JPH02231083A - Recombinant natural killer cell-activating factor - Google Patents

Recombinant natural killer cell-activating factor

Info

Publication number
JPH02231083A
JPH02231083A JP1216574A JP21657489A JPH02231083A JP H02231083 A JPH02231083 A JP H02231083A JP 1216574 A JP1216574 A JP 1216574A JP 21657489 A JP21657489 A JP 21657489A JP H02231083 A JPH02231083 A JP H02231083A
Authority
JP
Japan
Prior art keywords
nkaf
amino acid
cdna
natural killer
killer cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1216574A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshimatsu
賢太郎 吉松
Yukio Oya
大矢 行夫
Yasushi Yomo
靖 四方
Isao Tanaka
勲 田中
Yoshikazu Hasegawa
長谷川 嘉一
Toshifumi Seto
瀬戸 敏文
Toshiaki Osawa
利昭 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Priority to JP1216574A priority Critical patent/JPH02231083A/en
Publication of JPH02231083A publication Critical patent/JPH02231083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain natural killer cell-activating factor having special amino acid sequence. CONSTITUTION:Natural substance of natural killer cell-activating factor is purified by antibody-column affinity-chromatography and sequence of amino acid part in the natural substance is determined. Next, desired cDNA clone is prepared using cDNA library made from mRNA of human T-cell hybridoma according to specified one amino acid sequence. Then, amino acid sequence of natural killer cell-activating factor (NKAF) is determined as the formula from base sequence of resultant cDNA clone and manifestation of recombinant NKAF is performed, thus activity of the recombinant NKAF is confirmed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はナチニラルキラー細胞(NK細胞)によるヒト
腫瘍細胞溶解の活性を増強させる新規ポリペブチドの発
明及び生産に係る遺伝子組換技術並びに該ペプチドを含
有する医薬に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to genetic recombination technology related to the invention and production of a novel polypeptide that enhances the activity of lysing human tumor cells by natural killer cells (NK cells), and the peptide containing the same. related to medicines.

従って本発明は、医薬品の分野において利用することが
できる。
Therefore, the present invention can be utilized in the field of pharmaceuticals.

〔従来技術及び発明が解決しようとする課題〕ある種の
癌細胞に対して破壊的に作用する細胞としてナチュラル
キラー細胞(NK細胞と略す)の存在が知られており、
当該細胞の活性に影響のあるリンホカインに関心が寄せ
られている。
[Prior art and problems to be solved by the invention] It is known that natural killer cells (abbreviated as NK cells) exist as cells that act destructively on certain types of cancer cells.
There is interest in lymphokines that affect the activity of these cells.

例えば、インターロイキン−2及びインターフェロンは
NK細胞の活性の増大を誘導することが示されているC
Herberman,R,B,, et al,, I
mmunol.Rev., 44. 13 (1979
)  ; Vase,B.M., et al,,J,
 Immunol,, 130, 768 (1983
) : DOfllZig.W..et al., J
.Immunol., 130 1970 (1983
))。
For example, interleukin-2 and interferon have been shown to induce increased NK cell activity.
Herberman, R.B., et al., I
mmunol. Rev. , 44. 13 (1979
); Vase, B. M. , et al., J.
Immunol, 130, 768 (1983
): DOfullZig. W. .. et al. , J
.. Immunol. , 130 1970 (1983
)).

NK細胞は、非特異的生体防禦系の一つとして、癌細胞
に対する所期防禦、癌細胞の転移の抑制、ウイルス感染
に対する抵抗性、骨髄での血球細胞増殖の調節など、重
要な働きを担っている〔熊谷勝男,伊東恭悟,日本臨床
,春期臨時増刊号, 42, 859 (1984))
NK cells, as a non-specific biological defense system, play important roles such as providing initial protection against cancer cells, suppressing cancer cell metastasis, resisting viral infections, and regulating blood cell proliferation in the bone marrow. [Katsuo Kumagai, Kyogo Ito, Japanese Clinical Research, Spring Special Issue, 42, 859 (1984)]
.

特に、癌に対する生体防禦反応においてNK細胞が重要
な働きをすることは、T細胞を欠如するが、高いNK活
性(NK細胞が癌細胞を破壊する活性)を有するヌード
マウスに自然発生癌や化学発癌剤による発癌の頻度が必
ずしも高くないことl:Rygaard J., et
 al., Immunol.Rev,,28. 43
 (1975)  ;Stutman D., et 
al,, Science,183. 534 (19
74) ]や、T細胞は有するが遺伝的にNK活性の低
いベージュマウス〔島村和男,玉置憲一,実験医学. 
 2. 398(1984) ;James B.,T
almadge, et al., Nature, 
284. 622 (1980) )や人為的にNK活
性を低下させたマウス〔島村和男,玉置憲一,実験医学
,  2, 398 (1984)]では、移植癌の転
移が冗進するという事実から考えられる。
In particular, the important role of NK cells in the body's defense response against cancer suggests that nude mice, which lack T cells but have high NK activity (the activity of NK cells to destroy cancer cells), have spontaneous cancers and chemical reactions. The frequency of carcinogenesis caused by carcinogenic agents is not necessarily high.1: Rygaard J. , et
al. , Immunol. Rev,,28. 43
(1975); Stutman D. , et
al., Science, 183. 534 (19
74)] and beige mice that have T cells but genetically low NK activity [Kazuo Shimamura, Kenichi Tamaki, Experimental Medicine.
2. 398 (1984); James B. ,T
almadge, et al. , Nature,
284. 622 (1980)) and mice in which NK activity was artificially reduced [Kazuo Shimamura, Kenichi Tamaki, Jikken Igaku, 2, 398 (1984)], the metastasis of transplanted cancers is accelerated.

設楽らはマウスにおいてインターロイキンー2と異なる
NK細胞増強因子が胸腺細胞から産生放出されることを
報告している(Sitara.K., 0,Ichim
ura, T.Mitsuno and T.Osaw
a, J.Immunol.,134. 1039 (
1985)]。
Shitara et al. have reported that NK cell enhancing factors different from interleukin-2 are produced and released from thymocytes in mice (Sitara.K., 0, Ichim
ura, T. Mitsuno and T. Osaw
a, J. Immunol. , 134. 1039 (
1985)].

本発明者の中の一部の者はNK細胞を活性化するリンホ
カインの存在を想定して、リンホカくン産生ヒ}T細胞
ハイブリドーマについて数種のセルラインを樹立し、M
IF(マクロファージ遊走阻止因子) 、MAF(マク
ロファージ活性化因子)等のリンホカインの存在を明ら
かにしてきた〔Kobayashi,Y., Asad
a,M,, }Iiguchi,M, andOsaw
a,T,, J.Immunol., 128. 27
14 (1982)  ;Asada,M., Hig
uchi,M., Kobayashi,Y, and
Osawa,T,, Cell, Immunol.,
 77, 150 (1983) :Higuchi,
M,, Asada,M,Kobayashi,Y.a
ndOsawa,T., Cell, Immunol
., 78. 257 (1983))。
Some of the present inventors assumed the existence of lymphokines that activate NK cells, and established several cell lines for lymphokine-producing human T cell hybridomas.
The existence of lymphokines such as IF (macrophage migration inhibitory factor) and MAF (macrophage activating factor) has been clarified [Kobayashi, Y. et al. , Asad
a, M,, }Iiguchi, M, and Osaw
a, T,, J. Immunol. , 128. 27
14 (1982); Asada, M. , High
uchi, M. , Kobayashi, Y., and
Osawa, T., Cell, Immunol. ,
77, 150 (1983): Higuchi,
M., Asada, M., Kobayashi, Y. a
ndOsawa, T. , Cell, Immunol
.. , 78. 257 (1983)).

特に、ヒトT細胞をスカシ貝ヘモシアニンによって処理
し、これを出発細胞としてヒ}T細胞ハイブリドーマを
取得すれば、当該ハイブリドーマは既知のリンホカイン
とは異なる全く新規なNK細胞活性化因子(以下、NK
AFと略記する)を産生ずるものであることを知り、特
開昭61−97224の発明として先に開示した。なお
、特開昭6 1−9 7 2 2 4の発明においては
、得られるNKAFはそれ自体が天然物であり、ペプチ
ドとしてのアミノ酸配列は明確ではなかった。
In particular, if human T cells are treated with keyhole limpet hemocyanin and a human T cell hybridoma is obtained using this as a starting cell, the hybridoma will contain a completely novel NK cell activator (hereinafter referred to as NK cell hybridoma) that is different from known lymphokines.
It was discovered that the present invention produces AF (abbreviated as AF), and was previously disclosed as an invention in JP-A No. 61-97224. In addition, in the invention of JP-A-61-97224, the obtained NKAF itself is a natural product, and the amino acid sequence as a peptide was not clear.

ところで、NKAFが医薬として工業化されるためには
、ペプチドとしてのアミノ酸配列が明確となり、遺伝子
組換技術による組換物として量産化される必要がある。
By the way, in order for NKAF to be industrialized as a medicine, the amino acid sequence as a peptide needs to be clarified and it needs to be mass-produced as a recombinant product using genetic recombination technology.

本発明者は、NK細胞の活性を増強させるNKAFを単
離、同定し、その遺伝子を取得することを目的として研
究に着手した。
The present inventor undertook research with the aim of isolating and identifying NKAF that enhances the activity of NK cells, and obtaining its gene.

即ち、まず、第一手段として特開昭61−97224の
NKAF天然物を精製して、その部分アミノ酸配列を特
定すること、及び第二手段として該配列に基づいて特開
昭6 1−9 7 2 2 4におけるヒ}T細胞ハイ
ブリドーマのmRNAより作成したcDNAライブラリ
ーより所定のcDNAクローンをつりあげ、最終的にN
KAF組換体を得ることを本発明の課題とした。
That is, first, as a first means, the NKAF natural product of JP-A No. 61-97224 is purified and its partial amino acid sequence is specified, and as a second step, the NKAF natural product of JP-A-61-97224 is purified based on the sequence. A designated cDNA clone was extracted from a cDNA library created from the mRNA of a human T cell hybridoma in 2 2 4, and finally
The objective of the present invention was to obtain a KAF recombinant.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、前述の課題に対し、まず第一段として、抗
体力ラムアフィニティークロマトグラフィーによりNK
AF天然物を精製し、そのアミノ酸部分配列を特定した
As a first step, the present inventors solved the above-mentioned problem by using antibody lumen affinity chromatography.
The AF natural product was purified and its amino acid partial sequence was identified.

次に、特定した一つのアミノ酸配列(KR−21)に基
づいてヒトT細胞ハイブリドーマ(C−108)のmR
NAより作成したcDNAライブラリーから所定のcD
NAクローンをつりあげた。次に、得られたcDNAク
ローン、pNK 8308の塩基配列からNKAFのア
ミノ酸配列を後記するごとく特定するとともに組換NK
AFの発現を行い、その活性を確認した。
Next, based on the single identified amino acid sequence (KR-21), we determined the mR of human T cell hybridoma (C-108).
Select a given cD from a cDNA library created from NA.
I picked up the NA clone. Next, from the base sequence of the obtained cDNA clone, pNK8308, the amino acid sequence of NKAF was identified as described below, and the recombinant NK
AF was expressed and its activity was confirmed.

