JPH02230051A - Hot water storing type hot water feeding device - Google Patents

Hot water storing type hot water feeding device

Info

Publication number
JPH02230051A
JPH02230051A JP1048782A JP4878289A JPH02230051A JP H02230051 A JPH02230051 A JP H02230051A JP 1048782 A JP1048782 A JP 1048782A JP 4878289 A JP4878289 A JP 4878289A JP H02230051 A JPH02230051 A JP H02230051A
Authority
JP
Japan
Prior art keywords
hot water
water storage
heat pump
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1048782A
Other languages
Japanese (ja)
Inventor
Tetsushi Shimatani
嶋谷 哲志
Keiji Yamada
恵司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1048782A priority Critical patent/JPH02230051A/en
Publication of JPH02230051A publication Critical patent/JPH02230051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To reduce a thermal loss and provide a small-sized hot water tank operated under an efficient manner by a method wherein upon completion of use of hot water within the hot water storing tank, if an accumulated calorie within the hot water storing tank sensed by a temperature sensor and a water level sensor is less than a predetermined value, a non-azeotropic mixture refrigerant of a heat pump cycle is separated by a separator device. CONSTITUTION:If a hot water temperature TH within a hot water staring tank 1 is more than a fourth set temperature T4, a mixing operation for non-azeotropic mixture refrigerant within a heat pump cycle is carried out. When a load completion signal is inputted and an accumulated calorie Q within the hot water storing tank detected by a temperature sensor 4 and a water level sensor 3 is less then a set value Q0, a first two-way valve 15 and a third two-way valve 17 of the heat pump cycle 2 are opened and a second two-way valve 16 is closed and at the same time an electrical power is fed to the heater 11. The heater is operated for a specified period of time to perform a separation of the non-azeotropic mixture refrigerant. After this operation, an operation of a compressor 5 is stopped under an operation of a control device 14 so as to clear the load completion signal and further the system is ready for an operation of tomorrow. Accordingly, it is possible to start the operation under a state in which the non-azeotropic mixture refrigerant is separated tomorrow.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は貯湯式給湯装置に関し、特にヒートボン1を加
熱源とした貯湯式給湯装置に関する.(発明の背景) 従来から外気温と貯湯層内の水温を検出して夕方の所定
時刻までに所定の湯温に沸き上げるために沸き上げる時
間を日ごとに変更することによって、ヒートボンブを成
績係数の高い領域で行いかつ夕方の給湯使用時には所定
の湯温が得られる貯湯式給湯装置が提案されている(例
えば特開昭60−122863号公報参照). ところが、この従来の佇湯式給湯装置では、ヒートボン
プの運転を成績係数の高い領域で行うことができるもの
の、貯湯層内を常に満水状態にして集熱運転を行うこと
がら、過剰集熱してしまいしかも翌朝に使用する湯を所
定温度に維持しようとすれば、湯量が多いために熱損失
が大きく、貯湯層も大型化するという閏題があった.一
方、近時、非共沸混合冷媒を用いてヒートポンプサイク
ルを駆動すること自体は提案されている(例えば特開昭
62−245053号公報参照)が、その具体的な用途
や制御方法などについての発表はない. 本発明は、このような背景のもとに案出されたものであ
り、熱損失が小さく、貯湯槽も小型化でき、しかも効率
良く集熱運転を行うことができる貯湯式給湯装置を提供
することを目的とするものである. (発明の構成) 本発明によれば、貯湯槽内の湯の使用を終了したときに
負荷終了信号が入力される負荷終了信号入力装置と、該
負荷終了信号が入力されたときに前記貯湯槽内の水の蓄
熱量を検出する温度センサと水位センサとを設け、該温
度センサと水位センサで検出された貯湯槽内の蓄熱量が
所定値以下のときは、前記分離装置によってヒートボン
プサイクルの非共沸混合冷媒を分離することを特徴とす
る貯湯式給湯装置が提供され、そのことにより上記目的
が達成おれる. (実施鍔) 以下、本発明を添付図面に基づき詳細に説明する. 第1図は、本発明に係わる貯湯式給湯装置の一実施例を
示す概略構成図であり、1は貯湯槽、2は貯湯槽1内の
水を加熱するヒートポンプサイクルである. 前記貯湯槽1には、貯湯槽1内の水位を検出する水位セ
ンサ3と、貯湯槽1内の湯温を検出する温度センサ4が
設けられており、この水位センサ3と温度センサ4は、
例えばマイクロコンピュータ等で構成される制御装置1
4に接続されている.前記制御装置14には、貯湯槽1
内の1日分の湯の使用を終了したときに負荷終了信号が
入力される負荷終了信号入力装置13が接続されている
.この負荷終了信号入力装置13は、具体的には手動ス
イッチやタイマを利用した装置で構成される.前記ヒー
トポンプサイクル2は、圧Wi機5、蒸発器6、拐張弁
7、及び上述の貯湯槽1内に配設された凝縮器8で主サ
イクルを構成し、膨張弁7と並列に冷媒分屋装置12が
設けられている.このヒートポンプサイクル2内には、
低温度領域で高効率を得ることができるR22や高温度
領域で圧力を下げて高効率を得ることができるR114
などからなる非共沸混合冷媒が封入される.前記冷媒分
離装置12は、冷媒を分離するための精留塔9、分離さ
れた高沸点冷媒を貯めるための貯留器10、及び貯留器
10内の冷媒を加熱するためのヒータ11で主として構
成され、二方弁15、l7を開放して二方弁16を閉成
し、ヒータ11をON制御することにより非共沸混合冷
媒の分離操作が行われ、二方弁15、16、17を開放
しヒータ11をOFF制御することにより非共沸混合冷
媒の混合操作が行われる. なお、第1図中18、19は、サイクル内の圧力を調整
するキャビラリーチューブである.第2図は、上述のよ
うに構成された貯湯式給湯装置の基本動作(例えば昼間
の集熱運転状態〉を説明するためのフローチャート図で
ある.なお、第2図における、第1〜第4の設定温度?
1〜T4は、T3 <T2 <Ta  ・T1である.
まず、水位センサ3で検知した貯湯槽1内の水位Hwと
予め設定した最低木位H0とを比較する.貯湯槽1内の
水位が最低木位H。以下であれば給水用電磁弁(不図示
)を開いて貯湯槽1内が最低木位I4。になるまで給水
し、最低木位H。になったとき給水を停止する. 次に、温度センサ4で検知した貯湯槽1内の湯温THと
、第1の設定温度をT.とを比較する.貯湯槽1内の湯
温T.が第1の設定温度T,以下であれば、圧縮機5を
駆動してヒートボンプサイクル2内に冷媒を循環させて
貯湯槽1内の水を加熱する. この場合、主サイクル内を循環する冷媒は低沸点冷媒で
あるR22に富んだ組成比(非共沸混合冷媒の分離状態
》であるものとする. 次に、ヒートボン7サイクル1を運転して貯湯槽1内の
湯温T■が第2の設定温度T2以上になれば、給水用電
磁弁(不図示)を再び開いて第3の設定温度T3以下に
なるまで給水を続け、第3の設定温度T3以下になった
とき給水を停止する.以下同様に、加熱動作を続けなが
