JPH02230719A - Thin-film growing and machining apparatus - Google Patents

Thin-film growing and machining apparatus

Info

Publication number
JPH02230719A
JPH02230719A JP4990889A JP4990889A JPH02230719A JP H02230719 A JPH02230719 A JP H02230719A JP 4990889 A JP4990889 A JP 4990889A JP 4990889 A JP4990889 A JP 4990889A JP H02230719 A JPH02230719 A JP H02230719A
Authority
JP
Japan
Prior art keywords
vacuum chamber
substrate
gas
main vacuum
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4990889A
Other languages
Japanese (ja)
Inventor
Akihiko Okamoto
明彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4990889A priority Critical patent/JPH02230719A/en
Publication of JPH02230719A publication Critical patent/JPH02230719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To eliminate mutual contamination of raw materials and to facilitate the formation of the different kinds of thin film crystals by connecting a main vacuum chamber wherein a thin film is grown or machined on a substrate to gas feeding devices which feed a raw material gas or an etching gas through gate valves. CONSTITUTION:In vacuum chambers 1 and 2, crucibles comprising boron nitride which are gas feeding devices and molecular beam cells 3a and 3b comprising heaters made of tantalum are provided, respectively. The vacuum chambers 1 and 2 are connected to the main vacuum chamber 7 wherein a substrate 5 is provided through gate valves 6a and 6b. A raw material gas which is supplied from one vacuum chamber 1 performs the specified thin-film growing or machining on the substrate 5 in the main vacuum chamber 7. Thereafter, the gate valve 6a is closed, and the gas is completely exhausted from the inside of the main vacuum chamber 7. Another etching gas is fed into the main vacuum chamber 7 from the other vacuum chamber 2 through the gate valve 6b. Therefore, the thin-film growing and machining can be performed on the substrate in the state where the gas does not remain without moving the substrate in the main vacuum chamber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜の成長および加工を行う装置に関し、特に
超高真空を用いて半導体薄膜を成長し、加工する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for growing and processing thin films, and more particularly to an apparatus for growing and processing semiconductor thin films using ultra-high vacuum.

[従来の技術] 従来、高密度集積回路、半導体レーザ、光検知素子等の
微細構造を有する半導体装置を作製するにあたり、薄膜
成長は極めて重要な1工程である。
[Prior Art] Conventionally, thin film growth is an extremely important step in manufacturing semiconductor devices having fine structures such as high-density integrated circuits, semiconductor lasers, and photodetecting elements.

}W膜成長方法としては、気相成長法、液相成長法およ
び分子線エビタキシャル法が用いられるが、そのうち分
子線エビタキシャル法は超高真空中での原料から結晶基
板への直接蒸着という有利さから、高純度の薄膜が得ら
れ、かつ制御性の点でも最も優れている。
} Vapor phase growth, liquid phase growth, and molecular beam epitaxial methods are used to grow W films. Of these, the molecular beam epitaxial method involves direct vapor deposition from raw materials onto a crystal substrate in an ultra-high vacuum. Advantageously, thin films of high purity can be obtained and the controllability is also the best.

分子線エビタキシャル法においては、それぞれの原料は
窒化ホウ素等のるつぼに収納され、加熱されて蒸発する
。結晶基板は原料を収納したるつぼに対向して配置され
、加熱されて、蒸発した原料分子が結晶基板上に到達し
、エビタキシャル成長する。特に■族およびV族固体原
料を用いた化合物半導体の分子線エビタキシャル法にお
いては、原料の供給は、原料の前方に配設されたシャッ
タの開閉により制御している。
In the molecular beam epitaxial method, each raw material is placed in a crucible made of boron nitride or the like, heated and evaporated. The crystal substrate is placed facing a crucible containing a raw material, and is heated so that the evaporated raw material molecules reach the crystal substrate and undergo epitaxial growth. Particularly in the molecular beam epitaxial method for compound semiconductors using group (I) and group V solid raw materials, the supply of the raw materials is controlled by opening and closing a shutter disposed in front of the raw materials.

