JPH02231474A - Production of n-fluoro-2,3,4,5,6-pentachloro-pyridinium salt - Google Patents

Production of n-fluoro-2,3,4,5,6-pentachloro-pyridinium salt

Info

Publication number
JPH02231474A
JPH02231474A JP32796188A JP32796188A JPH02231474A JP H02231474 A JPH02231474 A JP H02231474A JP 32796188 A JP32796188 A JP 32796188A JP 32796188 A JP32796188 A JP 32796188A JP H02231474 A JPH02231474 A JP H02231474A
Authority
JP
Japan
Prior art keywords
acid
fluorine
reaction
fluoro
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32796188A
Other languages
Japanese (ja)
Other versions
JPH07121913B2 (en
Inventor
Teruo Umemoto
照雄 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP32796188A priority Critical patent/JPH07121913B2/en
Publication of JPH02231474A publication Critical patent/JPH02231474A/en
Publication of JPH07121913B2 publication Critical patent/JPH07121913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the title compound in high yield safely by reaction between pentachloropyridine, fluorine and a Brphinsted acid or Lewis acid in an acidic lower perfluoro saturated fatty acid as a solvent. CONSTITUTION:In a lower perfluoro saturated fatty acid such as trifluoro-aceteic acid or pentafluoropropionic acid, the reaction of penta-chloropyridine with fluorine and a Brphinsted acid of the formula: XH (X is Brephinsted acid radical) such as trifluoromethanesulfonic acid is effected to give N-fluoro-2,3,4,5,6- pentachloro-pyridinium salt of formula I. Instead of the Brphinsted acid, a Lewis acid is used to effect the reaction to give N-fluoro-2,3-4,5,6-pentachloropyridinium salt of formula II. The product is useful as a reagent for introducing simultaneously a fluorine atom and an acyloxy group into the double bond in an alkene.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式 で表されるN−フルオロ−2, 〔式中、≠はρ又は(YFρである.ただしX一及び(
Y F)0はブレンステッド酸の共役塩基であり、Yは
ルイス駿である.〕で表されるN−フルオロー2.3,
4,5.6−ペンタクロロビリジニウム塩の製造方法に
関する. 本発明の前記一般式(1)で表されるN−フルオロ−2
.3.4.5.6−ペンタクロ口ビリジニウム塩は、ア
ルケンの二重結合部分にフッ素原子とアシルオキシ基と