ら給水動作を周期的に繰り返すことによって、貯湯槽1
内の湯温を第2の設定温度とT2と第3の設定温度T3
の範囲内に維持して貯湯槽1内の湯を徐々に増やしてい
く.この加熱動作中に湯が使用されて貯湯槽1内の湯が
減っても上述の動作と同様に加熱しながら給水動作を周
期的に繰り返すことによって貯湯槽1内の湯を徐々に増
やしていく.なお、貯湯槽1内の湯が所定水位以上にな
ったときは、ポールタップ(不図示)によって給水動作
は完全に停止される. このようにして、満水になった後もヒートボンプを運転
することによって加熱動作を継続するが、貯湯槽1内の
湯温T。が第4の設定温度T4以上になれば、ヒートポ
ンプサイクル内の非共沸混合冷媒の混合操作を行う. この場合、分離装置12に設けられた第1の二方弁15
、第2の二方弁16、第3の二方弁17を開いてしばら
く運転し、冷媒.の混合を行った後に第1の三方弁15
、第3の二方弁17を閏じて運転することにより、非共
沸混合冷媒の混合状態でヒートポンプを運転して貯湯槽
1の水を加温する.そして、貯湯槽1内の湯温T.が第
1の設定温度になるまで加熱を行う.このように貯湯槽
1内の最低水位と最高水位の範囲内で給水動作を繰り返
しながら徐々に貯湯量を増やすことから、いつでも設定
温度の湯が供給されると共に、例えば若干の湯を使用す
る朝方やあまり湯を使用しない昼間は貯湯槽を満水にす
る必要はなく、例えば大量の湯を使用する夕方迄に貯湯
槽1内が満水になるように作動させればよい.従って、
貯湯8!!1内は例えば夕方に使用されるであろう湯の
分だけの容量があれば足り、貯湯槽自体を小型化できる
.第3図は、貯湯槽1内の一日の湯の使用が終了して負
荷終了信号が入力された後の動作を示すフローチャート
図である. まず、負荷終了信号が入力されたときに、温度センサ4
と水位センサ3で検出された貯湯槽内の蓄熱量Qが設定
値Q。以下であるときは、ヒートポンプサイクル2の第
1の二方弁15、第3の二方弁17を開き、第2の二方
弁16を閑じると共に、ヒータ11に電源を投入し一定
時間運転することにより、非共沸混合冷媒の分離を行う
.その後、制御装置14で圧縮機5の運転を停止して負
荷終了信号をクリアーすると共に、翌日の運転に備える
.従って、翌日は直ちに非共沸混合冷媒の分離状態で運
転を開始することができる.なお、負゜宵終了信号が入
力されたときの貯湯槽1内の蓄熱量Qが所定値Q。以上
であれば、非共沸混合冷媒の分離を行わないが、貯湯槽
1内の蓄熱JLQが所定値Q。以上のときは、翌日も直
ちに非共沸混合冷媒の混合状態で集熱運転を開始するこ
とから問題はない. (発明の効果) 以上のように、本発明に係わる貯湯式給湯装置によれば
、貯湯槽内の湯の使用を終了したときに負荷終了信号が
入力される負荷終了信号入力装置と前記負荷終了信号が
入力されたときに前記貯湯槽内の水の蓄熱量を検出する
温度センサと水位センサを設け、該温度センサと水位セ
ンサで検出された貯湯槽内の蓄熱量が所定値以下のとき
は前記ヒートボンプサイクル内の非共沸混合冷媒の分離
運転をすることから、翌日の集熱運転の開始状況に即応
することができ、もって集熱効率が極めて優れた貯湯式
給湯装置を提供・することができる.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hot water storage type hot water supply device, and particularly to a hot water storage type hot water supply device using a heatbon 1 as a heating source. (Background of the invention) Conventionally, heat bombs have been developed with a coefficient of performance by detecting the outside temperature and the water temperature in the hot water storage layer and changing the boiling time on a daily basis in order to boil the water to a predetermined temperature by a predetermined time in the evening. A storage-type water heater has been proposed that operates in a high temperature range and provides a predetermined hot water temperature when hot water is used in the evening (see, for example, Japanese Patent Application Laid-Open No. 122863/1983). However, with this conventional hot water type water heater, although the heat pump can be operated in a region with a high coefficient of performance, the hot water storage layer is always filled with water and heat collection operation is performed, resulting in excessive heat collection. Moreover, in order to maintain the hot water used the next morning at a predetermined temperature, there was a problem in that the amount of hot water was large, resulting in large heat loss and the need for a large hot water storage tank. On the other hand, recently, it has been proposed to drive a heat pump cycle using a non-azeotropic mixed refrigerant (see, for example, Japanese Patent Application Laid-Open No. 62-245053), but there are no studies regarding its specific application or control method. There are no announcements. The present invention has been devised against this background, and provides a hot water storage type water heater that has low heat loss, can downsize the hot water storage tank, and can efficiently perform heat collection operation. The purpose is to (Structure of the Invention) According to the present invention, there is provided a load end signal input device to which a load end signal is input when the use of hot water in a hot water storage tank is finished; A temperature sensor and a water level sensor are provided to detect the amount of heat stored in the water in the hot water storage tank, and when the amount of heat stored in the hot water storage tank detected by the temperature sensor and the water level sensor is less than a predetermined value, the separation device starts the heat pump cycle. A hot water storage type water heater is provided which is characterized by separating a non-azeotropic mixed refrigerant, thereby achieving the above object. (Execution Tsuba) The present invention will be explained in detail below based on the attached drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a hot water storage type water heater according to the present invention, in which 1 is a hot water storage tank and 2 is a heat pump cycle that heats water in the hot water storage tank 1. The hot water tank 1 is provided with a water level sensor 3 that detects the water level in the hot water tank 1 and a temperature sensor 4 that detects the temperature of the water in the hot water tank 1.