分子線エビタキシャル装置を用いた、例えば基板温度6
00℃でのガリウム砒素の成長の場合には、砒素の基板
上での付着係数は1より小ざく、このためガリウムの供
給量により成長膜厚が制御される。そのとき砒素は供給
過剰の条件とし、蒸気圧は高くなるので、真空至の真空
度は砒素の蒸気により1×1叶8 Torr程度となる
Using a molecular beam epitaxial device, e.g. substrate temperature 6
When growing gallium arsenide at 00° C., the adhesion coefficient of arsenic on the substrate is less than 1, so the thickness of the grown film is controlled by the amount of gallium supplied. At this time, arsenic is supplied in excess, and the vapor pressure becomes high, so that the degree of vacuum becomes approximately 1×1 8 Torr due to the arsenic vapor.

[発明が解決しようとする課題] 以上のことから砒素等の蒸気圧の高い材料を用いた場合
、真空室内には成長後、その原料か雰囲気として残留し
、この状態において真空室内において異なった結晶成長
を行った時には、残留ガスの影響をうけることになる。
[Problems to be Solved by the Invention] From the above, when a material with a high vapor pressure such as arsenic is used, the raw material remains in the vacuum chamber as an atmosphere after growth, and in this state, different crystals form in the vacuum chamber. When growth is performed, it will be affected by residual gas.

例えばガリウム砒素結晶成長後、引き続きゲルマニウム
を形成させる時、真空室内に残留した砒素がゲルマニウ
ムに取り込まれ、n型の導電性を有する結晶が形成ざれ
る。従って高純度ゲルマニウムやp型導電性のゲルマニ
ウムを再現性よく形成することかできないという問題点
があった。
For example, when germanium is subsequently formed after gallium arsenide crystal growth, arsenic remaining in the vacuum chamber is incorporated into germanium, forming a crystal with n-type conductivity. Therefore, there is a problem in that it is not possible to form highly purified germanium or p-type conductive germanium with good reproducibility.

このような問題を解決する方法として、2つの真空室を
別の真空室で結合し、各々の真空至で異なる材料を用意
することが考えられる。例えば一方の真空室でカリウム
砒素を形成し、次いで基板温度を十分に下げた状態で他
方の真空至に搬送し、そこでゲルマニウムを形成すると
いう方法である。
One possible way to solve this problem is to combine the two vacuum chambers in separate vacuum chambers and prepare different materials for each vacuum chamber. For example, there is a method in which potassium arsenide is formed in one vacuum chamber, and then the substrate temperature is sufficiently lowered and transferred to the other vacuum chamber, where germanium is formed.

しかし、この方法では成長させるべきエビタキシャル層
の種類に応じて基板を真空室間で搬送する必要がおり、
その際、搬送の度に基板温度を下げなければならず、一
連の作業が煩雑になると共に、長時間に及ぶという問題
点があった。
However, with this method, it is necessary to transport the substrate between vacuum chambers depending on the type of epitaxial layer to be grown.
At that time, the temperature of the substrate had to be lowered each time it was transported, which caused a problem in that the series of operations became complicated and took a long time.

本発明の目的は、基板il&送の必要がなく、かつ基板
温度の変動なしに、2種類の薄膜を互いに汚染されるこ
となく形成し、あるいは相互の物質汚染がない2種類の
工程が可能な薄膜の形成・加工装置を提供することにあ
る。
The purpose of the present invention is to form two types of thin films without mutually contaminating each other, without the need for substrate illumination and transport, without changing the substrate temperature, or to enable two types of processes without mutual substance contamination. The purpose of the present invention is to provide thin film forming and processing equipment.