を同時に導入する試荊として育用なものである(参考例
参M). 〔従来技術〕 従来、アルケンの二重結合部分にフッ素原子とアシルオ
キシ碁としてアセトキシ基又はトリフルオロアセトキシ
基とを同時に導入することのできる試剤としては、アセ
チルハイボフロリト(J.Org.Che+s. . 
50. 4753 (1985)参照)、トリフルオロ
アセチルハイポフロリト(J.Org.Chem..4
5.672<198(1)参照〕、又はキセノンジフロ
リド(TstrahedronLatt. , )97
4. 1015参照)が知られていた.しかしながら、
アセチルハイポフロリトやトリフルオロアセチルハイポ
フロリトは不安定な化合物であるので、取り扱いに問題
がある.一方、キセノンジフロリドは製造のための基本
原料であるキセノンが希少な天然資源であるため、高価
であり、かつ供給に問題が残る.よって、このための有
用な試剤となりうるN−フルオロー2.3,4,5.6
−ペンタク口ロビリジニウム塩を製造することは、産業
上、重要なことである. 一方、従来、N−フルオロピリジニウム塩の製造方法と
しては、溶媒中、フッ素とビリジン化合物とブレンステ
ッド酸化合物又はルイス酸とを反応させる方法が報告さ
れているが、その際の溶媒としては、アセト二トリル、
塩化メチレン、クロロホルム、四塩化炭素、トリクロロ
フルオロメタン、トリクロロトリフルオロエタン、ジエ
チルエーテル、テトラヒドロフランが示されている(特
開昭63−10764参照). しかしながら、これらの溶媒を用いて、ペンタクロロピ
リジンとフッ素とブレンステフド酸又はルイス酸とを反
応させ、N−フルオロー2.3,4,5.6−ペンタク
ロロピリジニウム塩を得るにおいては、次の欠点があっ
た. 1.反応の収率が低い. 2,反応性の低いペンタクロロピリジンをフッ素と反応
させるには、相対的に高温を必要とするため、ハロゲン
化炭化水素溶媒(クロロホルム、四塩化炭素、トリクロ
ロフルtロメタン、トリクロロトリフルオロエタン)を
除いて、フッ素は溶媒と反応し発火する危険がある. 3.発火する危険をなくすため、低温で行うと反応効率
が悪いため、反応を完結させるには、大過剰のフッ素を
必要とする. 4.また、発火する危険をなくすためには、不活性ガス
で高度に希釈したフッ素を反応系に導入しなくてはなら
ないので、反応が完了する時間が大幅に長くなり、生産
効率が低い. 5,ペンタクロロピリジンは、アセト二トリルに対して
溶解度が低いので、この場合、フッ素との反応効率を高
めるには多量のア七ト二トリル溶媒と大過剰のフッ素を
必要とするため、経済的生産効率が低い. 6.トリクロロメタンとトリクロロトリフルオ口エタン
のフロン溶媒は、ペンタクロロピリジンに対する溶解度
が低いためフッ素との反応効率が悪い上、地球上のオゾ
ン層破壊等の環境問題を引き起こすため使用が制限され
ている.〔発明が解決しようとする諜IN) 本発明は、これらの問題点を解決するため、鋭意、研究
を重ねた結果、従来用いられた溶媒とは本質的に異なる
酸性の、しかも不燃性の低級ベルフルオ口飽和脂肪酸を
溶媒として用いることを克出し、本発明を完成させたも
のである.本発明の低級ベルフルオ口飽和脂肪酸を溶媒
ととして用いれば、アルケンに対しフッ素原子とアシル
オキシ基とを同時に導入することのできるN−フルオロ
ー2.3.4.5.6−ペンタク口ロビリジニウム塩を
反応収率及び生産効率ともに良く、かつ安全に製造する
ことができる. catsを解決するための手段〕 本発明の製造方法は、前記一般式(1)においてM!e
:がX0七表されるブレンステッド酸の共役塩基の場合
、低級ベルフルオ口飽和脂肪酸中、ペンタクロロピリジ
ンとフッ素(F,)と一般式XH          
 (II) で表されるブレンステッド酸とを反応させることをvP
徴とする、一殻式 で表されるN−フルオロ−2.3.4.5.6−ペンタ
ク口ロビリジニウム塩を製造するものである. 本発明に用いるペンタクロロピリジン及び低級ペルフル
オロ飽和脂肪酸は工業的に入手容易な化合物である.低
級ペルフルオロ飽和脂肪酸としては、トリフルオロ酢酸
、ペンタフルオロブロビオン酸、ヘブタフルオロNM,
ヘプタフルオロイソ酪酸等を例示することができる. また、前記一般式(I[)で表されるプレンステッド酸
としては、例えば、トリフルオロメタンスルホン酸、ジ
フルオ口メタンスルホン酸、トリクロロメタンスルホン
酸、ノナフルオロブタンスルホン酸、ヘプタデ力フルオ
ロオクタンスルホン酸、フルオロスルホン酸、クロロス
ルホン酸、硫酸、モノメチル硫酸、過塩素酸等のブレン
ステッド酸、又は、HBF.、H B C I sF.
, H B C I a、HA I F.、H A I
 C l s F SH P F a、HPF.,HP
CIsF,HAaFa、H A s C l s F 
%HAaFh,HSbF4、HSbFい HSbCI.F.、HSbClaF− HSt)Cli
等のルイス酸とハロゲン化水素等との化合物のブレンス
テソド酸等を例示することができる.反応温度としては
、用いる低級ペルフルオロ飽和脂肪酸の融点以上60℃
までの範囲を選ぶことができるが、0℃〜40℃の範囲
が経済性及び反応の収率を良好にする点で好ましい. 反応を収率よく行うためには、ブレンステフド酸の使用
量はペンタクロロピリジンに対し、等モル又は等モル以
上であるが、経済性を考慮に入れると等モルが好ましい
. また、本発明で使用するフッ素はそのまま用いてもよい
が、フッ素の激しい反応を制御するために不活性ガスを
用いて不活性ガスの容量が95%〜25%4の希釈した
フッ素ガスを使用するのが好ましい.不活性ガスとして
は、窒素、ヘリウム、アルゴン等を例示することができ
る.反応を収率よく行うためには、フッ素の使用量はペ
ンタクロロピリジンに対し、等モル又は等モル以上であ
るが、フッ素の導入方法、反応温度、反応装置等により
変化するので、ペンタクロロピリジンがフッ素と反応し
て消失するのに必要なフッ素の量を適宜選択すればよい
. 一方、前記一般式(!)において、一′が(YF)9勿
表される場合の本発明の製造方法は、低級ペルフルオロ
飽和脂肪酸中、ペンタクロロピリジンとフッ素(F,)
と一般式 Y       −  (IN) で表されるルイス酸とを反応させることを特徴とする、
一般式 で表されるN−フルオロ−2.3.4,5.6−ペンタ
クロロビリジニウム塩を製造するものである. 本発明に用いる前記一般式(III)で表されるルイス
酸としては、BFs、BC 1,、AIFいAICI,
、PF,、P F s%P C l s、AsF,、^
sCE@,AsFa,SbFg、S b F,,SbC
1mFs、SbCIいSOs等を例示することができ、
また、これらのルイス酸は種々のエーテルやニトリル化
合物等の緒体として用いてもよい.反応を収率よく行う
ためには、ルイス酸の使用量はペンタクロロピリジンに
対し、等モル又は等モル以上であるが、経済性を考慮に
入れると等モルが好ましい.また、本反応で使用する低
級ペルフルオロ飽和脂肪酸やフン素の使用形態は前記方
法の場合と同様である. 本反応の反応温度としては、用いる低級ベルフルオ口飽
和脂肪酸の融点以上60℃までの範囲を選ぶことができ
るが、0℃〜40℃の範囲が経済性及び収率を良好にす
る点で好ましい6〔発明の効果〕 以上のように、本発明の製造方法は、アルケンの二重結
合部分へフッ素原子とアシルオキシ基とを同時に導入す
ることのできる、安定かつ取り扱いやすい試剤となるN
−フルオロー2.3,45,6−ペンタクロロビリジニ
ウム塩の安全かつ収率のよい製造方法である。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to N-fluoro-2 represented by the general formula, [wherein ≠ is ρ or (YFρ. However, X1 and (
Y F) 0 is the conjugate base of the Brønsted acid, and Y is Lewis Shun. ] N-fluoro2.3,
4,5.6-Pentachloroviridinium salt manufacturing method. N-fluoro-2 represented by the general formula (1) of the present invention
.. 3.4.5.6-Pentacroviridinium salt was developed as a trial product for simultaneously introducing a fluorine atom and an acyloxy group into the double bond of an alkene (Reference Example M). [Prior Art] Conventionally, acetylhybofluorite (J. Org. Che+s.
50. 4753 (1985)), trifluoroacetyl hypofluorite (J.Org.Chem..4
5.672 <see 198(1)], or xenon difluoride (Tstrahedron Latt., ) 97
4. 1015) was known. however,
Acetyl hypofluorite and trifluoroacetyl hypofluorite are unstable compounds, so there are problems in handling them. On the other hand, xenon difluoride is expensive because xenon, the basic raw material for its production, is a rare natural resource and there are problems with its supply. Therefore, N-fluoro2.3,4,5.6 can be a useful reagent for this purpose.