For example, a control device 1 composed of a microcomputer, etc.
It is connected to 4. The control device 14 includes a hot water storage tank 1
A load end signal input device 13 is connected to which a load end signal is input when one day's worth of hot water has been used. This load termination signal input device 13 is specifically constructed of a device using a manual switch or a timer. The heat pump cycle 2 has a main cycle composed of a pressure Wi machine 5, an evaporator 6, an expansion valve 7, and a condenser 8 disposed in the hot water storage tank 1, and a refrigerant component in parallel with the expansion valve 7. A storage device 12 is provided. In this heat pump cycle 2,
R22, which can obtain high efficiency in low temperature ranges, and R114, which can obtain high efficiency by lowering pressure in high temperature ranges.
A non-azeotropic mixed refrigerant consisting of etc. is sealed. The refrigerant separation device 12 mainly includes a rectification column 9 for separating the refrigerant, a reservoir 10 for storing the separated high-boiling refrigerant, and a heater 11 for heating the refrigerant in the reservoir 10. , the two-way valves 15, 17 are opened, the two-way valve 16 is closed, and the heater 11 is turned ON to perform a separation operation of the non-azeotropic mixed refrigerant, and the two-way valves 15, 16, 17 are opened. By turning off the heater 11, the non-azeotropic refrigerant mixture is mixed. Note that 18 and 19 in FIG. 1 are cavillary tubes that adjust the pressure within the cycle. FIG. 2 is a flowchart for explaining the basic operation (for example, daytime heat collection operation state) of the hot water storage type water heater configured as described above. Set temperature?
1 to T4 are T3 < T2 < Ta · T1.
First, the water level Hw in the hot water storage tank 1 detected by the water level sensor 3 is compared with a preset minimum tree level H0. The water level in hot water tank 1 is the lowest level H. If it is below, open the water supply solenoid valve (not shown) and the inside of the hot water tank 1 is at the lowest wood level I4. Water until the lowest tree level is H. Stop the water supply when this happens. Next, the hot water temperature TH in the hot water storage tank 1 detected by the temperature sensor 4 and the first set temperature are set to T. Compare with. The water temperature in the hot water tank 1 T. If the temperature is below the first set temperature T, the compressor 5 is driven to circulate the refrigerant in the heat bomb cycle 2 and heat the water in the hot water storage tank 1. In this case, it is assumed that the refrigerant circulating in the main cycle has a composition ratio rich in R22, which is a low boiling point refrigerant (separated state of non-azeotropic mixed refrigerant).Next, heatbon 7 cycle 1 is operated to store hot water. When the water temperature T■ in the tank 1 becomes equal to or higher than the second set temperature T2, the solenoid valve for water supply (not shown) is reopened and water supply continues until the water temperature T becomes equal to or lower than the third set temperature T3. When the temperature falls below T3, the water supply is stopped.Similarly, by periodically repeating the water supply operation while continuing the heating operation, the hot water tank 1
The water temperature inside is the second set temperature T2 and the third set temperature T3.
The amount of hot water in tank 1 is gradually increased while maintaining it within the range of . Even if hot water is used during this heating operation and the amount of hot water in the hot water storage tank 1 decreases, the amount of hot water in the hot water storage tank 1 is gradually increased by periodically repeating the water supply operation while heating in the same way as the above-mentioned operation. .. Note that when the hot water in the hot water storage tank 1 reaches a predetermined water level or higher, the water supply operation is completely stopped by a pole tap (not shown). In this way, the heating operation is continued by operating the heat pump even after the tank is filled with water, but the temperature of the hot water in the hot water storage tank 1 remains constant. When the temperature exceeds the fourth set temperature T4, the non-azeotropic refrigerant mixture in the heat pump cycle is mixed. In this case, the first two-way valve 15 provided in the separation device 12