[課題を解決するための手段] 本発明は、基板上に薄膜の成長または加工を行う主真空
室と、該主真空室にゲートバルブを介して接続した複数
の真空室と、該複数の真空至の各々に付設されて原料ガ
スまたはエッチングガスを供給するガス供給装置とから
なり、原料カスまたはエッチングガスは前記ゲートバル
ブを介して前記主真空室内の基板に供給されてなること
を特徴とする薄膜成長・加工装置である。
[Means for Solving the Problems] The present invention provides a main vacuum chamber for growing or processing a thin film on a substrate, a plurality of vacuum chambers connected to the main vacuum chamber via gate valves, and a plurality of vacuum chambers connected to the main vacuum chamber through gate valves. and a gas supply device attached to each of the main vacuum chambers for supplying raw material gas or etching gas, and the raw material waste or etching gas is supplied to the substrate in the main vacuum chamber through the gate valve. This is a thin film growth/processing device.

[作用] 本発明による装置は、複数の真空室が基板を具備した主
真空室にゲートバルブを介して接続ざれ、基板を移動す
ることなく両方の真空室のガス供給装置から原料が供給
ざれる。
[Operation] In the apparatus according to the present invention, a plurality of vacuum chambers are connected to a main vacuum chamber equipped with a substrate via a gate valve, and raw materials can be supplied from the gas supply devices of both vacuum chambers without moving the substrate. .

一方の真空室から供給された原料ガスまたはエッチング
ガスは、主真空室内の基板上に所定の薄膜成長または加
工を行った後、ゲートバルブを閉じられ、主真空室内か
ら完全に排気ざれる。そして別の原料ガスまたはエッチ
ングガスは、別の真空室のカス供給装置から供給ざれ、
ゲートバルブを介して主真空室内の基板に供給ざれる。
After the source gas or etching gas supplied from one vacuum chamber performs a predetermined thin film growth or processing on the substrate in the main vacuum chamber, the gate valve is closed and the gas is completely exhausted from the main vacuum chamber. Another source gas or etching gas is supplied from a waste supply device in another vacuum chamber.
It is supplied to the substrate in the main vacuum chamber via a gate valve.

このため、主真空室内の基板は移動させる必要なしに、
残留ガスのない状態で薄膜成長・加工を行うことができ
る。
Therefore, the substrate inside the main vacuum chamber does not need to be moved.
Thin film growth and processing can be performed without residual gas.

[実施例コ 次に、本発明の実施例について図面を参照して説明する
[Embodiments] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の概略構成図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

真空室1,2には、それぞれガス供給装置でおる窒化ホ
ウ素製るつぼおよびタンタル製の加熱ヒータよりなる分
子線セル3a,3b,および液体窒素シュラウド4a,
4bが設置され、真空室1,2はゲートパルブ6a,6
bを介して基板5が設置された主真空室7に接続してい
る。そして、例えば真空室1の分子線セル3aには■族
あよびV族化合物半導体用の材料であるガリウム,砒素
,ドーパントであるシリコンおよびベリリウムが収納ざ
れ、真空室2の分子線セル3bにはゲルマニウムおよび
ゲルマニウムのp型ドーパントであるガリウムが収納ざ
れている。
The vacuum chambers 1 and 2 are equipped with molecular beam cells 3a and 3b each consisting of a boron nitride crucible and a tantalum heater, and liquid nitrogen shrouds 4a,
4b is installed, and the vacuum chambers 1 and 2 are connected to gate valves 6a and 6.
It is connected via b to a main vacuum chamber 7 in which a substrate 5 is installed. For example, the molecular beam cell 3a of the vacuum chamber 1 stores gallium, arsenic, which are materials for group II and group V compound semiconductors, and silicon and beryllium, which are dopants. It contains germanium and gallium, which is a p-type dopant of germanium.

本実施例では上記装置を用い、第2図に示すように、ガ
リウム砒素基板8上にガリウム砒素9およびゲルマニウ
ム10が形成ざれたヘテロエビタキシャル層構造を作製
する場合について説明する。
In this embodiment, a case will be described in which the above-mentioned apparatus is used to fabricate a heteroepitaxial layer structure in which gallium arsenide 9 and germanium 10 are formed on a gallium arsenide substrate 8, as shown in FIG.