- The production of pentac-roviridinium salts is of industrial importance. On the other hand, as a conventional method for producing N-fluoropyridinium salts, a method has been reported in which fluorine, a pyridine compound, and a Brønsted acid compound or a Lewis acid are reacted in a solvent. nitrile,
Methylene chloride, chloroform, carbon tetrachloride, trichlorofluoromethane, trichlorotrifluoroethane, diethyl ether, and tetrahydrofuran are shown (see JP-A-63-10764). However, when using these solvents to react pentachloropyridine, fluorine, and Brennstefed acid or Lewis acid to obtain N-fluoro-2,3,4,5,6-pentachloropyridinium salt, the following drawbacks occur: was there. 1. The reaction yield is low. 2. Reacting pentachloropyridine with low reactivity with fluorine requires a relatively high temperature, so halogenated hydrocarbon solvents (chloroform, carbon tetrachloride, trichlorotrifluoromethane, trichlorotrifluoroethane) are used. However, there is a danger that fluorine may react with the solvent and cause a fire. 3. To eliminate the risk of ignition, the reaction efficiency is poor when carried out at low temperatures, so a large excess of fluorine is required to complete the reaction. 4. Furthermore, in order to eliminate the risk of ignition, fluorine highly diluted with an inert gas must be introduced into the reaction system, which significantly lengthens the time for the reaction to complete, resulting in low production efficiency. 5. Pentachloropyridine has low solubility in acetonitrile, so in this case, a large amount of a7tonitrile solvent and a large excess of fluorine are required to increase the reaction efficiency with fluorine, which is not economical. The production efficiency is low. 6. Freon solvents such as trichloromethane and trichlorotrifluoroethane have low solubility in pentachloropyridine, resulting in poor reaction efficiency with fluorine, and their use is restricted because they cause environmental problems such as depletion of the earth's ozone layer. [Intelligence to be Solved by the Invention] In order to solve these problems, the present invention, as a result of extensive research, has developed an acidic, nonflammable, low-grade solvent that is essentially different from conventionally used solvents. The present invention was completed by discovering the use of Belfluro's saturated fatty acids as a solvent. When the lower saturated fatty acid of the present invention is used as a solvent, N-fluoro2.3.4.5.6-pentafluoroviridinium salt can be reacted with N-fluoro2.3.4.5.6-pentafluoroviridinium salt, which can simultaneously introduce a fluorine atom and an acyloxy group into an alkene. It has good yield and production efficiency, and can be manufactured safely. Means for Solving Cats] In the manufacturing method of the present invention, in the general formula (1), M! e
In the case of a conjugate base of a Brønsted acid where : is represented by
(II) Reacting with the Bronsted acid represented by vP
This is to produce N-fluoro-2.3.4.5.6-pentacroviridinium salt, which is represented by a one-shell formula and has a characteristic. Pentachloropyridine and lower perfluoro saturated fatty acids used in the present invention are industrially easily available compounds. Examples of lower perfluoro saturated fatty acids include trifluoroacetic acid, pentafluorobrobionic acid, hebutafluoroNM,
Examples include heptafluoroisobutyric acid. Further, as the Pronsted acid represented by the general formula (I[), for example, trifluoromethanesulfonic acid, difluoromethanesulfonic acid, trichloromethanesulfonic acid, nonafluorobutanesulfonic acid, heptadefluorooctanesulfonic acid, Brønsted acids such as fluorosulfonic acid, chlorosulfonic acid, sulfuric acid, monomethyl sulfuric acid, perchloric acid, or HBF. , HBC IsF.
, H B C I a, H A I F. , H A I
C l s F SH P F a, HPF. ,HP
CIsF, HAaFa, H A s C l s F
%HAaFh, HSbF4, HSbF and HSbCI. F. , HSbClaF-HSt)Cli
Examples include brenstesodo acid, which is a compound of a Lewis acid such as 1, and hydrogen halide, etc. The reaction temperature is 60°C above the melting point of the lower perfluoro saturated fatty acid used.
Although the range can be selected from 0°C to 40°C, the range is preferably 0°C to 40°C in terms of economical efficiency and good reaction yield. In order to carry out the reaction with good yield, the amount of Bränstefdic acid to be used is equal to or more than equimolar to pentachloropyridine, but taking economic efficiency into consideration, equimolar is preferred. In addition, the fluorine used in the present invention may be used as it is, but in order to control the violent reaction of fluorine, diluted fluorine gas with an inert gas volume of 95% to 25% 4 is used. It is preferable to do so. Examples of the inert gas include nitrogen, helium, and argon. In order to carry out the reaction with good yield, the amount of fluorine used should be equimolar or more than equimolar to pentachloropyridine, but this will vary depending on the method of introducing fluorine, reaction temperature, reaction equipment, etc. The amount of fluorine required for fluorine to react with fluorine and disappear can be selected appropriately. On the other hand, in the above general formula (!), when 1' is (YF)9, the production method of the present invention involves pentachloropyridine and fluorine (F,) in the lower perfluoro saturated fatty acid.
and a Lewis acid represented by the general formula Y - (IN),
This is to produce N-fluoro-2.3.4,5.6-pentachloroviridinium salt represented by the general formula. The Lewis acid represented by the general formula (III) used in the present invention includes BFs, BC 1, AIF, AICI,
,PF,,P F s%P C l s,AsF,,^
sCE@, AsFa, SbFg, S b F,, SbC
Examples include 1 mFs, SbCI SOs, etc.
These Lewis acids may also be used as compounds for various ethers and nitrile compounds. In order to carry out the reaction with good yield, the amount of Lewis acid to be used is equal to or more than the same mole relative to pentachloropyridine, but taking economic efficiency into account, equimolar is preferred. Furthermore, the usage forms of the lower perfluorinated saturated fatty acids and fluorine used in this reaction are the same as in the above method. The reaction temperature for this reaction can be selected from a range above the melting point of the lower Verfluorescent saturated fatty acid to 60°C, but a range of 0°C to 40°C is preferred from the viewpoint of economical efficiency and good yield. [Effects of the Invention] As described above, the production method of the present invention provides N as a stable and easy-to-handle reagent that can simultaneously introduce a fluorine atom and an acyloxy group into the double bond portion of an alkene.
- A method for producing fluoro-2.3,45,6-pentachloroviridinium salt in a safe manner and with good yield.

以下、実施例及び参考例により本発明を更に詳しく説明
する. 実施例I CI トリフルオ口酢酸40ml,ペンタクロロピリジン1 
0.06g (4 0mmo +)及びト!J7ルオロ
メタンスルホンM3.53ml  (40mmo I)
の溶液を含む容器内に室温で攪拌しながら、フン素と窒
素の2:8の混合ガスを50ml/分の流速で導入した
(使用したフッ素のモル数は123mmolで・あらた
).その後、窒素を流して残存在したフッ素を除去した
後、溶媒を留去し、乾燥酢酸エチルを加えた.析出した
結晶を濾別し、N−フルオロ−2.3,4,5.6−ペ
ンタク口ロピリジニウムトリフルオロメタンスルホナー
ト12.12gを得た(収率72%).物性値及びスペ
クトルデータは以下に示す. 融点3122−123℃ ”F−NMR (アセトニトリル中トリクロロフルオロ
メタン基準):−48.0ppm(s,N−F),78
.2ppm (s.CF,), ?7,スペクトル(m/e)!268,270272.
274. 元素分析: 実測値: C. 17.31 94 ; H.  O%
;N,3.43%.計算値i C, 17.18%;H
,09AEN,3.34%.実施例2 Ml トリフルオ口酢酸40mlとペンタクロロピリジンl 
O.06 g (4 0mmo !)との混合液にB 
F sガスを吸収しなくなるまで吸収させた( B F
 sの映収量は40mmoJであった》.咬収後は溶液
は均一溶液となった.その溶液を含む容器内へ、室温で
攬拌しながら、フッ素と窒素の2:8の混合ガスを48
ml/分の流速で導入したく使用したフッ素の量は1 
2 0mmo lであった).その後、窒素を流して残
存するフッ素を除去した後、溶媒を留去し、乾燥酢酸エ
チルを加えた.析出した結晶を濾別し、26.16gの
N−フルオロー2.3,4,5.6−ペンタクロロビリ
ジニウムテトラフルオロボラートを得た(収率92%)
.物性値及びスペクトルデータは以下に示す.融点:1
98−200℃(アルゴン雰囲気下封管中》 ”F−NMR (アセト二トリル中トリクロロフルオロ
メタン内部標準):−47.6ppm(s,N−F),
+152.6ppm (s,BF4). マススペクトル(m/θ)  :287,289,29
1,293. 元素分析: 実測値+ 0. 16.93%;H,0%;N.3.9
1%.計算値.C,16.82%;H,0%.N,3.
92%.実施例3 CI 生成物の物性値及びスペクトルデータは実施例1の項で
示した. 参考例1 Cl ペンタフルオ口ブロビオン酸10ml、ペンタクロロピ
リジン2.52g (10mmol)及びトリフルオロ
メタンスルホン酸0.88ml(10mmol)の溶液
を含む容器内に、室温で攪拌しながら、フッ素と窒素の
2:8混合ガスを30ml/分の流速で導入した(使用
したフッ素のモル敗は3Qmmolであった).後処理
は実施例lと同様に行い、3.47g(収率83%)の
N−フルオロ−2.3,4,5、6−ペンタクロ口ビリ
ジニウムトリフルオロメタンスルホナートを得た.酢酸
2mlとN−2.3.4,5.6−べ7タクロロビリジ
ニウムトリフルオロメタンスルホナート423■(lm
mol)との混合物にスチレンを114μj(lmmo
l)を加えて、室温で165時間攪拌した。反応後、反
応液に水を加えてエーテル抽出を行った.エーテル層は
水洗し、硫酸マグネシウムで乾燥した後、溶媒を留去し
た.得られた残渣をシリカゲルのクロマトグラフィーで
精製し、117wの1−アセトキシー1−フエニルー2
−フルオロエタンを油状体として得た(収率63%).
生成物の物性値及びスペクトルデータを次に示す. 沸点:190−200℃(浴温) /63−65寵Hg
.IH−NMR (重クロロホルム中):δ2.l1←
l.CHs),4.50 (dm,J−4 8.0Hz
,CHt),6.03 (d d d,J−1 6.8
,6.5.4.5Hz,CH),7.34 (s,芳香
核水素). 1 9 F− pJ M R (1クロロホルム中トリ
クロロフルオロメタン内部標準)  :223.8pp
m(dt,J−16.8.48.0Hz).IR (n
eat): 1740cm−’ (エステル).マスス
ペクトル(m/e)  + 1 8 2 (M’) .
元素分析: 実測値iC,65.69九HH,6.25%.針算値i
C,65.93%.H,  6.09%.参考例2 CI 酢酸6mlとスチレン343μ1 (3mmo I)の
溶液にN−フルオロー2.3.4,5.6−ペンククロ
ロビリジニウムテトラフルオロボラート1.07 g 
(3mma 1)を加えて、室温で3時間攪拌した.反
応後は参考例1と同様の後処理を行い、0.30gの1
−アセトキシー1−フエニル−2−フルオロエタンを得
た(収率55%).生成物の物性値及びスペクトルデー
タは参考例1の項で示したものと同一であった.
The present invention will be explained in more detail below using Examples and Reference Examples. Example I CI 40 ml of trifluoroacetic acid, 1 part of pentachloropyridine
0.06g (40mmo +) and to! J7 Fluoromethanesulfone M3.53ml (40mmo I)
A mixed gas of 2:8 of fluorine and nitrogen was introduced at a flow rate of 50 ml/min into the container containing the solution at room temperature while stirring (the number of moles of fluorine used was 123 mmol). Thereafter, residual fluorine was removed by flushing with nitrogen, the solvent was distilled off, and dry ethyl acetate was added. The precipitated crystals were filtered off to obtain 12.12 g of N-fluoro-2.3,4,5.6-pentacyclopyridinium trifluoromethanesulfonate (yield: 72%). Physical property values and spectral data are shown below. Melting point: 3122-123°C "F-NMR (based on trichlorofluoromethane in acetonitrile): -48.0 ppm (s, N-F), 78
.. 2ppm (s.CF,), ? 7, Spectrum (m/e)! 268,270272.
274. Elemental analysis: Actual value: C. 17.31 94; H. O%
;N, 3.43%. Calculated value i C, 17.18%; H
, 09AEN, 3.34%. Example 2 Ml 40 ml of trifluoroacetic acid and 1 of pentachloropyridine
O. 06 g (40 mmo!)
F s gas was absorbed until it was no longer absorbed ( B F
The yield of s was 40 mmoJ》. After biting, the solution became a homogeneous solution. A 2:8 mixture of fluorine and nitrogen was poured into the container containing the solution at room temperature for 48 hours.
The amount of fluorine used to be introduced at a flow rate of ml/min was 1
(20 mmol). Thereafter, residual fluorine was removed by flushing with nitrogen, the solvent was distilled off, and dry ethyl acetate was added. The precipitated crystals were filtered to obtain 26.16 g of N-fluoro 2.3,4,5.6-pentachloroviridinium tetrafluoroborate (yield 92%).
.. Physical property values and spectral data are shown below. Melting point: 1
98-200°C (in a sealed tube under argon atmosphere) F-NMR (internal standard of trichlorofluoromethane in acetonitrile): -47.6 ppm (s, N-F),
+152.6ppm (s, BF4). Mass spectrum (m/θ): 287, 289, 29
1,293. Elemental analysis: Actual value + 0. 16.93%; H, 0%; N. 3.9
1%. Calculated value. C, 16.82%; H, 0%. N, 3.
92%. Example 3 The physical properties and spectral data of the CI product are shown in the section of Example 1. Reference Example 1 In a container containing a solution of 10 ml of Cl pentafluorobrobionic acid, 2.52 g (10 mmol) of pentachloropyridine, and 0.88 ml (10 mmol) of trifluoromethanesulfonic acid, a mixture of fluorine and nitrogen was added while stirring at room temperature. 8 mixed gas was introduced at a flow rate of 30 ml/min (the molar loss of fluorine used was 3 Q mmol). Post-treatment was carried out in the same manner as in Example 1 to obtain 3.47 g (yield: 83%) of N-fluoro-2.3,4,5,6-pentacro-viridinium trifluoromethanesulfonate. 2 ml of acetic acid and 423 μl of N-2.3.4,5.6-be7tachloroviridinium trifluoromethanesulfonate (lm
114 μj (lmmol) of styrene in a mixture with
1) was added and stirred at room temperature for 165 hours. After the reaction, water was added to the reaction solution and ether extraction was performed. The ether layer was washed with water, dried over magnesium sulfate, and then the solvent was distilled off. The resulting residue was purified by silica gel chromatography to obtain 117w of 1-acetoxy-1-phenyl-2
-Fluoroethane was obtained as an oil (yield 63%).
The physical property values and spectral data of the product are shown below. Boiling point: 190-200℃ (bath temperature) /63-65 Hg
.. IH-NMR (in deuterated chloroform): δ2. l1←
l. CHs), 4.50 (dm, J-4 8.0Hz
, CHt), 6.03 (d d d, J-1 6.8
, 6.5.4.5Hz, CH), 7.34 (s, aromatic nuclear hydrogen). 19F-pJMR (internal standard of trichlorofluoromethane in 1 chloroform): 223.8pp
m(dt, J-16.8.48.0Hz). IR (n
eat): 1740cm-' (ester). Mass spectrum (m/e) + 1 8 2 (M').
Elemental analysis: Actual value iC, 65.699HH, 6.25%. needle value i
C, 65.93%. H, 6.09%. Reference Example 2 CI 1.07 g of N-fluoro2.3.4,5.6-pencchloroviridinium tetrafluoroborate in a solution of 6 ml of acetic acid and 343 μl (3 mmol I) of styrene
(3 mma 1) was added and stirred at room temperature for 3 hours. After the reaction, the same post-treatment as in Reference Example 1 was carried out, and 0.30 g of 1
-acetoxy-1-phenyl-2-fluoroethane was obtained (yield 55%). The physical properties and spectral data of the product were the same as those shown in Reference Example 1.

Claims (2)

【特許請求の範囲】[Claims] (1)低級ペルフルオロ飽和脂肪酸中、ペンタクロロピ
リジンとフッ素と一般式 XH で表されるプレンステッド酸とを反応させることを特徴
とする、一般式 ▲数式、化学式、表等があります▼ で表されるN−フルオロ−2,3,4,5,6−ペンタ
クロロピリジニウム塩の製造方法(式中、X^■はプレ
ンステッド酸の共役塩基である)。
(1) There are general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ that are characterized by reacting pentachloropyridine, fluorine, and Prensted acid represented by the general formula A method for producing an N-fluoro-2,3,4,5,6-pentachloropyridinium salt (wherein X^■ is a conjugate base of a Pronsted acid).
(2)低級ペルフルオロ飽和脂肪酸中、ペンタクロロピ
リジンとフッ素と一般式 Y で表されるルイス酸とを反応させることを特徴とする、
一般式 ▲数式、化学式、表等があります▼ で表されるN−フルオロ−2,3,4,5,6−ペンタ
クロロピリジニウム塩の製造方法(式中、Yはルイス酸
である)。
(2) characterized by reacting pentachloropyridine, fluorine, and a Lewis acid represented by the general formula Y in a lower perfluorosaturated fatty acid;
A method for producing N-fluoro-2,3,4,5,6-pentachloropyridinium salt represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (in the formula, Y is a Lewis acid).
JP32796188A 1988-12-27 1988-12-27 Process for producing N-fluoro-2,3,4,5,6-pentachloropyridinium salt Expired - Lifetime JPH07121913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32796188A JPH07121913B2 (en) 1988-12-27 1988-12-27 Process for producing N-fluoro-2,3,4,5,6-pentachloropyridinium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32796188A JPH07121913B2 (en) 1988-12-27 1988-12-27 Process for producing N-fluoro-2,3,4,5,6-pentachloropyridinium salt

Publications (2)

Publication Number Publication Date
JPH02231474A true JPH02231474A (en) 1990-09-13
JPH07121913B2 JPH07121913B2 (en) 1995-12-25

Family

ID=18204945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32796188A Expired - Lifetime JPH07121913B2 (en) 1988-12-27 1988-12-27 Process for producing N-fluoro-2,3,4,5,6-pentachloropyridinium salt

Country Status (1)

Country Link
JP (1) JPH07121913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336772A (en) * 1991-01-11 1994-08-09 Onoda Cement Co., Ltd. Method for preparing N-fluoropyridinium salt
JPH07233097A (en) * 1994-02-23 1995-09-05 Chichibu Onoda Cement Corp Production of electrophilic fluorination agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336772A (en) * 1991-01-11 1994-08-09 Onoda Cement Co., Ltd. Method for preparing N-fluoropyridinium salt
EP0494770B1 (en) * 1991-01-11 1995-05-10 Onoda Cement Company, Ltd. Method for preparing N-fluoropyridinium salts
JPH07233097A (en) * 1994-02-23 1995-09-05 Chichibu Onoda Cement Corp Production of electrophilic fluorination agent

Also Published As

Publication number Publication date
JPH07121913B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JP5103878B2 (en) Sulphonium compound for producing acid generator for chemically amplified resist composition
JPH0358332B2 (en)
JPH05507936A (en) Production method of cyclic sulfate
JPH02231474A (en) Production of n-fluoro-2,3,4,5,6-pentachloro-pyridinium salt
JPH0429962A (en) Compound of calyxalene and oxacalyxalene derivative and method for isolation of metal ion
KR101271898B1 (en) Manufacturing method for fluoropropylene carbonate
US4868318A (en) Perfluoro chemicals and polyfluorinated compounds
CN105130744B (en) A kind of 2,4 difluoro 3,5 dichloronitrobenzene synthesis 1,3,5 trichlorine, 2,4,6 trifluoro-benzene
CN111978322B (en) Synthesis method of tetrahydroisoquinoline fused ring compound and tetrahydrobeta-carboline fused ring compound
CN112166108B (en) Method for producing polymerizable compound
JP5544892B2 (en) Process for producing 2-cyano-1,3-diketonate salt and ionic liquid
JPH0217183A (en) Production of cyclic sufuric esters
Sekiya et al. Reaction of trifluoronitrosomethane with arenesulfonohydrazides. Synthesis of N-trifluoromethyy-N-hydroxyarenesulfonamides.
JP2772846B2 (en) Fluorine-containing allyl ether and its production method
JP2001172223A (en) Method for producing 2-fluoroacrylic acid or ester thereof
JPS6059897B2 (en) Method for preparing chloroformates with terminal acrylic or methacrylic groups
CN109265352B (en) Preparation method of aryl cyclopropyl ether and derivatives thereof
JPS603071B2 (en) Method for producing 1-(α-acyloxyalkyl)-5-fluorouracils
JP3301132B2 (en) 1,2-Diphenylethane derivative and method for producing the same
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
US20030060637A1 (en) Cyclic aniline sulfide and process for preparing the same
TAKAMIzAwA et al. Studies on Pyrimidine Derivatives and Related Compounds. LXX. A Novel Reaction of Thiamine Anhydride
US3101379A (en) Synthesis of hexanitroethane
CN117777325A (en) Sulfonyl fluoride resin and preparation method and application thereof
CN116041184A (en) Fluorine-containing photoresist resin monomer intermediate, fluorine-containing photoresist resin monomer and preparation method thereof