, the second two-way valve 16 and the third two-way valve 17 are opened and the operation is continued for a while, and the refrigerant is discharged. After mixing, the first three-way valve 15
, by operating the third two-way valve 17, the heat pump is operated in a mixed state of the non-azeotropic refrigerant mixture to heat the water in the hot water storage tank 1. Then, the temperature of the hot water in the hot water tank 1 is T. Heating is performed until the temperature reaches the first set temperature. In this way, the amount of stored hot water is gradually increased while repeating the water supply operation within the range of the lowest and highest water levels in the hot water storage tank 1, so that hot water at the set temperature is always supplied and, for example, in the morning when a small amount of hot water is used. There is no need to fill up the hot water tank during the day when hot water is not used much; for example, it is sufficient to operate the hot water tank 1 so that it is full by the evening when a large amount of hot water is used. Therefore,
Hot water storage 8! ! 1 only needs to have enough capacity for the hot water that will be used in the evening, for example, and the hot water tank itself can be made smaller. FIG. 3 is a flowchart showing the operation after the hot water in the hot water storage tank 1 has been used for one day and the load end signal is input. First, when the load end signal is input, the temperature sensor 4
The amount of heat stored in the hot water tank Q detected by the water level sensor 3 is the set value Q. When the following conditions are met, the first two-way valve 15 and the third two-way valve 17 of the heat pump cycle 2 are opened, the second two-way valve 16 is idled, and the power is turned on to the heater 11 for a certain period of time. By operating the system, the non-azeotropic refrigerant mixture is separated. Thereafter, the control device 14 stops the operation of the compressor 5, clears the load end signal, and prepares for the next day's operation. Therefore, the next day, operation can be started immediately with the non-azeotropic mixed refrigerant separated. Note that the amount of heat stored in the hot water tank 1 when the negative evening end signal is inputted is the predetermined value Q. If it is above, the non-azeotropic mixed refrigerant is not separated, but the heat storage JLQ in the hot water storage tank 1 is the predetermined value Q. In the above cases, there is no problem as the heat collection operation will immediately start the next day with the non-azeotropic refrigerant mixed. (Effects of the Invention) As described above, according to the hot water storage type hot water supply apparatus according to the present invention, the load termination signal input device receives the load termination signal when the use of hot water in the hot water storage tank is finished; A temperature sensor and a water level sensor are provided to detect the amount of heat stored in the water in the hot water tank when a signal is input, and when the amount of heat stored in the hot water tank detected by the temperature sensor and the water level sensor is below a predetermined value. To provide a hot water storage type hot water supply device which is capable of responding immediately to the next day's heat collection operation start situation by performing a separation operation of the non-azeotropic mixed refrigerant in the heat bomb cycle, and which has extremely excellent heat collection efficiency. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる貯湯式給湯装置の一実施例を示
す概略構成図、第2図は同じく基本的な集熱動作を示す
フローチャート図、第3図は同じく負荷終了信号が入力
された後の動作を示すフローチャート図である. ■、貯湯ff     2、ヒートボンプサイクル3、
水位センサ  4、温度センサ 8、凝縮器    12、冷媒分離装置13、負荷終了
信号入力装置
Fig. 1 is a schematic configuration diagram showing an embodiment of a hot water storage type water heater according to the present invention, Fig. 2 is a flowchart showing the basic heat collecting operation, and Fig. 3 is a diagram showing the same example when a load end signal is input. It is a flowchart diagram showing the subsequent operation. ■, hot water storage ff 2, heat bomb cycle 3,
Water level sensor 4, temperature sensor 8, condenser 12, refrigerant separation device 13, load end signal input device

Claims (1)

【特許請求の範囲】 非共沸混合冷媒を分離する分離装置を有するヒートポン
プサイクルと、該ヒートポンプサイクルの凝縮器が配設
された貯湯槽とを備え、前記ヒートポンプサイクルを非
共沸混合冷媒の分離状態又は混合状態で運転することに
よって前記貯湯層内の水を加熱する貯湯式給湯装置にお
いて、 前記貯湯槽内の湯の使用を終了したときに負荷終了信号
が入力される負荷終了信号入力装置と、該負荷終了信号
が入力されたときに前記貯湯槽内の水の蓄熱量を検出す
る温度センサと水位センサとを設け、該温度センサと水
位センサで検出された貯湯槽内の蓄熱量が所定値以下の
ときは、前記分離装置によってヒートポンプサイクルの
非共沸混合冷媒を分離することを特徴とする貯湯式給湯
装置。
[Scope of Claims] A heat pump cycle having a separation device for separating a non-azeotropic mixed refrigerant, and a hot water storage tank in which a condenser of the heat pump cycle is disposed, the heat pump cycle having a separation device for separating the non-azeotropic mixed refrigerant. In the hot water storage type water heater that heats water in the hot water storage tank by operating in a state or a mixed state, the load end signal input device receives a load end signal when the hot water in the hot water storage tank is used. , a temperature sensor and a water level sensor are provided to detect the amount of heat stored in the water in the hot water storage tank when the load end signal is input, and the amount of heat stored in the hot water storage tank detected by the temperature sensor and the water level sensor is a predetermined amount. A hot water storage type hot water supply device, characterized in that when the temperature is below the value, the non-azeotropic mixed refrigerant of the heat pump cycle is separated by the separation device.
JP1048782A 1989-02-28 1989-02-28 Hot water storing type hot water feeding device Pending JPH02230051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048782A JPH02230051A (en) 1989-02-28 1989-02-28 Hot water storing type hot water feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048782A JPH02230051A (en) 1989-02-28 1989-02-28 Hot water storing type hot water feeding device

Publications (1)

Publication Number Publication Date
JPH02230051A true JPH02230051A (en) 1990-09-12

Family

ID=12812819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048782A Pending JPH02230051A (en) 1989-02-28 1989-02-28 Hot water storing type hot water feeding device

Country Status (1)

Country Link
JP (1) JPH02230051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065755A1 (en) * 2021-10-18 2023-04-27 珠海格力电器股份有限公司 Control method and apparatus for air source heat pump unit, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065755A1 (en) * 2021-10-18 2023-04-27 珠海格力电器股份有限公司 Control method and apparatus for air source heat pump unit, and electronic device

Similar Documents

Publication Publication Date Title
JPH02230051A (en) Hot water storing type hot water feeding device
SE527721C2 (en) Chemical heat pump operating according to the hybrid principle
CN105004065B (en) A kind of control method for water heater
JP3840574B2 (en) Water heater
JPH10238892A (en) Heat pump hot water heater
JPS60233441A (en) Heat-pump type hot water supplier
JP2009243751A (en) Liquid chemical supply apparatus
JP2003254606A (en) Heat pump type hot water supply system
JP2529245Y2 (en) Hot water storage system
JP4100126B2 (en) Water heater
JPS6057154A (en) Solar heat pump device
JPS58120043A (en) Hot-water reserving type hot-water supplying system
JPH0387562A (en) Storage type hot-water supply apparatus
JPH11148731A (en) Hot-water storage type water heater
JPS6078243A (en) Heating medium circulating type hot water supplying device
JPS58108340U (en) heat pump water heater
JPH02254256A (en) Hot water storage type hot water supplying device
JPS60164140A (en) Heat pump type hot water supplier utilizing solar heat
JP3841004B2 (en) Heat pump type water heater and its boiling control method
JPS6146847A (en) Solar heat type hot water feeding device
JPH08233366A (en) Hot water supply equipment
JPS60105865A (en) Solar heat collector
JPS6396448A (en) Hot water supply system using solar energy
JP3841003B2 (en) Heat pump type water heater and its boiling control method
JPH0446345B2 (en)