ガリウム砒素9の膜厚は5000人、ドーピングはn型
の5×1017cm−3、ゲルマニウムの膜厚は200
0人、ドーピングはp型の1×1019cm−3である
。この構造はガリウム砒素およびゲルマニウムを用いた
べテロ接合バイポーラトランジスタのコレクタおよびベ
ース層に対応し、この状態において再現性のあるp型ゲ
ルマニウムが形成ざれなければならない。
The film thickness of gallium arsenide 9 is 5000 cm, the doping is n-type 5 x 1017 cm-3, and the film thickness of germanium is 200 cm.
0 person, doping is p-type 1×1019 cm−3. This structure corresponds to the collector and base layers of a heterojunction bipolar transistor using gallium arsenide and germanium, and p-type germanium must be reproducibly formed in this state.

まず、主真空室7内の基板5を450゜Cに加熱してお
き、真空室1の分子線セル3aからガリウムおよび砒素
を加熱蒸発して砒素をドーピングし、毎時1ミクロンの
成長速度でガリウム砒素9を形成する。次にセルのシャ
ッタを閉じ、成長終了後ゲートバルブ6aを閉じ、約1
0分間放置して残沼砒素を10’ Torr以下にする
。その後、真空至2のゲートバルブ6bを開き、基板5
の温度を350゜Cに下げて真空室2内のゲルマニウム
およびガリウムの分子線セル3bのシャッタを開き、p
型ゲルマニウムを形成する。このようにして形成したゲ
ルマニウムの1にビングレベルは1 x 1o19cm
’で再現性良く形成することが可能であった。
First, the substrate 5 in the main vacuum chamber 7 is heated to 450°C, and gallium and arsenic are doped by heating and evaporated from the molecular beam cell 3a of the vacuum chamber 1, and gallium is grown at a growth rate of 1 micron per hour. Arsenic 9 is formed. Next, the shutter of the cell is closed, and after the growth is completed, the gate valve 6a is closed, and the
Leave it for 0 minutes to reduce the residual arsenic level to 10' Torr or less. After that, open the gate valve 6b to vacuum 2, and
Lower the temperature to 350°C, open the shutter of the germanium and gallium molecular beam cell 3b in the vacuum chamber 2, and
Type germanium is formed. The level of germanium formed in this way is 1 x 1o19cm.
' could be formed with good reproducibility.

一方、ゲルマニウムをガリウムおよび砒素と同じ真空室
に収容し、ゲルマニウムを形成した場合、砒素の残留分
圧により砒素がn型不純物として取り込まれ、そのドー
ピングレベルはその残留分圧に依存し、従ってガリウム
をドーピングした場合、1X1019cm−2のp型半
導体形成の再現性は本発明に比較して悪かった。
On the other hand, if germanium is housed in the same vacuum chamber as gallium and arsenic to form germanium, the residual partial pressure of arsenic will incorporate arsenic as an n-type impurity, and its doping level will depend on its residual partial pressure, so gallium When doping, the reproducibility of p-type semiconductor formation of 1×10 19 cm −2 was poor compared to the present invention.

なお、本実施例では、2種類の半導体を形成する場合に
ついて述べたが、例えば薄膜成長とエッチングを行う場
合や、ざらに絶縁膜と半導体を形成する場合等、種々の
組合わせについて本装置を用いることが可能である。
Although this example describes the case of forming two types of semiconductors, this apparatus can be used for various combinations, such as when performing thin film growth and etching, or when roughly forming an insulating film and a semiconductor. It is possible to use

[発明の効果] 以上説明したように、本発明の薄膜成長・加工装置を用
いることにより、従来のように原料の相互汚染がなく、
かつ成長基板の搬送、さらには基板の昇温降温の必要な
く異種類の薄膜結晶の形成あるいは加工を良好に行うこ
とができる。
[Effects of the Invention] As explained above, by using the thin film growth/processing apparatus of the present invention, there is no cross-contamination of raw materials unlike in the past.
Furthermore, different types of thin film crystals can be formed or processed successfully without the need to transport the growth substrate or to raise or lower the temperature of the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略構成図、第2図は本発
明の薄膜成長・加工装置によって作製されたガリウム砒
素およびゲルマニウムよりなる結晶の部分断面図である
。 1,2・・・真空室   3a, 3b・・・分子線セ
ル4a, 4b・・・液体窒素シュラウド5・・・基板
      6a, 6b・・・ゲートバルブ7・・・
主真空室 8・・・ガリウム砒素基板 9・・・ガリウム砒素 10・・・ゲルマニウム
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG. 2 is a partial cross-sectional view of a crystal made of gallium arsenide and germanium produced by the thin film growth/processing apparatus of the present invention. 1, 2... Vacuum chamber 3a, 3b... Molecular beam cell 4a, 4b... Liquid nitrogen shroud 5... Substrate 6a, 6b... Gate valve 7...
Main vacuum chamber 8...Gallium arsenide substrate 9...Gallium arsenide 10...Germanium

