (
For convenience, p and n are reversed.] FIG. 3 is a diagram showing the lateral refractive index distribution in the active layer, which will be described later.

第2図で、11よp型(p−)GaAs基板、2はバッ
ファ層であるp − G a A s層、3は第1のク
ラッド層であるp − (A I XG a 1−x)
@. sI n o. sP層、4は活性層である(A
 l yG a s−y)a. sI n o. sP
層、5は第2のクラッド層であるn−(kl.iG a
 1−x’)  o.sI n @.sP層であり、0
 < y < X pX′を満たす。さらに、6はコン
タク1・層であるn − G a A s層、7は埋込
層である高抵抗なZnSs層、8はp電極、9はn電極
、10はストライプ領域、Wはとのストライプ領域10
の幅で、例えば1.5μ鎖である。また、第3図の1@
は前記活性層4の実効屈折率、n一は前記埋め・込み層
7の屈折率である。
In Fig. 2, 11 is a p-type (p-) GaAs substrate, 2 is a p-GaAs layer which is a buffer layer, and 3 is a first cladding layer p-(A I XG a 1-x).
@. sI no. sP layer, 4 is the active layer (A
l yG a s-y)a. sI no. sP
layer, 5 is the second cladding layer n-(kl.iG a
1-x') o. sI n @. sp layer, 0
< y < X pX' is satisfied. Furthermore, 6 is an n-GaAs layer which is a contact 1 layer, 7 is a high resistance ZnSs layer which is a buried layer, 8 is a p electrode, 9 is an n electrode, 10 is a stripe region, and W is a contact layer. stripe area 10
For example, the width is 1.5μ strand. Also, 1@ in Figure 3
is the effective refractive index of the active layer 4, and n- is the refractive index of the buried layer 7.

次に動作について説明する。Next, the operation will be explained.

n電極9とp電極8より注入された電子と正孔は、埋込
層7が高抵抗であるため、効率良くストライプ領域10
に果中し、活性層4で再結合し、活性層4・の禁1ti
IJ帯輻に対応する光を放出する。そして、電流注入に
より得られる利得が損失を上回った時、レーザ発振が得
られる。P4られるレーザ光は埋込層7の屈折率n%が
活性層4の実効屈折率n6より大幅に小さいため、活性
層4に集中する。
Since the buried layer 7 has a high resistance, the electrons and holes injected from the n-electrode 9 and the p-electrode 8 are efficiently transferred to the stripe region 10.
and recombine in the active layer 4.
Emit light corresponding to the IJ band. Then, when the gain obtained by current injection exceeds the loss, laser oscillation is obtained. Since the refractive index n% of the buried layer 7 is significantly smaller than the effective refractive index n6 of the active layer 4, the laser beam emitted P4 is concentrated in the active layer 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体レーザは以上のように構成されているので
、活性層4における光密度が高くなりやすく、高出力を
得るためにはストライプ領域1oの幅Wを太き《する必
要があるが、ストライプ領域10の幅Wを大きくすると
、高次モードが励起されやすい欠点がある。これに対処
するために埋込層7をGa(1,@In●.Pとした場
合、この禁制帯幅はAjGa I nPからなる活性層
4の禁制帯輻以下のため、GaInPを高抵抗にしても
漏れ電流を小さくできない問題点があった。
Since the conventional semiconductor laser is configured as described above, the optical density in the active layer 4 tends to be high, and in order to obtain high output it is necessary to increase the width W of the stripe region 1o. Increasing the width W of the region 10 has the disadvantage that higher-order modes are more likely to be excited. To deal with this, when the buried layer 7 is made of Ga(1,@In●.P, this forbidden band width is less than the forbidden band width of the active layer 4 made of AjGaInP, so GaInP is made to have a high resistance. However, there was a problem in that the leakage current could not be reduced.

この発明は、上記のような問題点を解消するためになさ
れたもので、リーク電流を増やすことなく、高出力まで
基本モード発振する半導体レーザを得ると・とを目的と
する。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a semiconductor laser that can oscillate in the fundamental mode up to high output without increasing leakage current.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザは、ストライプ領域の第1
のクラッド層の基板側に価電子帯の不連続をなくすため
の半導体層を形成するとともに、ストライプ領域の側面
の埋込み領域を半導体基板より禁制帯幅の大きい半導体
層とストライプ領域の活性層より禁制帯幅の小さい半導
体層を多層構造に形成したものである。
In the semiconductor laser according to the present invention, the first
A semiconductor layer is formed on the substrate side of the cladding layer to eliminate discontinuity in the valence band, and a buried region on the side of the stripe region is made more forbidden than the semiconductor layer whose forbidden band width is larger than that of the semiconductor substrate and the active layer of the stripe region. This is a multilayer structure made of semiconductor layers with a small band width.

〔作用〕[Effect]

この発明の半導体レーザにおいては、ストライプ領域以
外の半導体基板とその上の半導体層の禁制帯輻が0.8
eV以上異なることより生じる価電子帯の不連続により
、リーク電流は抑制される一方、レーザ光は、半導体基
板に吸収されるため活性層の実効屈折率は下がるので、
ストライプ領域の幅を大きくして高出力化を図っても高
次モードは励起されない。
In the semiconductor laser of the present invention, the forbidden band energy of the semiconductor substrate other than the stripe region and the semiconductor layer thereon is 0.8.
The leakage current is suppressed due to discontinuity in the valence band caused by a difference of more than eV, while the effective refractive index of the active layer decreases because the laser light is absorbed by the semiconductor substrate.
Even if the width of the stripe region is increased to increase the output, higher-order modes will not be excited.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図について説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、第2図と同一符号は同じものを示し、
11は厚さ0. 1 p anのp−Gag,sln。
In Figure 1, the same symbols as in Figure 2 indicate the same things,
11 has a thickness of 0. 1 p an p-Gag, sln.

.,P層、3は第1のクラッド層である厚さ1μmID
 p 一(A I 6,IIG a @.4)(1.1
I n @,@P層、4は活性層である厚さ0.07μ
mの(A#o.sGao.e)o. sl n o. 
sPJI− 5は第2のクラッド層である厚さ1μmの
n  (A l *.aG a 0.4) o.il 
n o.sP暦、6はコンタクl−暦である厚さ0.5
μmのn −GaAs層、10は幅W = 3 p m
のストライプ領域、12は第10埋込層である厚さ0.
1μmのp(A l o.aG & o.a) o.s
l n a.sPJIs 1 3は第2の埋込層である
厚さ2.2μmのn − G a A s層、14は第
3の埋込層であるp − G a A s層である。
.. , P layer, 3 is the first cladding layer with a thickness of 1 μm ID
p 1 (A I 6, IIG a @.4) (1.1
I n @, @P layer, 4 is active layer, thickness 0.07μ
m's (A#o.sGao.e)o. sl no o.
sPJI-5 is a second cladding layer of 1 μm thick n (A l *.aG a 0.4) o. il
no. sP calendar, 6 is contact l-calendar thickness 0.5
μm n-GaAs layer, 10 has a width W = 3 pm
12 is a tenth buried layer having a thickness of 0.
1 μm p(A l o.aG & o.a) o. s
l na a. sPJIs 13 is a 2.2 μm thick n-GaAs layer which is a second buried layer, and 14 is a p-GaAs layer which is a third buried layer.

この発明に係わる半導体レーザでは、ストライプ領域1
0においては、p−GaAsからなるバ977712と
p − A I G a I n Pからなる第1のク
ラッドH3間にp−GalnP層11が挿入されている
ので、.価電子帯の不連続は無くなるが、埋込領域では
p − G a A sからなるバッ,ア層2とp−A
jGaInPからなる第1の埋込層12は直接接してい
るため、fi電子帯に不連続が存在する。したがって、
p−GaInPからなる第1の埋込層12を経て陳れる
リーク電流は小さくできる。一方、活性層4で励起され
るレーザ光はn−GaAsからなる第2の埋込層13に
吸収されるなめ、活性H4の実効屈折率n.と埋込領域
の屈折率差は小さく、高出力を得るためにストライプ領
域10の輻Wを大きくしても高次モードは励起され難い
。さらに高次モードは基本モードに比較しストライプ領
域10の周辺部の電界が高いので吸収損失が大きく、基
本モードに比較し発振しきい値が高《なるので、励起さ
れ難い。
In the semiconductor laser according to the present invention, the stripe region 1
In .0, the p-GalnP layer 11 is inserted between the bar 977712 made of p-GaAs and the first cladding H3 made of p-AIGaInP. The discontinuity in the valence band disappears, but in the buried region, the buffer layer 2 consisting of p-GaAs and the p-A
Since the first buried layer 12 made of jGaInP is in direct contact with the first buried layer 12, there is a discontinuity in the fi electron band. therefore,
Leakage current flowing through the first buried layer 12 made of p-GaInP can be reduced. On the other hand, since the laser light excited in the active layer 4 is absorbed by the second buried layer 13 made of n-GaAs, the effective refractive index of the active layer 4 is n. The difference in refractive index between the buried region and the buried region is small, and even if the radiation W of the striped region 10 is increased in order to obtain high output, higher-order modes are difficult to be excited. Furthermore, the higher-order mode has a higher electric field at the periphery of the striped region 10 than the fundamental mode, so the absorption loss is large, and the oscillation threshold is higher than the fundamental mode, so it is difficult to be excited.

なお、上記実施例では第20埋込層13,第3の埋込層
14としてG aAsを用いたが、活性層4より禁制帯
輻の小さいAjGaAsあるいはGa(1.51n@,
gPであっても差しつがえない。例えば、第3の埋込1
tl4としては、p − A I G aInPであっ
ても差しつかえない。
In the above embodiment, GaAs was used as the 20th buried layer 13 and the third buried layer 14, but AjGaAs or Ga (1.51n@,
It doesn't matter if it's gP. For example, the third embedding 1
tl4 may be p-AIGaInP.

さらに・、コンタクト暦6および第3の埋込M14の上
にオーミック抵抗を下げるためにn − G aAs層
を設けてもよい。
Furthermore, an n-GaAs layer may be provided on the contact layer 6 and the third buried M14 in order to lower the ohmic resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、ストライプ領域の第1
のクラッド層の基板側に価電子帯の不連続をな《すため
の半導体層を形成するとともに、ストライプ領域の側面
の埋込み領域を半導体基板より禁制帯幅の大きい半導体
層とストライプ領域の活性層より禁制帯幅の小さい半導
体層を多H構造に形成したので、リーク電流を増すこと
なく、高出力まで基本モード発振する半導体レーザを得
ることができる。
As explained above, the present invention provides the first
A semiconductor layer is formed on the substrate side of the cladding layer to form a discontinuity in the valence band, and a buried region on the side surface of the stripe region is filled with a semiconductor layer having a wider forbidden band width than the semiconductor substrate and an active layer in the stripe region. Since a semiconductor layer with a narrower forbidden band width is formed into a multi-H structure, a semiconductor laser that can oscillate in the fundamental mode up to high output can be obtained without increasing leakage current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体レーザを示す
断面図、第2図は従来の半導体レーザを示す断面図、第
3図は活性層における水平方向の屈折率分布を示す図で
ある。 図において、1はp − G a A s基板、2はバ
ッフrFm、3はp − A I G a I n P
からなる第1のクラッド・層、4はAjGaInPから
なる活性層、5はn − A I G a I n P
からなる第2のクラツド層、10はストライプ領域、1
1はp−GaInP層、12はp−A#GaInPから
なる第1の埋込眉、13はn − G a A sから
なる第2の埋込層、14はp − G a A sから
なる第3の埋込層である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 ta<外2名) 第1図
FIG. 1 is a sectional view showing a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional semiconductor laser, and FIG. 3 is a diagram showing a horizontal refractive index distribution in an active layer. In the figure, 1 is a p-GaAs substrate, 2 is a buffer rFm, and 3 is a p-AIGaInP
4 is an active layer made of AjGaInP, and 5 is n-AIGaInP.
a second cladding layer consisting of a stripe region 10;
1 is a p-GaInP layer, 12 is a first buried layer made of p-A#GaInP, 13 is a second buried layer made of n-GaAs, and 14 is made of p-GaAs. This is the third embedded layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masu Oiwa TA <2 others) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上のストライプ領域にダブルヘテロ構造を有
する半導体レーザにおいて、前記ストライプ領域の第1
のクラッド層の基板側に価電子帯の不連続をなくすため
の半導体層を形成するとともに、前記ストライプ領域の
側面の埋込み領域を前記半導体基板より禁制帯幅の大き
い半導体層と前記ストライプ領域の活性層より禁制帯幅
の小さい半導体層を多層構造に形成したことを特徴とす
る半導体レーザ。
In a semiconductor laser having a double heterostructure in a stripe region on a semiconductor substrate, the first
A semiconductor layer is formed on the substrate side of the cladding layer to eliminate valence band discontinuity, and a buried region on the side surface of the stripe region is formed with a semiconductor layer having a wider forbidden band width than the semiconductor substrate and an active layer of the stripe region. A semiconductor laser characterized by having a multilayer structure of semiconductor layers having a narrower bandgap width than the other layers.
JP5223789A 1989-03-03 1989-03-03 Semiconductor laser Pending JPH02231784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223789A JPH02231784A (en) 1989-03-03 1989-03-03 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223789A JPH02231784A (en) 1989-03-03 1989-03-03 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02231784A true JPH02231784A (en) 1990-09-13

Family

ID=12909113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223789A Pending JPH02231784A (en) 1989-03-03 1989-03-03 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02231784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590951A2 (en) * 1992-09-29 1994-04-06 Mitsubishi Chemical Corporation Semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590951A2 (en) * 1992-09-29 1994-04-06 Mitsubishi Chemical Corporation Semiconductor laser element
EP0590951A3 (en) * 1992-09-29 1994-04-13 Mitsubishi Chemical Corporation Semiconductor laser element
US5355384A (en) * 1992-09-29 1994-10-11 Mitsubishi Kasei Corporation Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2009081249A (en) Semiconductor laser device
JPH04144183A (en) Surface light emitting type semiconductor laser
US6567444B2 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
JPH06181363A (en) Semiconductor laser and manufacture thereof
JP2001251019A (en) High power semiconductor laser element
KR20060112257A (en) Semiconductor laser device
JPH01235397A (en) Semiconductor laser
JPH02231784A (en) Semiconductor laser
JP2001068789A (en) Semiconductor laser
JP2007049088A (en) High power red semiconductor laser
JPH11330607A (en) Semiconductor laser and manufacture thereof
JP6210186B1 (en) Optical semiconductor device
JP4292833B2 (en) Semiconductor light emitting device
JPS59152683A (en) Surface light emitting semiconductor laser
JP3144821B2 (en) Semiconductor laser device
JP2909133B2 (en) Semiconductor laser device
JPH0824207B2 (en) Semiconductor laser device
JPH09307183A (en) Semiconductor laser
JPH07170017A (en) Semiconductor laser
JPH02213186A (en) Semiconductor laser device
JPH04105381A (en) Semiconductor laser
JP3710195B2 (en) Semiconductor laser
JP2001077475A (en) Semiconductor laser
JPS63263790A (en) Semiconductor laser
JPH1079554A (en) Optical semiconductor device