以上の諸知見をもとにさらに検討を加え、本発明を完成
するに至った。
Based on the above findings, further studies were conducted and the present invention was completed.

以下本発明の詳細を説明する。The details of the present invention will be explained below.

〔構  成〕〔composition〕

本発明組換NKAFは例えばその分子中に下記一次構造
式で示されるアミノ酸配列(以下、本発明に係るアミノ
酸配列と呼ぶ)を含有する。
The recombinant NKAF of the present invention contains, for example, an amino acid sequence represented by the following primary structural formula (hereinafter referred to as the amino acid sequence according to the present invention) in its molecule.

LeuH isLeuArgSerG 1uThrSe
rThrPheG 1uThrProLeu9n ^1aValG1uSerlleSerValProA
spMetValAspLysAsnLeuThrCy
sProG1uG1uG1uAspThrVaILys
VaIVaIGlyq0 TyrArg I 1eG 1nCysSerVa I
SerA 1aLeuAsnG 1nG 1 yG I
nValTrplleGlyG1yArglleThr
G1ySerG1yArgCysArgArgPheG
1nTrpValAspG1ySerArgTrpAs
nPheA1aTyrTrpA1aAlaHisG1n
ProTrpSerArgG1yG1yl{iscys
Val1qn 本発明の最終目的物質は遺伝子組換技術によって生産す
ることができる。
LeuH isLeuArgSerG 1uThrSe
rThrPheG 1uThrProLeu9n ^1aValG1uSerlleSerValProA
spMetValAspLysAsnLeuThrCy
sProG1uG1uG1uAspThrVaILys
VaIVaIGlyq0 TyrArg I 1eG 1nCysSerVa I
SerA 1aLeuAsnG 1nG 1 yG I
nValTrplleGlyG1yArglleThr
G1ySerG1yArgCysArgArgPheG
1nTrpValAspG1ySerArgTrpAs
nPheA1aTyrTrpA1aAlaHisG1n
ProTrpSerArgG1yG1yl{iscys
Val1qn The final target substance of the present invention can be produced by genetic recombination technology.

従って本発明組換NκAFをコードするcDNA1該c
DNAを外来遺伝子として含み、かつ選択した宿主内で
制御及び発現が可能となるように連結して得られた発現
プラスミドはいずれも本発明の最終目的物質の生産のた
めに必要な中間的物質であり、同一の問題点を解決する
意味において発明としては共に一体となることができる
Therefore, cDNA1 encoding the recombinant NκAF of the present invention
Any expression plasmid obtained by containing DNA as a foreign gene and ligated to enable control and expression in a selected host is an intermediate material necessary for the production of the final target substance of the present invention. Both inventions can be integrated in the sense that they solve the same problem.

また、発現ブラスミドによって形質転換された宿主もc
DNA及び発現プラスミドと同様に発明としては共に一
体となることができる。宿主としては大腸菌や酵母、動
物細胞、例えば、BHK細胞、CHD細胞が使用される
In addition, hosts transformed by the expression plasmid may also be c
Like DNA and expression plasmids, they can go together as an invention. E. coli, yeast, and animal cells such as BHK cells and CHD cells are used as hosts.

cDNAを保有する大腸菌株の一つとしてXLI−Bl
ue/pNK 8308 Bによって識別表示されるも
のをあげることができる。これは後記実施例1において
示され、かつ微工研に寄託されている。
XLI-Bl is one of the E. coli strains that possesses cDNA.
Those identified and displayed by ue/pNK 8308B can be mentioned. This will be shown in Example 1 below and has been deposited with the Institute of Fine Technology.

受託番号はFεRM P−10161(FERM BP
−2468)である。
The accession number is FεRM P-10161 (FERM BP
-2468).

最終目的物質である本発明組換NKAFは後記実験例に
よって示されるごとく、抗腫瘍活性を有している。
The recombinant NKAF of the present invention, which is the final target substance, has antitumor activity as shown by the experimental examples described below.

従って、天然NKAFが医薬組成物の必須の有効成分と
なって、その活性を利用する医療目的に提供され得るの
と同様に、本発明組換NKAFもその活性を利用する治
療目的のための医薬組成物の必須の有効成分となること
ができる。
Therefore, just as natural NKAF becomes an essential active ingredient of a pharmaceutical composition and can be provided for medical purposes utilizing its activity, the recombinant NKAF of the present invention can also be used as a pharmaceutical for therapeutic purposes utilizing its activity. It can be an essential active ingredient of the composition.

この場合に、該乙、薬組成物は主として注射剤であり、
静脈内投与される。
In this case, the pharmaceutical composition is mainly an injection;
Administered intravenously.

注射剤として製造されるためには、微量生理活性物質を
注射剤とするときの常法に従って行えばよい。
In order to manufacture it as an injection, it may be carried out according to the conventional method when making a trace amount of physiologically active substance into an injection.

従って、例えば、本発明組換NKAFを単独或いは適当
な賦形剤、溶解剤と共に水溶液とし、無菌濾過して充填
し、凍結乾燥し、他方溶解用水溶液を添付して用時溶解
型注射剤とすればよい。
Therefore, for example, the recombinant NKAF of the present invention alone or together with appropriate excipients and solubilizers is made into an aqueous solution, sterile-filtered, filled, and lyophilized, and an aqueous solution for dissolution is added to prepare a ready-to-use injection. do it.

〔方 法〕〔Method〕

天然NKAPの製造方法及び測定方法について説明する
A method for producing and measuring natural NKAP will be explained.

1.精製天然NKAFの製造 組換NKAFを製造するにあたって、まず天然NKAF
の精製と構造解析を以下のごとく行った。
1. Production of purified natural NKAF In producing recombinant NKAF, first, natural NKAF is
Purification and structural analysis were performed as follows.

天然NKAFを産生するヒ}T細胞ハイブリドーマKC
8−1−10 (特開昭61−97224)のクローン
C−108株の無血清培養上清より、イオン交換クロマ
トグラフィー、ゲル濾過クロマトグラフィー、アフィニ
ティークロマトグラフィー、高速液体クロマトグラフィ
ー等の種々の方法によって天然NκAFを精製できる。
Human T cell hybridoma KC that produces natural NKAF
Various methods such as ion exchange chromatography, gel filtration chromatography, affinity chromatography, high performance liquid chromatography, etc. Natural NκAF can be purified by

この精製NKAFのN末端アミノ酸配列及びトリブシン
を用いて酵素消化した精製NKAF断片ペプチドのアミ
ノ酸配列を決定することにより、cDNAのクローニン
グが可能となる。
By determining the N-terminal amino acid sequence of this purified NKAF and the amino acid sequence of the purified NKAF fragment peptide enzymatically digested with tribucin, cDNA cloning becomes possible.

なお、NKAFのNK細胞活性に対する増強効果の測定
は、プラスチック非附着性のヒト末梢血リンパ球(プラ
スチック非附着性PBLと略称)が、ヒト癌細胞株K−
562細胞を破壊する活性(NK活性)を指標として測
定することができる。即ち、牛胎児血清10%を含有す
るRPMI−1640培地(10%FCS−RPMI−
1640と略す)で2倍系列稀釈をした検液50μlを
96穴マイクロプレートに入れ、次にプラスチック非附
着性PBL1×10s個/50μlヲ加エ、37℃、1
6時間培養した。これにSICrでラベルしたK−56
2細胞液をI XIO’個/100μlを加え、さらに
4時間、37℃で培養する。
The enhancement effect of NKAF on NK cell activity was measured using plastic non-adherent human peripheral blood lymphocytes (abbreviated as plastic non-adherent PBL) in human cancer cell line K-
The activity of destroying 562 cells (NK activity) can be measured as an indicator. That is, RPMI-1640 medium containing 10% fetal bovine serum (10% FCS-RPMI-
1640) was diluted 2 times serially into a 96-well microplate, and then added to 1 x 10 s of plastic non-adhesive PBL/50 μl at 37°C.
Cultured for 6 hours. K-56 labeled with SICr
Add IXIO' cells/100 μl of the 2-cell solution, and further culture at 37° C. for 4 hours.

別に対照として10%FCS−RPMI−1640培地
100μlを用意し、16時間培養し、この培養液にS
ICrでラベルしたκ−562細胞液100μlを加え
、さらに4時間培養する。次に、ここから100μlを
とり、遊離sICrを測定する。
Separately, 100 μl of 10% FCS-RPMI-1640 medium was prepared as a control, cultured for 16 hours, and S
Add 100 μl of ICr-labeled κ-562 cell solution and culture for an additional 4 hours. Next, 100 μl is taken from this and free sICr is measured.

NKAFの活性は、この条件において最大の増強効果の
50%増強を示す活性をもってIUと定義することがで
きる。
The activity of NKAF can be defined as IU as the activity showing 50% enhancement of the maximum enhancement effect under these conditions.

C−a ただし、式中bは試料に係る遊離” Cr (cpm)
を示し、aは対照に係る遊離” Cr (cpm)を示
し、また、CはS ICrでラベルしたK−562細胞
液(10’/mi’)10012における総” Cr 
(cpm)を示す。なお、3回の測定の平均値を求める
C-a However, in the formula, b is the free Cr (cpm) related to the sample.
, a indicates free Cr (cpm) for the control, and C indicates total Cr in K-562 cell fluid (10'/mi') labeled with SICr.
(cpm). Note that the average value of three measurements is determined.

天然NKAFの製造の一例を以下に示す。An example of the production of natural NKAF is shown below.

■ 天然NKAFの精製 ヒトT細胞ハイブリドーマKC8−1−10 C−10
8株をIHのガラス製ジャー中で10%FCS−RPM
[−1640培地で1 〜2xlO’ cells/m
lまで増殖させた。
■ Purification of natural NKAF human T cell hybridoma KC8-1-10 C-10
8 strains in an IH glass jar at 10% FCS-RPM
[-1-2xlO' cells/m in -1640 medium
It was grown to 1.

培養後、細胞を遠心分離して集め、RDF培地で細胞を
洗った後、細胞をI XIO’cells/rITlに
なるようRDF培地に懸濁した。
After culturing, the cells were collected by centrifugation, washed with RDF medium, and then suspended in RDF medium to give IXIO'cells/rITl.

ガラスジャー中で37℃、14〜20日間連続培養を行
った。
Continuous culture was performed in a glass jar at 37°C for 14 to 20 days.

10l/日の割合で上清を連続的に交換し、NκAFを
含む培養上清より以下の方法で精製した。
The supernatant was continuously exchanged at a rate of 10 l/day, and the culture supernatant containing NκAF was purified by the following method.

無血清培養上清200 !!をガラス繊維濾紙GF/F
(Whatman Inc,)で濾過し、細胞破片を除
去した後、Sepabeads SP−900カラム(
三菱化成gel vol 2j! )に、25 I!/
時の流速で溶出し、フェノールレッドなどの疎水性低分
子物質を除去した。次にカラム素通り画分をプールし、
0.2M NaC1含有のIQmM7ris−HCI緩
衝液 (pH8)の電導度に合わせた後、0.2M N
aC1含有1(lmM Tris−}ICI緩衝液(p
H8)で平衡化したDEAE−Sepharose力ラ
ム(ファルマシアget vol 21)に12l/時
の流速で処理し、このカラムを同じ緩衝液で洗った後、
0.6MNaC1含有のlQmM Tris−HCI緩
衝液(pH8)で溶出した。
Serum-free culture supernatant 200! ! Glass fiber filter paper GF/F
(Whatman Inc,) to remove cell debris, and then a Sepabeads SP-900 column (
Mitsubishi Kasei gel vol 2j! ), 25 I! /
Hydrophobic low-molecular substances such as phenol red were removed by elution at a flow rate of Next, pool the fractions that passed through the column,
After adjusting the conductivity of IQmM7ris-HCI buffer (pH 8) containing 0.2M NaCl, 0.2M N
aC1-containing 1 (lmM Tris-}ICI buffer (p
DEAE-Sepharose column (Pharmacia get vol 21) equilibrated with H8) at a flow rate of 12 l/h, and after washing the column with the same buffer,
Elution was performed with 1QmM Tris-HCI buffer (pH 8) containing 0.6M NaCl.

NKAF活性を有する溶出画分4I!を限外濾過膜(Y
M−乳 アミコン)上で約1000倍に濃縮した。この
濃縮画分をO. IM NH.HCO3水溶液で平衡化
したSephadex G−75ゲル濾過力ラム(ファ
ルマシア.50φX900mm)に10〇一/時の流速
で処理し、核酸などの高分子物質を除去し、活性画分を
プールした。この活性画分を集め(約900mj2) 
YM−5膜上で約20倍に濃縮した後、凍結乾燥を行っ
た。
Elution fraction 4I with NKAF activity! Ultrafiltration membrane (Y
It was concentrated about 1000 times on M-Milk (Amicon). This concentrated fraction was collected at O.O. IM NH. The mixture was treated with a Sephadex G-75 gel filtration ram (Pharmacia, 50 φ x 900 mm) equilibrated with an aqueous HCO3 solution at a flow rate of 100 l/hr to remove high molecular substances such as nucleic acids, and the active fractions were pooled. Collect this active fraction (approximately 900 mj2)
After concentrating about 20 times on a YM-5 membrane, freeze-drying was performed.

この凍結乾燥物をO, LM CH,COONa緩衝液
(1)85)/O. LM Ha2So.緩衝液(p}
15) = 1 / 1の溶液5rnlに溶解した。
This lyophilized product was mixed with O, LM CH, COONa buffer (1)85)/O. LM Ha2So. Buffer solution (p}
15) = 1/1 solution dissolved in 5rnl.

この溶液を分取用Phenyl−5PW−RP力ラム(
東ソー、21.5φX150mm)に吸着させた。
This solution was added to a preparative Phenyl-5PW-RP power ram (
Tosoh, 21.5φX150mm).

溶出溶媒として0.IM CHsCDDNa緩衡液(p
}15)/O. IM Na,SO4緩衝液(pH5.
 0) = 1 / 1を溶出溶媒Aとし、A/CH.
CN = 1 / 1を溶出溶媒Bとする。
0.0 as an elution solvent. IM CHsCDDNA buffer (p
}15)/O. IM Na, SO4 buffer (pH 5.
0) = 1/1 as elution solvent A, A/CH.
Let CN = 1/1 be the elution solvent B.

溶出条件は溶出溶媒Bを3時間で0%→100%に直線
的に増加させ、NKAFを溶出させた。
Elution conditions were such that elution solvent B was linearly increased from 0% to 100% over 3 hours to elute NKAF.

即ち、本条件下で保持時間100〜110分に主活性画
分が溶出され、一部は110〜140分にも溶出された
That is, under these conditions, the main active fraction was eluted at a retention time of 100 to 110 minutes, and a portion was also eluted at 110 to 140 minutes.

これらの活性画分は後述のモノクロナル抗体と反応する
ことがEIAで確認された。
It was confirmed by EIA that these active fractions react with the monoclonal antibody described below.

従って、保持時間100〜110分に溶出される主活性
画分を集め、凍結乾燥し、部分精製した天然NKAFを
得た。
Therefore, the main active fraction eluted at a retention time of 100 to 110 minutes was collected and lyophilized to obtain partially purified natural NKAF.

■ 天然NKAFに対するモノクロナル抗体及びそのカ
ラムの作製 ■の項の方法で得た部分精製した天然 NKAFを免疫抗原として、フロイント完全アジュバン
トと混合し、エマルジョンを作製し、マウス1匹あたり
0.2mi’ずつ3回腹腔内に投与し、免疫した。
■ Preparation of monoclonal antibody against natural NKAF and its column The partially purified natural NKAF obtained by the method in section (■) was used as an immunization antigen, mixed with Freund's complete adjuvant to prepare an emulsion, and 0.2 mi' per mouse was prepared. The mice were immunized by intraperitoneally administering each drug three times.

次に、この部分精製天然NκAFをマウス尾静脈より投
与し、3日後膵臓を取り出した。
Next, this partially purified natural NκAF was administered to the mice through the tail vein, and 3 days later, the pancreas was removed.

この膵臓より得た膵臓細胞とマウス骨髄腫、細胞X63
−Ag 8, 6, 5. 3(Flow Lab) 
 とを45%ポリエチレングリコールー3350(Si
gma)を用いて融合させた。
Pancreatic cells obtained from this pancreas and mouse myeloma cell X63
-Ag 8, 6, 5. 3 (Flow Lab)
and 45% polyethylene glycol-3350 (Si
gma).

以下、通常の方法C G.Galfr’e and C
.Milstein, et al,, Method
s in Bnzymology,73. 3 (19
81))に従って融合細胞を増殖させた。
Below, the usual method CG. Galfr'e and C
.. Milstein, et al., Method
s in Bnzymology, 73. 3 (19
The fused cells were grown according to 81)).

NKAF活性を吸収する抗体を産生ずる融合細胞2種1
9−8−7. 29−C−8を選択した。
Two types of fused cells that produce antibodies that absorb NKAF activity1
9-8-7. 29-C-8 was selected.

得られた融合細胞を1週間以上前にプリスタン(アルド
リッチ)0.5mfずつ腹腔内投与したマウスの腹腔内
に移植し、貯留した腹水を採取した。
The obtained fused cells were intraperitoneally transplanted into mice that had been intraperitoneally administered with 0.5 mf of pristane (Aldrich) more than one week before, and the accumulated ascites was collected.

2種のモノクロナル抗体(29−C−8. 19−ト7
)はいずれもIgG.であった。
Two types of monoclonal antibodies (29-C-8.
) are all IgG. Met.

次に、プロテインA−アガロース(レブリゲン)を用い
て精製し、これをプロムシアン活性化セファロース4B
(ファルマシア)と反応させ、固定化モノクロナル抗体
ゲルを作成した。
Next, protein A-agarose (Rebrigen) was used to purify it, and this was purified using Promcyan-activated Sepharose 4B.
(Pharmacia) to create an immobilized monoclonal antibody gel.

2.高純度精製天然NKAFの構造解析1−■の項で部
分精製した天然NKAF (SephadexG−75
画分)を■の項で作製したモノクロナル抗体を固定化し
たゲルを用いてアフィニティークロマトグラフィーを行
い、活性画分を採取した(図1参照)。
2. Structural analysis of highly purified natural NKAF (SephadexG-75
The active fraction was subjected to affinity chromatography using a gel immobilized with the monoclonal antibody prepared in section (■), and the active fraction was collected (see Figure 1).

本品は高純度に精製した天然NKAPであり、その比活
性は約1 xlO’U/mg蛋白質であった。
This product is highly purified natural NKAP, and its specific activity was approximately 1 x lO'U/mg protein.

本品を用いて以下の諸性質について解析した。The following properties were analyzed using this product.

■ アミノ酸組成分析 脱塩した天然NKAFを加水分解用小試験管の底部で乾
固させた後、ガラスバイアル内に立て、バイアル底部に
6N }IC1 500μlを注入後、バイアルごと減
圧し、110℃で24時間塩酸加水分解した。このNK
AF塩酸加水分解物をアミノ酸分析計(Beckman
 System6300アミノ酸アナライザー》でアミ
ノ酸含量を測定した。
■ Amino acid composition analysis After drying the desalted natural NKAF at the bottom of a small test tube for hydrolysis, place it upright in a glass vial, inject 500 μl of 6N}IC1 into the bottom of the vial, reduce the pressure of the entire vial, and heat at 110°C. Hydrochloric acid hydrolysis was carried out for 24 hours. This NK
AF hydrochloric acid hydrolyzate was analyzed using an amino acid analyzer (Beckman
The amino acid content was measured using System 6300 Amino Acid Analyzer.

結果を表1に示す。The results are shown in Table 1.

表 1 アミノ酸分析 ■ 糖組成分析 中性糖の含量をオルシノール硫酸法により定量したとこ
ろ、約120μg/mg蛋白質であった。また、ウロン
酸含量をカルバゾール硫酸法により定量したところ、約
300μg/mg蛋白質であった。
Table 1 Amino Acid Analysis ■ Sugar Composition Analysis The neutral sugar content was determined by the orcinol sulfuric acid method and was approximately 120 μg/mg protein. Further, the uronic acid content was determined by the carbazole sulfuric acid method and was approximately 300 μg/mg protein.

次に、糖組成分析を行ったところ、表2のごとくであっ
た。
Next, a sugar composition analysis was performed, and the results were as shown in Table 2.

以上の結果より、0−グリコシド型糖鎖(ムコ多糖及び
ムチン型糖鎮)を多く含む糖蛋白質であることが確認さ
れた。
From the above results, it was confirmed that this is a glycoprotein containing a large amount of 0-glycoside type sugar chains (mucopolysaccharides and mucin type sugar chains).

表 2 糖組成分析 ■ 巳!八によるNκ八Fの定量 2種のモノクロナル抗体のうち、29−C−8をwel
lにcoat L、洗浄後NKAFを加え、室温で1時
間反応後洗浄し、もう一方のモノクロナル抗体19−8
−7をビオチン化したものを加え、室温で1時間反応後
、洗浄し、次に^vidin−Peroxidaseを
加え室温30分反応後洗浄し、基質であるオルトフェニ
レンジアミン液を加え、室温で発色させ15分後にIN
}ICIで反応をとめ、プレートリーダーで00492
の吸光度を測定した。その検量線を図2に示す。
Table 2 Sugar composition analysis ■ Snake! Quantification of Nκ8F by 8 Of the two monoclonal antibodies, 29-C-8 was used as a well.
Add coat L and NKAF after washing to L, react for 1 hour at room temperature, wash, and add the other monoclonal antibody 19-8.
Add biotinylated -7 and react for 1 hour at room temperature, then wash. Next, add ^vidin-peroxidase and react for 30 minutes at room temperature, then wash. Add the substrate orthophenylenediamine solution and allow color development at room temperature. IN after 15 minutes
}Stop the reaction with ICI and read 00492 with a plate reader.
The absorbance was measured. The calibration curve is shown in FIG.

■ 糖鎮の除去 NKAFは多《の糖を有しているので、アミノ酸配列分
析のために、糖鎖除去法の検討を行った。
■ Removal of sugar chains Since NKAF has many sugars, we investigated methods for removing sugar chains for amino acid sequence analysis.

分析はSOS−PAGE (ドデシル硫酸ナトリウムー
ポリアクリルアミドゲル電気泳動)銀染色法と、Wes
tern−1mmunoblott ing法により行
った。即ち、脱塩した精製NKAFをシアリダーゼ、0
−グリカナーゼ、コンドロイチナーゼ、ヘパリチナーゼ
で処理し、SOS−PAGEによって糖が切断されたか
どうか検討.した。
Analysis was performed using SOS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) silver staining method and Wes
This was performed using the tern-1 mm munoblotting method. That is, desalted purified NKAF was treated with sialidase, 0
- Treated with glycanase, chondroitinase, and heparitinase, and examined whether sugars were cleaved by SOS-PAGE. did.

ヘパリチナーゼでは反応前後の変化はなく、シアリダー
ゼ、0−グリカナーゼではメインバンドは低分子化した
が、スメアーは消失しなかった。コンドロイチナーゼを
用いるとスメアーは消失し35KOにメインバンドを生
じた。このバンドはWesternImmunoblo
ttingで抗NKAFモノクロナル抗体及びウサギ抗
NKAF抗体と反応することが確かめられた。また、コ
ンドロイチナーゼ処理で活性は保持された。
With heparitinase, there was no change before and after the reaction, and with sialidase and 0-glycanase, the main band became lower in molecular weight, but the smear did not disappear. When chondroitinase was used, the smear disappeared and a main band appeared at 35KO. This band is Western Immunoblo
It was confirmed that the antibody reacted with anti-NKAF monoclonal antibody and rabbit anti-NKAF antibody by tting. Furthermore, the activity was maintained by chondroitinase treatment.

脱塩した精製NKAFを還元力ルポキサミドメチル化後
、コンドロイチナーゼ0.5U含有の100mM Tr
is−HCI(pH8) 、30mM CHsCOON
aに溶解し、37℃で60分反応させ、コンドロイチン
硫酸鎮を切断した。
After desalted purified NKAF was subjected to reductive lupoxamide methylation, it was treated with 100mM Tr containing 0.5U of chondroitinase.
is-HCI (pH 8), 30mM CHsCOON
The chondroitin sulfate was cleaved by dissolving it in A and reacting at 37°C for 60 minutes.

この反応物を逆相HPLC (カラムはVydacC4
、溶媒として0.1%TF^(トリフルオ口酢酸) /
CH.CN系でCH.CNを0%→100%直線的に3
0分間で1. 5rnl/分の流速)で精製した(図3
参照)。
This reaction product was analyzed by reverse phase HPLC (column was VydacC4
, 0.1% TF^ (trifluoroacetic acid) as a solvent /
CH. CH in CN system. CN linearly from 0% to 100% 3
1 in 0 minutes. (Flow rate of 5rnl/min) (Figure 3
reference).

図3のクロマトグラム上のFr.1とFr,2のSOS
−PAGBを行うと、図4に示したようにFr, 1は
35κDのモノバンドとなり、Fr,2は35κD以上
のスメアーのバンドとなった。Fr, 2を6M塩酸グ
アニジンを含む50mM Tris−HCI(pH9)
  l:溶解して逆相11PLcを行うと、Fr.1に
移行することから、Fr.2はFr.1のアグリゲーシ
ョンしたものであると推定される。
Fr. on the chromatogram in FIG. 1 and Fr, 2 SOS
- When PAGB was performed, as shown in FIG. 4, Fr,1 became a 35κD monoband, and Fr,2 became a smear band of 35κD or higher. Fr, 2 in 50mM Tris-HCI (pH 9) containing 6M guanidine hydrochloride
1: When dissolved and subjected to reverse phase 11PLc, Fr. 1, so Fr. 2 is Fr. It is estimated that this is an aggregation of 1.

■ N末端アミノ酸配列分析 図3のFr, 1を用いてN末端アミノ酸配列分析を行
い、ロイシンから始まるN末端28残基を次式の如く決
定した。
(2) N-terminal amino acid sequence analysis N-terminal amino acid sequence analysis was performed using Fr, 1 in Figure 3, and the N-terminal 28 residues starting from leucine were determined as shown in the following formula.

Leu−H is−Leu−Arg−Ser−G lu
−Thr−XXX−XXX−Phe−Glu−XXX−
Pro−Leu−Gly−Ala−Lys−Thr−L
eu−Pro−Glu−Asp−Glu−Glu−Th
r−Pro−Glu−Gln8, 9. 12残基はア
ミノ酸が出現せず、〇−グリコシド型糖鎮の付加したS
et又はThrと推定した。
Leu-His-Leu-Arg-Ser-Glu
-Thr-XXX-XXX-Phe-Glu-XXX-
Pro-Leu-Gly-Ala-Lys-Thr-L
eu-Pro-Glu-Asp-Glu-Glu-Th
r-Pro-Glu-Gln8, 9. For the 12th residue, no amino acid appears, and the S attached to the 〇-glycoside type sugar
Et or Thr.

■ トリプシンで酵素消化した天然NKAFのペプチド
マッピング 図3のFr.1を2M尿素含有の0.1M重炭酸アンモ
ニウム(p}18) に溶解し、トリプシンを加え、3
7℃で16時間反応し、反応後、逆相HPLC (カラ
ムはVydac C4,溶媒として0.1%TF^/C
H.CN系でCH.CNを0%→60%直線的に1時間
で1.5mi’/分の流速》で精製した。
■ Peptide mapping of natural NKAF enzymatically digested with trypsin Fr. 1 was dissolved in 0.1 M ammonium bicarbonate (p}18) containing 2 M urea, trypsin was added, and 3
The reaction was carried out at 7°C for 16 hours, and after the reaction, reverse phase HPLC (column: Vydac C4, solvent: 0.1% TF^/C
H. CH in CN system. CN was purified linearly from 0% to 60% in 1 hour at a flow rate of 1.5 mi'/min.

生じたペプチド21個の断片についてアミノ酸分析、ア
ミノ酸配列分析した(表3参照)。
The resulting 21 peptide fragments were subjected to amino acid analysis and amino acid sequence analysis (see Table 3).

各ペプチドのアミノ酸配列は全て後記の組換NκAFの
cDNA配列上に同定された(図5、図6参照)。
The amino acid sequences of each peptide were all identified on the cDNA sequence of recombinant NκAF described below (see FIGS. 5 and 6).

■ C末端アミノ酸配列 トリブシン切断ペプチドを0. 02M塩化カルシウム
を含む0. 05M炭酸ナトリウム(p}15)で平衡
化したアンハイドロトリブシンアガロースカラムで非吸
着画分を集め、前述の逆相HPLCの条件でC末端ペブ
チドフラグメントを分離した(図7参照)。
■ C-terminal amino acid sequence tribucin cleavage peptide with 0. 0.02M calcium chloride. The non-adsorbed fraction was collected on an anhydrotribucin agarose column equilibrated with 05M sodium carbonate (p}15), and the C-terminal peptide fragment was separated under the reversed-phase HPLC conditions described above (see FIG. 7).

アミノ酸配列分析を行ったところ、^rg一しeu−P
ro−Phe−1 1e−Cys−Ser−Tyr と
決定し、KR−17のアミノ酸配列に一致した。
Amino acid sequence analysis revealed that ^rg-eu-P
It was determined to be ro-Phe-1 1e-Cys-Ser-Tyr, which matched the amino acid sequence of KR-17.

〔実 施 例〕〔Example〕

前述した天然NKAF精製標品のトリプシン氷解フラグ
メントのアミノ酸配列をもとに、NKAFをコードする
mRNAの塩基配列を推定し、それに対応するDNAオ
リゴマーを合成する。次に、このオリゴマーをプローブ
としてC−108細胞のmRNA由来のcDNAライブ
ラリーをハイブリダイゼーションによりスクリーニング
してNKAFをコードする配列を有するcDNAクロー
ンを選び出した。
Based on the amino acid sequence of the tryptic ice-thawed fragment of the purified natural NKAF sample described above, the base sequence of mRNA encoding NKAF is estimated, and a DNA oligomer corresponding to it is synthesized. Next, a cDNA library derived from C-108 cell mRNA was screened by hybridization using this oligomer as a probe to select a cDNA clone having a sequence encoding NKAF.

以下の実施例により本発明を更に詳細に説明する。The invention will be explained in further detail by the following examples.

実施例1 (1)  mRNAO単離 RPMI−1640培地、PIIIM(GIBCO社製
Poke1リeed Mitogen) 4 μi /
一にて8時間刺激したKC8−1−10 C−108株
1.2X109個を集め、Chirgwinらの方法C
Chirgwin, et al., Bio−che
mistry, 18. 5294 (1979)]を
用いてRNAを抽出・した。
Example 1 (1) mRNAO isolation RPMI-1640 medium, PIIIM (Poke1 lead Mitogen manufactured by GIBCO) 4 μi/
1.2 x 109 cells of KC8-1-10 C-108 strain stimulated for 8 hours at one time were collected and incubated with method C of Chirgwin et al.
Chirgwin, et al. , Bio-che
mistry, 18. 5294 (1979)] was used to extract RNA.

抽出液3容を1容の5. 7M C.CI−0. 1M
 EDTA溶液上に重層し、超遠心分離機(SRP 2
8 SAローター、日立)を用い、2600Orpmで
25℃下36時間遠心分離し、RNAをペレットとして
回収した。
5. Add 3 volumes of extract to 1 volume. 7M C. CI-0. 1M
Layer it on the EDTA solution and place it in an ultracentrifuge (SRP 2).
8 SA rotor (Hitachi) and centrifuged at 2600 rpm for 36 hours at 25°C, RNA was recovered as a pellet.

得られたRNAを10mM Tris−HCI緩衝液(
pH7.4)に溶解し、エタノールを加えて−70℃下
1時間放置した。次に遠心により沈殿させたRN^を1
0mM Tris−HCI (pH7. 4)に溶解し
、0.5MKCIをさらに加えた。
The obtained RNA was added to 10mM Tris-HCI buffer (
pH 7.4), ethanol was added, and the mixture was left at -70°C for 1 hour. Next, RN^ precipitated by centrifugation was
It was dissolved in 0mM Tris-HCI (pH 7.4), and 0.5M KCI was further added.

これを同じ緩衝液を用いて平衡化したオリゴ(dT)セ
ルロース力ラム(20mmφX 150mm)に付し、
0.5MKCI、10mM Tris−HCIで十分に
洗浄後、lQmM Tris−HCI水溶液でmRNA
を溶出させた。
This was applied to an oligo(dT) cellulose force ram (20 mmφ x 150 mm) equilibrated using the same buffer solution,
After thorough washing with 0.5M KCI and 10mM Tris-HCI, remove mRNA with 1QmM Tris-HCI aqueous solution.
was eluted.

C−108細胞由来mRNA 500μgを50mM 
Tris−HCI (pH7. 4)、0.2M Na
C1 , 1mM BDTAを含む10%から28%シ
ヨ糖濃度勾配を形成させた溶液15ml!に重層し、超
遠心分離機(SRP 28 0−ター、日立〉を用いて
2600Orpmで20℃下16時間遠心分離した。
500μg of C-108 cell-derived mRNA at 50mM
Tris-HCI (pH 7.4), 0.2M Na
C1, 15ml of a solution containing 1mM BDTA and forming a 10% to 28% sucrose concentration gradient! and centrifuged at 2600 rpm at 20° C. for 16 hours using an ultracentrifuge (SRP 280-tar, Hitachi).

次に500μβずつ分画し、各分画にエタノールを加え
、mRNAを沈殿させた。
Next, the mixture was fractionated into 500 μβ portions, and ethanol was added to each fraction to precipitate mRNA.

各分画mRNAは滅菌水で溶解し、mRNA濃度1μg
/ml!に調製した。
Each fraction of mRNA was dissolved in sterile water, and the mRNA concentration was 1 μg.
/ml! It was prepared as follows.

約2kbからQ.5kbに至るサイズのmRNAを主に
含む画分を集めcDNA合成反応に供した。
From about 2kb to Q. Fractions mainly containing mRNAs up to 5 kb in size were collected and subjected to cDNA synthesis reaction.

(2)  C D N Aライブラリーの作製ロ.Gu
blerらの方法(U,Gubler, et al,
,Gene, 25, 263 (1983)] ニ従
ッテcDNAを合成した。
(2) Creation of CD N A library b. Gu
The method of Gubler et al.
, Gene, 25, 263 (1983)].

即ち、1μgの精製mRNAを用い、Amersham
のcDNA合成キット (コード番号RPN 1256
)’E−使用した。
That is, using 1 μg of purified mRNA, Amersham
cDNA synthesis kit (code number RPN 1256)
)'E-used.

二本鎮c D N AはセファロースCL−6Bカラム
を用いてゲル濾過を行い精製した後、修飾酵素BcoR
I メチラーゼを用いてメチル化した。メチル化したc
DNAにBcoRIリンカー(pGGAATTCC)を
結合させ、εcoRIで切断してEcoRI粘着末端を
作製した。このcDNAをセファロースCL−6Bカラ
ムを用いてゲル濾過を行い、過剰なBcoRIリンカー
を除去した。
Nihonchin cDNA was purified by gel filtration using a Sepharose CL-6B column, and then purified using the modification enzyme BcoR.
Methylated using I methylase. Methylated c
A BcoRI linker (pGGAATTCC) was attached to the DNA, and the DNA was cut with εcoRI to create EcoRI sticky ends. This cDNA was subjected to gel filtration using a Sepharose CL-6B column to remove excess BcoRI linker.

この精製cDNAを、BcoRIで切断しフォスファタ
ーゼ処理したλgt 11と結合させ(モル比0.8:
1)、ファージ粒子にパッケージングして8 XIO’
〜1.4 XIO’個の独立したクローンからなるcD
NAライブラリーを得た。
This purified cDNA was combined with λgt 11 that had been cut with BcoRI and treated with phosphatase (molar ratio 0.8:
1), packaged into phage particles and 8XIO'
cD consisting of ~1.4 XIO' independent clones
Obtained NA library.

このファージを15cmφのプレート10枚にプレーテ
ィングし、ファージを増殖させて1×10”pfu/m
j!のファージ溶液160mf!を得た。
This phage was plated on 10 plates with a diameter of 15 cm, and the phage was multiplied to 1×10”pfu/m
j! Phage solution 160mf! I got it.

ライブラリーの約90%がインサートを有し、ランダム
にとった10クローンのうち8クローンに300bp〜
2 kbpまでのインサートが入っていた。インサート
の平均サイズは1, 2kbpであった。
Approximately 90% of the library had inserts, and 8 out of 10 randomly selected clones had inserts of 300 bp to
It contained inserts up to 2 kbp. The average size of the inserts was 1.2 kbp.

(3)  DNAブローブの作製 天然NKAFのトリプシン水解フラグメントKR−21
 (W−N−F−A−Y−X−^−A−H−Q−P−W
−S−R) (7) 7 ミ/酸配列のうち、トリプト
ファンに始まりトリプトファンに終わる最初の12残基
の配列に対応するブローブを作製した。
(3) Preparation of DNA probe Tryptic hydrolyzed fragment of natural NKAF KR-21
(W-N-F-A-Y-X-^-A-H-Q-P-W
-S-R) (7) 7 A probe corresponding to the sequence of the first 12 residues starting from tryptophan and ending with tryptophan among the 7 mi/acid sequences was prepared.

この配列の中程の未同定(Xで示す)の残基は、Set
と仮定した。即ち、この残基には糖鎮が付加していると
仮定すればSet又はThrであるが、アミノ酸組成分
析よりThrの存在はないのでSerと仮定してプロー
ブを作製した。
Unidentified residues in the middle of this sequence (indicated by
It was assumed that That is, assuming that this residue has a sugar compound attached to it, it would be Set or Thr, but as the amino acid composition analysis showed that Thr was not present, a probe was prepared assuming that it was Ser.

一方、ヒト遺伝子のコドン使用頻度に関する考察(R.
Lathe, J.Mol, Biol., 183.
 1(1985) )を参考にしてKR−21をコード
するmRNAの配列を推定し、それと相補的な36ヌク
レオチドからなるDNAハイブリダイゼーションブロー
ブPKR−21を設計した。
On the other hand, consideration of codon usage frequency of human genes (R.
Lathe, J. Mol, Biol. , 183.
1 (1985)), the sequence of mRNA encoding KR-21 was deduced, and a DNA hybridization probe PKR-21 consisting of 36 nucleotides complementary thereto was designed.

PKR−21の配列は 5’ CCATGGCTGGTGGGCAGCAGAG
TAGGCAAAGTTCCA 3’で示され、その合
成は自動DNA合成機(AppliedElosyst
ems)を用いて行った。常法に従ってこのブローブを
γ一”P−ATPとT4ポリヌクレオチドキナーゼによ
ってリン酸化し、ラベルを導入した。
The sequence of PKR-21 is 5' CCATGGCTGGTGGGGCAGCAGAG
TAGGCAAGTTCCA 3', and its synthesis was performed using an automatic DNA synthesizer (AppliedElosyst).
ems). This probe was phosphorylated using γ-1''P-ATP and T4 polynucleotide kinase according to a conventional method to introduce a label.

(4)NKAFのコーディング配列を含むcDNAクロ
ーンの同定 λgt11cDNAライフラリーカラノ約160. 0
00個の組換ファージを32p−ラベルPKR−21プ
ローブを用いてDNAハイブリダイゼーション法により
スクリーニングした。
(4) Identification of cDNA clone containing NKAF coding sequence λgt11 cDNA library approximately 160. 0
00 recombinant phages were screened by DNA hybridization method using 32p-labeled PKR-21 probe.

10X14Cm角プレート10枚に約16000個ずつ
の組換体プラークを生じさせ、これを常法(T.Man
iatis, et al,, ”Molecular
 Cloning’320−321p. Cold S
pring tlarbor Laboratory(
1982) )に従ってニトロセルロースメンブレン上
に転写し、DNAを変性・固定化した。
Approximately 16,000 recombinant plaques were generated on each of 10 10×14 cm square plates, and then processed using a conventional method (T.Man).
iatis, et al, “Molecular
Cloning'320-321p. Cold S
Pring Laboratories (
(1982)), the DNA was transferred onto a nitrocellulose membrane and denatured and immobilized.

これらメンブレンは6 xSSC( 1 xSSC=1
50mM NaC1. 15mMクエン酸ナトリウム<
pH7))、50mMリン酸ナトリウム(pH7)  
、5 xDenhardt’s(100 x Denh
ardt’ s = 2%牛血清アルブミン、2%ポリ
ビニルピロリドン−2%フイコール)、100μg/一
仔牛胸腺DNA溶液中58℃で2時間プレハイブリダイ
ズした。
These membranes have 6 x SSC (1 x SSC=1
50mM NaCl. 15mM sodium citrate<
pH7)), 50mM sodium phosphate (pH7)
, 5 x Denhardt's (100 x Denh
ardt's = 2% bovine serum albumin, 2% polyvinylpyrrolidone-2% ficoll), and prehybridized for 2 hours at 58°C in a 100 μg/calf thymus DNA solution.

次いで、6 XSSC , 50mMリン酸ナトリウム
(pH7) 、5 XDenhardt’s中で32p
−ラベルPKR−21ブロー.ブと58℃で約12時間
ハイブリダイゼーションし、6 x SSC − 50
mMリン酸ナトリウムで室温で10分間洗浄を2回、5
8℃、30分間洗浄を2回、65℃、45分間洗浄を1
回行った後、オートラジオグラフィーによりPKR−2
1とハイブリダイズするクローンを検出した。
Then 32p in 6X SSC, 50mM sodium phosphate (pH 7), 5X Denhardt's
-Label PKR-21 Blow. Hybridize with 6 x SSC-50 at 58°C for about 12 hours.
2 x 10 min washes with mM sodium phosphate at room temperature, 5
Two washes for 30 minutes at 8°C and one wash for 45 minutes at 65°C.
After 2 cycles, PKR-2 was detected by autoradiography.
A clone hybridizing with 1 was detected.

約30個の別々のプラークがPKR−21とハイブリダ
イズした。このうち、4個のクローンよりそれぞれcD
NAを8coRIで切出し、プラスミドベクターp B
ILIescript@ KS,  M13”(Str
atagene社)にサブクローニングし、pNκ83
02、pNK 8303、pNK 8306、pNκ8
308(微工研寄託FERM P−10161(FER
M OF−2468))を得た。
Approximately 30 separate plaques hybridized with PKR-21. Among these, each cD from 4 clones
Excise NA with 8coRI and create plasmid vector pB
ILIescript @ KS, M13” (Str
pNκ83
02, pNK 8303, pNK 8306, pNκ8
308 (FERM P-10161 (FER) deposited with FER
MOF-2468)) was obtained.

これらのcDNAインサートの塩基配列の一部をdid
eoxy chain ter+nination法〔
A.Smith,Method in Bnzymol
, 65, 560 ; F,Sangeret al
,, Proc, Nath.Acad.Sci., 
74. 5463(1977))により決定したところ
、いずれもNKAFのアミノ酸配列をコードするSeq
uenceを含む種々の長さのcDN八であることがわ
かった。
A part of the base sequence of these cDNA inserts was
eoxy chain ter + nination method [
A. Smith, Method in Bnzymol
, 65, 560; F. Sanger et al.
,, Proc, Nath. Acad. Sci. ,
74. 5463 (1977)), all of which encode the amino acid sequence of NKAF.
It was found that there were 8 cDNs of various lengths including .

それらの制限酵素切断地図を図8に示す。Their restriction enzyme cleavage maps are shown in FIG.

これらのうち、最長のcDNA(pNK 8308)は
poly(A)を除いて850bpの配列を有し、その
中に開始コドンより始まり、とぎれることな<222ア
ミノ酸残基をコードする666bpのオーブンリーディ
ングフレーム(ORF)が存在したく図9参照)。この
GRF中にκR−21のベプチド配列は164wからl
ff?Rに至るフラグメ・ントとして同定された。ただ
し、KR−21においては未同定であったXはSではな
くWであった。
Among these, the longest cDNA (pNK 8308) has a sequence of 850 bp excluding poly(A), and contains a 666 bp open reading frame that starts from the start codon and encodes <222 amino acid residues without interruption. (ORF) exists (see Figure 9). In this GRF, the peptide sequence of κR-21 is from 164w to l.
ff? It was identified as a fragment leading to R. However, in KR-21, the unidentified X was not S but W.

その他のトリプシン氷解ペプチドの配列はすべてこのO
RF上に同定され、このcDNAがNKAFをコードす
るmRNA由来のものであることが確かめられた。
All other tryptic ice-melting peptide sequences are in this O
It was confirmed that this cDNA was derived from mRNA encoding NKAF.

NκAF精製標品のN末端のアミノ酸配列はLL−2H
−3L4R  ・・・・・であることが知られているが
、このpNK 8308のcDNAのコードするポリペ
ブチドには、このN末端配列の前にさらに16残基の疎
水性の高い配列があることが示された。
The N-terminal amino acid sequence of the NκAF purified sample is LL-2H.
-3L4R... However, the polypeptide encoded by this pNK 8308 cDNA has an additional 16 highly hydrophobic sequence in front of this N-terminal sequence. Shown.

これは、細胞外にNKAFを分泌するためのシグナル配
列であり、分泌時に切断されてILから始まるmatu
re NKAFを生じるものと考えられる。
This is a signal sequence for secreting NKAF to the outside of the cell, and is cleaved during secretion to initiate maturation from the IL.
It is thought that re NKAF occurs.

実施例2 cDNAのCOS7細胞による発現 pcDベクター(Okayama,H.and P.B
erg,,Mol.Cell,  Biol.,  3
.  280 (1983)  )はSV40ウイルス
のDNA複製開始点と初期プロモーターを持ち、このプ
ロモーター下流にcDNAを組み込み、SV40のT 
antigenを産生する細胞株COS7 [Y,Gl
utzman,Cell,, 23.  175 (1
981) )に導入すると、この組換プラスミドの増幅
が起こり、一過性にcDNAの強い発現が起こる。
Example 2 Expression of cDNA by COS7 cells pcD vector (Okayama, H. and P.B.
erg,,Mol. Cell, Biol. , 3
.. 280 (1983)) has the DNA replication origin and early promoter of the SV40 virus, and by integrating cDNA downstream of this promoter, the SV40 T
Antigen-producing cell line COS7 [Y,Gl
Utzman, Cell, 23. 175 (1
981)), amplification of this recombinant plasmid occurs and strong transient expression of cDNA occurs.

Full−Leugth cDNAクローンであるpN
K 8308 Bよりコーディング領域すべてを含むB
gl I[−Xho I断片を切り出し、Xho I 
+Hind mで開裂したpcDV 1ベクター[”F
.Sanger et al., Proc.Nath
,Acad, 9ci,, 74. 5463 (19
77)] 、pL1の旧ndII[一Bam Iフラグ
メントとともに結合してpNK 8602を作製した(
図10参照)。
Full-Length cDNA clone pN
B including all coding regions from K 8308 B
gl I[-Xho I fragment was excised and Xho I
+ pcDV 1 vector cleaved with Hind m [”F
.. Sanger et al. , Proc. Nath
, Acad, 9ci,, 74. 5463 (19
77)], was ligated with the old ndII[-Bam I fragment of pL1 to create pNK 8602 (
(See Figure 10).

この操作によりcDNAがプロモーター下流に正しい向
きに組み込まれた。
This operation integrated the cDNA downstream of the promoter in the correct orientation.

pNκ8602のブラスミドDNAを調製し、DEAE
−deXtren法(T,Yokota et al1
Proc, Natl.Acad, Sci,, 82
. 68 (1985) )により、COS7細胞にト
ランスフェクトした形質転換細胞は約1日後よりその培
養上清中にNκAFを産生し、約5日間その産生を続け
た(表4参照)。
Prepare plasmid DNA of pNκ8602 and DEAE
-deXtren method (T, Yokota et al1
Proc, Natl. Acad, Sci., 82
.. 68 (1985)), the transformed cells transfected into COS7 cells produced NκAF in the culture supernatant from about 1 day later, and continued to produce NκAF for about 5 days (see Table 4).

なお、培地としては5%FCSを添加した0旺jAもし
くは無血清のHL−1培地のいずれもが利用できた(表
5参照)。
In addition, as a medium, either OojA supplemented with 5% FCS or serum-free HL-1 medium could be used (see Table 5).

表   5 pNK 8602をトランスフェクトしたC[lS7細
胞培養上清中のNKAF(6日間培養) モノクロナル抗体を用いたBIAで定量実施例3 NKAFの晴乳類動物細胞株における発現実施例1で得
たpNK 8602とpSV,−dhfr  (S.S
ubraman5 R.Mulligan, P.Be
rg, Mol.Cell,Biol,,ユ. 854
 (1981))をElectro poration
法(Bio−Rad社、Gene Pulser■0.
4kV/0.4cm. 500pF. 10−15ms
ec, 2回)もしくはリン酸カルシウム法(ptIa
rmacia社、キットCell Phect■)を用
いてB)IK細胞(ATCC, CRL 1632 t
K− tsl3、大日本製薬)にco−transfe
ction L、メトトレキサート(MTX) 250
nMテ選択しテMTX耐性クローンを得た。
Table 5 NKAF in the culture supernatant of C[lS7 cells transfected with pNK8602 (cultured for 6 days) Quantification by BIA using monoclonal antibodies Example 3 Expression of NKAF in clear mammalian cell lines Obtained in Example 1 pNK8602 and pSV,-dhfr (S.S.
ubraman5 R. Mulligan, P. Be
rg, Mol. Cell, Biol, Yu. 854
(1981)) with Electro poration
method (Bio-Rad, Gene Pulser ■0.
4kV/0.4cm. 500pF. 10-15ms
ec, twice) or the calcium phosphate method (ptIa
B) IK cells (ATCC, CRL 1632 t) using Rmacia, Kit Cell Phect
K-tsl3, co-transfer to Dainippon Pharmaceutical)
ction L, methotrexate (MTX) 250
A MTX-resistant clone was obtained by nM selection.

これらのクローンは約100〜1.000 ng/mf
fのrNKAFを培地中に産生じた(表6参照),,ま
た、pNK 8602をpSV.−dhfr及びpSV
2−neo(P.J.Southern & P.Be
rg, J, Mol.Appl, Gent,,1.
 327 (1982)]とともに、リン酸カルシウム
法(Kao,F.T, and T,T,Puck, 
Proc, Nath.Acad,Sci., 60.
 1275 (1981) )を用いてCl{0−Kl
細胞(ATCC CCL 61)  にco−tran
sfection  L/、lmg/一のG−418で
選択してneo耐性クローンを得た。
These clones have approximately 100-1.000 ng/mf
f rNKAF was produced in the culture medium (see Table 6). -dhfr and pSV
2-neo (P.J.Southern & P.Be
rg, J, Mol. Appl, Gent, 1.
327 (1982)], as well as the calcium phosphate method (Kao, F.T., and T.T., Puck,
Proc, Nath. Acad, Sci. , 60.
Cl{0-Kl
co-tran to cells (ATCC CCL 61)
A neo-resistant clone was obtained by selecting with G-418 of sfection L/, lmg/1.

次に、このクローンを更に5μMのMTX含有培地で培
養して約30〜400ng/一のrNKAFを産生する
クローンを得たく表7参照)。
Next, this clone was further cultured in a medium containing 5 μM MTX to obtain a clone producing about 30 to 400 ng/1 of rNKAF (see Table 7).

実施例4 大腸閑によるNKAFの発現 1.発現ブラスミドの作製 NKAF cDNAよりシグナル配列を除いた成熟型蛋
白をコードするON八を作製し、これをλファージのP
Lプロモーターと大腸閑のrrnBターミネーターの間
に挿入し、高コピー数を安定に保つベクターpBR 3
22 d−ropに結合して発現ブラスミドpNκ80
01を構築した。
Example 4 Expression of NKAF by large intestine 1. Preparation of expression plasmid ON8, which encodes the mature protein by removing the signal sequence from NKAF cDNA, was prepared, and this was inserted into the P of λ phage.
Vector pBR 3 is inserted between the L promoter and the rrnB terminator in the large intestine to maintain a stable high copy number.
22 Expression plasmid pNκ80 bound to d-rop
01 was constructed.

1)  pBRD 5001の構築(図11参照)pB
RD 5001はリンホトキシン発現プラスミドpTT
 5001(特願昭62−272034)のベクタ一部
分をpBR 322 d−rap(特願昭62−272
034)に置換したもので、安定に高いプラスミドコピ
ー数を保持できると期待される。この発現ヘクターはp
KK 233−2(ファルマシア)由来のtrcプロモ
ーターとrrnBターミネーターを有する。
1) Construction of pBRD 5001 (see Figure 11) pB
RD 5001 is lymphotoxin expression plasmid pTT
A part of the vector of 5001 (Japanese patent application No. 62-272034) was converted into pBR 322 d-rap (Japanese patent application No. 62-272
034) is expected to be able to stably maintain a high plasmid copy number. This expression hector is p
It has the trc promoter and rrnB terminator derived from KK 233-2 (Pharmacia).

2)  pPL9−5001の構築(図12参照)次に
pBRD 5001のブロモータ一部分をλファージの
PLプロモーターに変換したブラスミド倚構築した。p
Pシーλ (7 7 )Lt ”? ’/ア)をBCO
R IとHpa Iで切断し、PLブ0%一ターを含む
470bp断片を分取した。これを}IfleIIIで
切断してプロモーターを含む約265bpの断片を分取
し、下記の合成SO配列DNA断片 5゜   TT八八CAACTAAGGAGG八   
 3゜3゜ AATTGTTGATTCCTCCTCT
AG  5゜トトもに、BcoR I トBgl It
 テ開裂したpUG131ブラスミド(puc 13 
(ファノレマシア)のpo Iy 1 inker部分
をM 13 tg 131(アマシャム)のpolyl
inker部分と入れ換えたブラスミド(特願昭62−
272034) )と結合してpPL9を得た。pBR
D 50(11をECQR IとBgl I[で切断し
てtrcプロモーターを含む約300bpの断片を除き
、pPL9をBcoR IとBgl IIで切断して得
た(PLプロモーター+SIlll)断片(約280b
p)を挿入してpPL9−5001を得た。
2) Construction of pPL9-5001 (see Figure 12) Next, a plasmid was constructed in which a portion of the promoter of pBRD 5001 was converted into the PL promoter of λ phage. p
BCO
It was cut with R I and Hpa I, and a 470 bp fragment containing 0% PL protein was fractionated. This was cut with {IfleIII} and a fragment of approximately 265 bp containing the promoter was separated, and the following synthetic SO sequence DNA fragment 5゜TT88CAACTAAAGGAGG8
3゜3゜ AATTGTTGATTCCTCCTCT
AG 5゜totomoni, BcoR I toBgl It
The cleaved pUG131 plasmid (puc 13
(Fanolemacia) po Iy 1 inker part M 13 tg 131 (Amersham) polyl
Blasmid replaced with inker part (patent application 1986-
272034) ) to obtain pPL9. pBR
D50 (11 was cut with ECQR I and Bgl I to remove the approximately 300 bp fragment containing the trc promoter, and pPL9 was cut with BcoR I and Bgl II to obtain the (PL promoter + SIll) fragment (about 280 bp).
p) was inserted to obtain pPL9-5001.

3)  pBRD 702の構築(図13及び図14参
照)NKAF cDNAの28is3Leuをコードす
る塩基配列をin vitro mutagenesi
sによりCAT.:TAからCACTTAに変換した。
3) Construction of pBRD 702 (see Figures 13 and 14) The base sequence encoding 28is3Leu of NKAF cDNA was mutagenized in vitro.
CAT. : Converted from TA to CACTTA.

これにより新たにAfl n切断部位が導入された。This introduced a new Afln cleavage site.

この変異NKAF cDNAを^fl[で切り出すこと
によりシグナル配列を含まないNKAFcDNA断片を
得た。この断片の前にBgl II切断配列、開始コド
ン及び’Leu’Hisの配列を有する合成DNAリン
カーを挿入し、pB8 7084(特願昭63−253
302)のベクター断片(BglII−Sal I)に
結合した(図13参照)。得られたpENK 702で
はtrcプロモーター下流にBgl m部位を介してシ
グナル配列を持たないNKAP cDNAが接続してい
る。次にpBRD5001のBgl II−PVU I
ベクター断片とpENK702のBgl II−Pvu
 I NKAF cDNA断片を結合することによりp
BRD 702を得たく図14参照)。
By excising this mutant NKAF cDNA with ^fl[, an NKAF cDNA fragment containing no signal sequence was obtained. A synthetic DNA linker having a Bgl II cleavage sequence, an initiation codon, and a 'Leu'His sequence was inserted in front of this fragment, and pB8 7084 (Japanese Patent Application No. 63-253
302) to the vector fragment (BglII-Sal I) (see Figure 13). In the obtained pENK 702, NKAP cDNA without a signal sequence is connected downstream of the trc promoter via the Bgl m site. Next, Bgl II-PVU I of pBRD5001
Vector fragment and Bgl II-Pvu of pENK702
By joining the I NKAF cDNA fragment, p
To obtain BRD 702, see Figure 14).

4)  pNK 8001の構築(図15参照)pPL
9−5001をBgl IIで切断し、次いでHind
I[Iで部分的に切断してアガロースゲル電気泳動で分
離し、プロモーター、ターミネーターを含むベクター断
片を分取した。
4) Construction of pNK8001 (see Figure 15) pPL
9-5001 was cut with Bgl II, then Hind
It was partially cut with I[I and separated by agarose gel electrophoresis to separate the vector fragment containing the promoter and terminator.

一方、pBRD 702をBglIIと旧ndI[で切
断してNKAF cDNA断片を分取し、上記ベクター
断片を結合してpNK 8(101を得た。これにより
、pBR 322 d−roI)ベクター上にPLプロ
モーター− mature NKAF cDNA−rr
nBターミネーターを接続した発現プラスミドが構築さ
れた。pNK 8001を用いて以下の発現実験を行っ
た。
On the other hand, pBRD 702 was cut with BglII and old ndI to separate the NKAF cDNA fragment, and the above vector fragment was ligated to obtain pNK 8 (101). Promoter-mature NKAF cDNA-rr
An expression plasmid with an nB terminator was constructed. The following expression experiment was conducted using pNK8001.

2.  NKAFの大腸菌における発現ε.coli 
N 4840 Cl 857は高温感受性のλリプレッ
サー変異を有し、温度を高温にシフトすることによりP
Lプロモーターの誘発がおこる。
2. Expression of NKAF in E. coli ε. coli
N 4840 Cl 857 has a high temperature sensitive lambda repressor mutation, and by shifting the temperature to high temperature, P
Induction of the L promoter occurs.

pNK 8001及びそれと等価のリンホトキシン発現
プラスミドpPL9−5001をN 4840株にトラ
ンスフォーメーションで導入し、30℃でアンビシリン
耐性トランスフォーマントを得た。
pNK 8001 and its equivalent lymphotoxin expression plasmid pPL9-5001 were transformed into N4840 strain to obtain ambicillin-resistant transformants at 30°C.

これらのトランスフォーマントをLB培地中32℃で振
盪培養し、00s。。=約0.2に達したところで(t
ime D)温度を42℃にシフトし、培養を続けた。
These transformants were cultured with shaking in LB medium at 32°C for 00s. . = approximately 0.2 (t
ime D) The temperature was shifted to 42°C and the culture continued.

シフト後各時点で培養液をサンプリングし分析に供した
Culture fluid was sampled at each time point after the shift and subjected to analysis.

菌体10 0Dsoa相当分(OD=1ならば培地10
mji分)を遠心で集め、0,4rdの破砕バッファ一
(0.2M Tris pH=7.6. 0.2M N
aCl, 0.OIM Mg ・アセテー}. 0.O
IM 2−メルカブトエタノール,5%グリセロール)
に懸濁し、sonicationで破砕した後、遠心し
て上清を天然NKAFに対するウサギ抗体を用いたIE
IAにより測定した。
10 bacterial cells equivalent to 0Dsoa (if OD = 1, 10 mL of culture medium
mji minutes) was collected by centrifugation and mixed with 0.4rd disruption buffer (0.2M Tris pH=7.6.0.2M N
aCl, 0. OIM Mg・acetate}. 0. O
IM 2-mercabutoethanol, 5% glycerol)
After suspending in
Measured by IA.

結果を次の表に示す。NKAFの産生はpNK 800
1を保有するトランスフォーマントのみに認められ、そ
の発現は温度シフトにより誘発された。産生はシフト後
3〜5時間にピークとなった。
The results are shown in the table below. Production of NKAF is pNK800
1, and its expression was induced by temperature shift. Production peaked 3-5 hours after shift.

pNK8001    3   5   26  33
  19  ng/m1実施例5 酵母(Saccharomyces cerevisi
ae)におけるNKAFの発現 1.分泌発現ベクターの作製 NKAP cDN^よりシグナル配列を除いた成熟タン
パクをコードするDNAをGALTプロモーター.at
pha−preproシグナルシーケンスの下流に挿入
し、2μmを複製起点にもつYap 13に結合して、
分泌発現ベクターpYNκ1902を得た。
pNK8001 3 5 26 33
19 ng/ml Example 5 Yeast (Saccharomyces cerevisi)
Expression of NKAF in ae) 1. Preparation of secretion expression vector DNA encoding the mature protein from NKAP cDN^ without the signal sequence was inserted into the GALT promoter. at
It is inserted downstream of the pha-prepro signal sequence and binds to Yap 13, which has a replication origin of 2 μm.
Secretory expression vector pYNκ1902 was obtained.

1)  pTN 1071の構築(図16)pTN 1
071は、GAL7プロモーター(特開昭60−248
181)とsynthetic GLIGO #01と
alpha−preproシグナルシーケンス(Her
skow itzet al,, Cell,  30
. 933−943.  1982)がpUc12に挿
入されたものである。このベクターは、nat ive
なGAL7と同一なところに開始codon ATGが
あるので、高い転写量が期待できる。
1) Construction of pTN 1071 (Figure 16) pTN 1
071 is the GAL7 promoter (JP-A-60-248
181) and synthetic GLIGO #01 and alpha-prepro signal sequence (Her
skow itzet al,, Cell, 30
.. 933-943. 1982) was inserted into pUc12. This vector is native
Since the start codon ATG is located at the same location as GAL7, a high transcription amount can be expected.

2)  pYNκ1902の構築(図17)pTN 1
071のεcoR I−HindIIIフラグメントと
pNK 8308のBgl II−Xba I 7 5
グメントトsynthetic OLIGO #02を
M13 mpl9 (Messinget al,, 
Gene,  33.  103−119.  198
5)のII,coRI. XbaI siteに挿入し
た(pM 1901)。
2) Construction of pYNκ1902 (Figure 17) pTN1
εcoR I-HindIII fragment of 071 and Bgl II-Xba I75 of pNK 8308
Synthetic OLIGO #02 to M13 mpl9 (Messinget al,,
Gene, 33. 103-119. 198
5) II, coRI. It was inserted into the XbaI site (pM 1901).

このphageを鋳型にして、synthetic O
LIGO#03を用いて、in vitromutag
enesisを行った(pM 1902) .これによ
り、alpha−preproシグナルシーケンスのす
ぐ後にNKAFの成熟タンパクをコードするDNAが付
加された。
Using this phage as a template, synthetic O
In vitro mutag using LIGO #03
enesis (pM 1902). As a result, DNA encoding the mature protein of NKAF was added immediately after the alpha-prepro signal sequence.

同時にアミノ酸配列を変えずにAflII siteを
挿入できた。このpM 1902をRam}I Iで切
断して、そのフラグメントをYBp 13のBamtl
( siteに挿入してできたのがpYNK 1902
である。このプラスミドはGAL7プロモーターを持つ
ので、培地中のグルコースがなく、ガラクトースが存在
するときのみ、転写の高発現が期待でき、またalph
a−preproシグナルシーケンスにより培地中へN
KAFの分泌が期待できる。
At the same time, the AflII site could be inserted without changing the amino acid sequence. This pM 1902 was cut with Ram}II, and the fragment was extracted with Bamtl of YBp 13.
(The pYNK 1902 that was created by inserting it into the site
It is. Since this plasmid has the GAL7 promoter, high transcriptional expression can be expected only when there is no glucose in the medium and galactose is present.
a-prepro signal sequence into the medium
Secretion of KAF can be expected.

2.  NκAFの酵母における発現 pYNK 1902をLithium法(Ito at
 al., J.Bacteriol,, 153. 
163−168. 1983)  により、酵母εHA
−IC及びEHF−2C (表■)を形質転換した。得
られた形質転換体をロイシン抜きの選択培地中25℃で
振盪培養した後、C源をグルコースからガラクトースに
換え、温度も34℃に上げて振盪培養を続け、適当な時
点でサンプリングを行った。サンプルは遠心により菌体
と培地上清に分離した。菌体はPBSとglass b
eadsを加え、volteXによって破砕した上清を
、培地上清はそのまま希釈して、天然NKAFに対する
ポリクロナル抗体とモノクロナル抗体によるεIAを行
った(表■)。NKAFは菌体内にも存在するが、培地
上清にも分泌発現されていた。
2. Expression of NκAF in yeast pYNK 1902 was expressed using the Lithium method (Ito at
al. , J. Bacteriol,, 153.
163-168. (1983), yeast εHA
-IC and EHF-2C (Table ■) were transformed. The obtained transformant was cultured with shaking at 25°C in a selective medium without leucine, the C source was changed from glucose to galactose, the temperature was raised to 34°C, shaking culture was continued, and sampling was performed at appropriate times. . The sample was separated into bacterial cells and medium supernatant by centrifugation. Bacterial cells are in PBS and glass b
The supernatant obtained by adding Eads and disrupting with volteX, and the medium supernatant was directly diluted and subjected to εIA using a polyclonal antibody and a monoclonal antibody against natural NKAF (Table ■). Although NKAF exists within the bacterial body, it was also secreted and expressed in the medium supernatant.

表   I 零och2(特開昭63−309180)は温度感受性
にマンノースの付加ができなくなった変異。
Table I Zero och2 (Japanese Unexamined Patent Publication No. 63-309180) is a temperature-sensitive mutation that makes it impossible to add mannose.

〔発明の効果〕〔Effect of the invention〕

実験例をもって本発明の効果を説明する。 The effects of the present invention will be explained using experimental examples.

実験例1 1.天然NKAFの抗腫瘍活性 プラスチック非附着性PBLとNKAFを10%F[:
S−RPMI−1640培地に入れ、37℃で2.5時
間及び16時間培養し、SICrでラベルしたK−56
2. Molt−・4或いはDaud i細胞に対する
細胞障害活性を測定し、これよりNKAFの増強効果を
求めたところ表8、表9の結果を得た。ただしコントロ
ールの増強効果を100%とした。
Experimental example 1 1. Antitumor activity of natural NKAF Plastic non-adhesive PBL and NKAF at 10% F[:
K-56 was cultured in S-RPMI-1640 medium at 37°C for 2.5 and 16 hours and labeled with SICr.
2. The cytotoxic activity against Molt-4 or Daudi cells was measured, and the enhancing effect of NKAF was determined from this, and the results shown in Tables 8 and 9 were obtained. However, the enhancement effect of the control was set as 100%.

一491− 表 天然NKAFのNK活性増強効果 BXP, 1 8XP, 2 コントロールのNK活性を 100%として示した。1491- table NK activity enhancing effect of natural NKAF BXP, 1 8XP, 2 Control NK activity Shown as 100%.

EXP.1 のコントロールのNK活性 67% EXP. 2 のコントロールのNK活性 40% 表8、表9より天然NKAFは組換インターロイキンー
2(r−IL−2.塩野義製薬)や組換インターフェロ
ンーr (IFN−γ. CELLULAR PROD
UCTSINC.) と同様にNK活性を増強する作用
を示した。
EXP. 1 control NK activity 67% EXP. 2 control NK activity was 40%. Tables 8 and 9 show that natural NKAF includes recombinant interleukin-2 (r-IL-2. Shionogi & Co., Ltd.) and recombinant interferon-r (IFN-γ. CELLULAR PROD).
UCTSINC. ) showed the effect of enhancing NK activity.

また、プラスチック非附着性PBLとマイトマイシンC
処理したRaji細胞と混合し、10%FCS−RPM
I−1640培地中で37℃、6日間培養し、これにN
KAFを加え、さらに1日培養した。これに、SICr
でラベルした”Cr−Raji細胞を加え、4時間培養
し、上清の各100μlをとり、S + Crの放射活
性を測定することにより、MLTR(Mixed Ly
mphocyte Tumor Cell React
ion)により誘導されたキラーT細胞の活性を調べた
In addition, plastic non-adherent PBL and mitomycin C
Mix with treated Raji cells and add 10% FCS-RPM
It was cultured in I-1640 medium at 37°C for 6 days, and then N
KAF was added and cultured for another day. In addition, SICr
MLTR (Mixed Ly
mphocyte Tumor Cell React
The activity of killer T cells induced by ion) was investigated.

その結果を表10に示す。The results are shown in Table 10.

コレヨり、NKAFはMLTRにより誘導されたキラー
T細胞の活性を増強することがわかる。
It can be seen that NKAF enhances the activity of killer T cells induced by MLTR.

表 実験例2 組換NKAFの抗腫瘍活性 BHK/pNK 8602 ・pSV2− dhfrク
ローン上清のNKAF活性を、ヒト癌細胞株K−562
細胞を標的細胞として用いたNK細胞活性の増強により
測定したところ表11の結果を得た。
Table Experiment Example 2 Antitumor activity of recombinant NKAF BHK/pNK 8602 ・pSV2- dhfr clone supernatant NKAF activity was determined using human cancer cell line K-562.
The results shown in Table 11 were obtained when the cells were measured by enhancing NK cell activity using the cells as target cells.

NKAFの増強効果のコントロールを100%として求
めたところ表12の結果を得た。
When the control for the enhancing effect of NKAF was determined as 100%, the results shown in Table 12 were obtained.

従って、天然NKAFとほぼ同様の効果が得られた。Therefore, almost the same effect as natural NKAF was obtained.

表    11 BHK/pNK 8602 ・pSVz−dhfrクロ
ーン上清のNKAF活性表 コントロールのNK活性を 100%として示した。
Table 11 NKAF activity table of BHK/pNK 8602/pSVz-dhfr clone supernatant The NK activity of the control is shown as 100%.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は天然NκAFのモノクロナル抗体力ラムによる精
製の結果を示すクロマトグラム、図2はモノクロナル抗
体によるiEIA ,図3は逆相HPLCによる精製の
結果を示すクロマトグラム、 図4はSOS−PAGEの結果を示す図、図5、図6は
NKAFの各ペプチド鎮のアミノ酸配列を示す図、 図7はC末端ベブチドの分離及び同定結果を示す図、 図8はcDNAクローンの制限酵素切断地図、図9はp
NK 8308のcDNA塩基配列及びそれから推定さ
れるNKAFのアミノ酸配列を示す図、図10はpcD
ベクターを用いたpNK 8602(7)et築工程図
、 図11はpBRD 5001の構築工程図、図12はp
PL9−5001の構築工程図、図13はpENK 7
02の構築工程図、図14はpBRD 702の構築工
程図、図15はpNK 8001の構築工程図、 図16はpTN 1071の構築工程図、 図17はpYNK 1902の構築工程図である。
Figure 1 is a chromatogram showing the results of purification of natural NκAF using a monoclonal antibody column, Figure 2 is a chromatogram showing the results of iEIA using a monoclonal antibody, Figure 3 is a chromatogram showing the results of purification by reverse-phase HPLC, and Figure 4 is SOS-PAGE. Figures 5 and 6 are diagrams showing the amino acid sequences of each peptide of NKAF, Figure 7 is a diagram showing the results of separation and identification of the C-terminal peptide, Figure 8 is a restriction enzyme cleavage map of the cDNA clone, Figure 9 shows p
Figure 10 shows the cDNA base sequence of NK8308 and the amino acid sequence of NKAF deduced from it.
Figure 11 is a diagram showing the construction process of pNK 8602(7)et using a vector. Figure 11 is a diagram showing the construction process of pBRD 5001.
Construction process diagram of PL9-5001, Figure 13 is pENK7
14 is a diagram of the construction process of pBRD 702, FIG. 15 is a diagram of the construction process of pNK 8001, FIG. 16 is a diagram of the construction process of pTN 1071, and FIG. 17 is a diagram of the construction process of pYNK 1902.

Claims (1)

【特許請求の範囲】 1 組換ナチュラルキラー細胞活性化因子。 2 分子中に下記アミノ酸配列のペプチドを有する請求
項第1項記載の組換ナチュラルキラー細胞活性化因子。 【遺伝子配列があります。】 3 組換ナチュラルキラー細胞活性化因子をコードする
cDNA。 4 請求項第2項記載の組換ナチュラルキラー細胞活性
化因子をコードするcDNA。 5 下記配列によって示される塩基配列を含む請求項第
4項記載のcDNA。 【遺伝子配列があります。】 6 請求項第3項記載のcDNAを外来遺伝子として含
み、かつ選択した宿主内で制御及び発現が可能となるよ
うに連結して得られた発現プラスミド。 7 請求項第4項記載のcDNAを外来遺伝子として含
み、かつ選択した宿主内で制御及び発現が可能となるよ
うに連結して得られた発現プラスミド。 8 請求項第6項記載のプラスミドによって形質転換さ
れた宿主。 9 請求項第7項記載のプラスミドによって形質転換さ
れた宿主。 10 組換ナチュラルキラー細胞活性化因子を有効成分
として含有する抗腫瘍剤。 11 請求項第2項記載の組換ナチュラルキラー細胞活
性化因子を有効成分として含有する抗腫瘍剤。
[Claims] 1. Recombinant natural killer cell activator. 2. The recombinant natural killer cell activator according to claim 1, which has a peptide having the following amino acid sequence in the molecule. [There is a gene sequence. ] 3 cDNA encoding recombinant natural killer cell activator. 4. A cDNA encoding the recombinant natural killer cell activator according to claim 2. 5. The cDNA according to claim 4, comprising the base sequence shown by the following sequence. [There is a gene sequence. 6. An expression plasmid obtained by containing the cDNA according to claim 3 as a foreign gene and ligating it so as to enable control and expression in a selected host. 7. An expression plasmid obtained by containing the cDNA according to claim 4 as a foreign gene and ligating it in such a manner that it can be controlled and expressed in a selected host. 8. A host transformed with the plasmid according to claim 6. 9. A host transformed with the plasmid according to claim 7. 10. An antitumor agent containing a recombinant natural killer cell activator as an active ingredient. 11. An antitumor agent containing the recombinant natural killer cell activator according to claim 2 as an active ingredient.
JP1216574A 1988-08-31 1989-08-23 Recombinant natural killer cell-activating factor Pending JPH02231083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216574A JPH02231083A (en) 1988-08-31 1989-08-23 Recombinant natural killer cell-activating factor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-217599 1988-08-31
JP21759988 1988-08-31
JP1216574A JPH02231083A (en) 1988-08-31 1989-08-23 Recombinant natural killer cell-activating factor

Publications (1)

Publication Number Publication Date
JPH02231083A true JPH02231083A (en) 1990-09-13

Family

ID=26521507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216574A Pending JPH02231083A (en) 1988-08-31 1989-08-23 Recombinant natural killer cell-activating factor

Country Status (1)

Country Link
JP (1) JPH02231083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510806A (en) * 1997-07-25 2001-08-07 アンスティテュー・ギュスターブ・ルーシ Use of MHC class II ligands as adjuvants for vaccines and use of LAG-3 in cancer treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510806A (en) * 1997-07-25 2001-08-07 アンスティテュー・ギュスターブ・ルーシ Use of MHC class II ligands as adjuvants for vaccines and use of LAG-3 in cancer treatment
JP4723722B2 (en) * 1997-07-25 2011-07-13 アンスティテュー・ギュスターブ・ルーシ Use of MHC class II ligands as vaccine adjuvants and use of LAG-3 in cancer therapy

Similar Documents

Publication Publication Date Title
JP4411330B2 (en) Tumor necrosis factor-related ligand
JPH08505280A (en) Interleukin 1β protease and interleukin 1β protease inhibitor
JPH06502538A (en) Heparin-binding mitogen with homology to epidermal growth factor (EGF)
US5185431A (en) Recombinant natural killer cell activator
JPH08502886A (en) Novel P-selectin ligand protein
HU215434B (en) Process for producing interleukin-1inhibitors, dna sequences encoding them, and vectors and host cells
US5607844A (en) Mammalian augmenter of liver regeneration and variants thereof
US5227302A (en) DNA encoding platelet derived endothelial cell growth factor (PD-ECGF)
JPH10500301A (en) Macrophage migration inhibitory factor-3
JPH07508650A (en) Compositions and uses thereof for inhibition of protein hormone formation
JPH10504441A (en) Compositions for inhibiting TNF formation and uses thereof
EP0377855A2 (en) Endothelial cell growth factor
JPH03201985A (en) Human macif active protein gene, manifestation vector bonded to same gene, transformed cell and human macif active protein
JPH03155787A (en) Ebzd protein expression system
JPH02231083A (en) Recombinant natural killer cell-activating factor
WO2018196743A1 (en) Human serum amyloid a1 functional oligopeptide, and preparation method therefor and application thereof
JPH10510518A (en) Human vascular IBP-like growth factor
WO2019057120A1 (en) Lgr4 and r-spondin binding inhibitor and use thereof in tumor therapy
US5843693A (en) Assay method for screening for inhibitors of proTNF conversion
EP0668291A2 (en) Mammalian augmenter of liver regenerating and variants thereof
WO1999062556A1 (en) Eosinophil chemotactic factor
US6586222B1 (en) Recombinant PR-3 and compositions thereof
AU687751C (en) Compositions for the inhibition of protein hormone formation and uses therof
KR20220069610A (en) Novel fusion protein comprising FGF19 variant, and use thereof
JP3292873B2 (en) Recombinant hepatocyte growth factor