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に薄膜の成長または加工を行う主真空室と
、該主真空室にゲートバルブを介して接続した複数の真
空室と、該複数の真空室の各々に付設されて原料ガスま
たはエッチングガスを供給するガス供給装置とからなり
、原料ガスまたはエッチングガスは前記ゲートバルブを
介して前記主真空室内の基板に供給されてなることを特
徴とする薄膜成長・加工装置。
(1) A main vacuum chamber for growing or processing a thin film on a substrate, a plurality of vacuum chambers connected to the main vacuum chamber via gate valves, and a source gas or 1. A thin film growth/processing apparatus comprising a gas supply device for supplying an etching gas, the source gas or the etching gas being supplied to the substrate in the main vacuum chamber via the gate valve.
JP4990889A 1989-03-03 1989-03-03 Thin-film growing and machining apparatus Pending JPH02230719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4990889A JPH02230719A (en) 1989-03-03 1989-03-03 Thin-film growing and machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4990889A JPH02230719A (en) 1989-03-03 1989-03-03 Thin-film growing and machining apparatus

Publications (1)

Publication Number Publication Date
JPH02230719A true JPH02230719A (en) 1990-09-13

Family

ID=12844111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4990889A Pending JPH02230719A (en) 1989-03-03 1989-03-03 Thin-film growing and machining apparatus

Country Status (1)

Country Link
JP (1) JPH02230719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176851A (en) * 1994-12-26 1996-07-09 Nec Corp Dry etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176851A (en) * 1994-12-26 1996-07-09 Nec Corp Dry etching method

Similar Documents

Publication Publication Date Title
US4960720A (en) Method of growing compound semiconductor thin film using multichamber smoothing process
JP2948414B2 (en) Method of depositing Ge on substrate and method of manufacturing semiconductor device
JPH0666274B2 (en) (III) -Method for forming group V compound semiconductor
JPH0650744B2 (en) Method for producing cadmium mercury telluride
US4835116A (en) Annealing method for III-V deposition
US4900372A (en) III-V on Si heterostructure using a thermal strain layer
JPH04219927A (en) Method and device for diffusing impurity
US4470192A (en) Method of selected area doping of compound semiconductors
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US3765960A (en) Method for minimizing autodoping in epitaxial deposition
JPH02230719A (en) Thin-film growing and machining apparatus
JP2848404B2 (en) Method for forming group III-V compound semiconductor layer
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JPS6254424A (en) Vapor growing process of gaas thin film
US3563816A (en) Method for the vapor growth of semiconductors
Ishida et al. GaAs MESFET ring oscillator on Si substrate
EP0371901A2 (en) Thick epitaxial films with abrupt junctions
JP2000323420A (en) Manufacture for semiconductor device
US5402749A (en) Ultra-high vacuum/chemical vapor deposition of epitaxial silicon-on-sapphire
JPH03218622A (en) Doping with impurity
JPH10242053A (en) Gallium nitride semiconductor device and method of manufacturing gallium nitride semiconductor device
JP3149457B2 (en) Silicon germanium film, method for manufacturing silicon germanium film, and semiconductor device manufactured using silicon germanium film
Allen What can molecular beam epitaxy do for silicon devices?
TW202344699A (en) Production method for single crystal semiconductor film, production method for multilayer film of single crystal semiconductor film, and semiconductor element
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture