JPH02229827A - Wholly aromatic copolymer polyamide and molded article thereof - Google Patents

Wholly aromatic copolymer polyamide and molded article thereof

Info

Publication number
JPH02229827A
JPH02229827A JP5002989A JP5002989A JPH02229827A JP H02229827 A JPH02229827 A JP H02229827A JP 5002989 A JP5002989 A JP 5002989A JP 5002989 A JP5002989 A JP 5002989A JP H02229827 A JPH02229827 A JP H02229827A
Authority
JP
Japan
Prior art keywords
polymer
wholly aromatic
reaction
parts
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5002989A
Other languages
Japanese (ja)
Other versions
JPH0774272B2 (en
Inventor
Toshihiro Mita
三田 利弘
Tsutomu Kiriyama
勉 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1050029A priority Critical patent/JPH0774272B2/en
Priority to EP93101049A priority patent/EP0541510B1/en
Priority to EP89311179A priority patent/EP0367535B1/en
Priority to DE68921844T priority patent/DE68921844T2/en
Priority to DE68927235T priority patent/DE68927235T2/en
Priority to US07/428,898 priority patent/US5006629A/en
Publication of JPH02229827A publication Critical patent/JPH02229827A/en
Publication of JPH0774272B2 publication Critical patent/JPH0774272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To obtain the title polyamide soluble in organic solvents having low toxicity to organisms, excellent spinning stability, high mechanical properties, heat resistance and flame retardance, comprising a specific repeating unit. CONSTITUTION:The aimed polyamide having a main repeating unit shown by formula I and comprising diamine components shown by formula II (X is halogen; m and n are <=4 integer) to formula IV. The diamine components are preferably in the range of C, D, E, F, G and H and an amine component shown by formula II is preferably chlorobenzidine group, especially 3,3'- dichlorobenzidine.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、強度,モジュラス等の機械的物性に漬れ、耐
熱性,難燃性、耐薬品性に富んだ、新規な全芳香族ポリ
アミド(アラミド)に関するものである.さらに詳しく
は、有81陽性溶媒に可溶な、1ロセス性の良好な、共
重合アラミドに関する.[従来技術] アラミドは、高強力.高モジュラス、及び、高い耐熱性
を生かして、繊維、フイルム等に、幅広く用いられる4
とりわけ、バラ型のアラミドである、ボリーp−フェニ
レンテレフタラミド( P })1゛A)は、産業用資
材、保護具等に、その特徴を生かしアラミドの主流を成
している. 然しなから、P P T Aの製造,紡糸成型について
みれば、分子の剛直性に起因する問題かあり、m1えは
、重合反応溶媒として、生体への毒性か強いヘキサメチ
ルホスホルトリアミドを使用しなければならないことや
、濃硫酸によって、液晶性の紡糸原液をpA製し、いわ
ゆる液晶紡糸を行わなけ・ればならない.しかむ、この
硫酸を中和するため、大量の中和削を必要とし、製品中
にこれら中和剤からの=aイオンが混入し、製品の品質
を損なう.又、工程的にも不利である. これに対して、重合Fg蝶として一般的な有機極性溶媒
を用い、等方性の紡糸原液を調製しプロセスの簡略化を
図る試みも提案されている.具体的には、エーテル結合
を分子鎖中に共重合し、溶8′4性を改良する方法( 
tJえぱ、特開昭51−76386号、特開昭51−1
34743号、特開昭51−136916号、特[1目
昭61−252229号、特開昭62−27431号、
特開昭62−225530号、特開昭62−17702
2号、特開昭62−177023号各公報など)か数多
く提案されている.これらのうち、P−フェニレンジア
ミン(PP D A )と、3,4゜−ジアミノジフエ
ニルエーテル(3.4’DAPE)とを共重合した、共
重合アラミドは、強度、剛性率、耐薬品性にftれたボ
リマーであり、一般的な有機極性溶媒である、N−メチ
ルビロリドン(N〜IP)等を重合反応溶媒として用い
ることができ、しかも、この重合反応後のボリマー溶液
を直接用いて、紡糸等の成型ができ、プロセスの大幅な
改善が可能となる. このような、柔軟な結合種であるエーテル結合をボリマ
ー笛中に導入ずることは、溶解性向Lの点で有効な手段
であるが、ボリマーの一次構造かちも類推できるように
、耐熱性.剛性率、雑燃性等の物性で、十分な性能を発
揮するに至っていない6更に高度の機槻的物性、耐熱性
、難燃性を求めた場合、しかも、有機溶媒に可溶で、w
J便な製造プロセスが採用できるアラミドは、未だ提供
されていないのが現状である. さらに、近年にいたっては、安全性の観点より従来に増
して難燃性、不燃性が要求され、とりわけ、安全保護具
、航空機内装用の素材には特に必要な性能である.この
点においても既存のアラミドは、雑燃性、不燃性能が不
十分であるため、利用分野か制限されるのが実状である
. +L発明の目的] 本発明の目的は生体への毒性の少ない有機溶姪に可溶で
、製糸安定性にすぐれ、且つ高度のRja的物性、耐熱
性、および難燃性、不燃性を有するアラミドを提供する
ことにある. [発明の横成] 重合段階での有機溶媒への溶解性を維持して、より潰れ
た機械的物性.耐薬品性,B燃性を持つ共重合アラミド
について鋭意研究した結果PPDA,3,4゜−DAP
Eに加えハロゲン化ベンチジンを第三の成分としたジア
ミンと、テレフタル酸ハライド( T’ P C )と
のアラミドが良好な性能を持つ事を見いだし本発明に至
った. 即ち、本発明は、主たる繰り返し単位か出し、Xはハロ
ゲン元素、l,nは4以下の整数からなる全芳香族共重
合ポリアミドである.本発明においてジアミン成分A,
B,Cは構成成分として必須の要件である.成分Aで示
されるハロゲン化ベンチシンとしては、例えば、3−ク
ロロベンチジン.3−プロモベンチジン,3.3′ジク
ロ口ベンチジン、3,3゜−ジブロモベンチジン、3,
3゜−ジフルオ口ベンチジン、2,2゜−ジクロ口ベン
チシン、2,2゛−ジフルオ口ベンチジン、3.3’,
5,5゜−テトラフルオ口ベンチジン、3,3゜.5,
5゜ーテ1・ラクロロベンチジン等が挙げられるが合成
、製造の容易性から、3.3゜−ジクロ口ベンナジンか
好ましい. ジアミン成分A,B,Cの構成比率は重合反応時の溶解
性を左右する。N M Pのごとき有機溶媒を川いる本
発明においては、第一図で示l7た領域C D E F
 G Hが好ましい.ここにD〜Hの各点は下記組成を
示す. この領域内の組成では、反応溶媒への溶解性が優れ、高
い重合度を持つボリマーが得られる.また、得られた成
型物の性能も特に潰れており、工業的価値も高い.とり
わけ、難燃性.不燃性を付与するめには、アラミド中の
ハロゲン;虚度を高くする事か効果的であり、13ウ1
えは、0,5重址%以上好ましくは、1.0重景%以ト
が良い.このアラミドを製造する方法は、溶融重合,固
相重合,界面重合,溶液重合など力{あるが、溶液重合
法が好ましい.また、反応溶媒としては、一般に公知の
有機極性溶媒として知られる、ジメチルホルムアミド,
ジメチルアセt・アミド.N−メチルピロリドン,N−
メチル力プロラクタム,ジメチルスルホン,テトラメチ
ル尿素等から選ばれた少なくとも一種を主成分として用
いることができる. この場合、溶解性を高めるために重合の前.途中.終了
時に一般に公知の無i塩を適当量添加しても差し支えな
い.このような塩としては例えば塩化リチウム,塩化カ
ルシウム等があけられる.又、酸成分とジアミン成分と
の比は実質的に等モルで反応させるが重き度の制御のた
め阿れかの成分を過剰に用いることもできる6さらに末
端封鎖剤として単官能性の故成分,アミノ成分等を使用
しても良い. さらに反応によって生成する塩化水素のごとき酸を捕束
するため脂肪族や芳香族のアミン.第四級アンモニウム
塩を併用できる、. 反応の終了後、必要に応じて塩基性の無機化合物、たと
えば水酸化ナトリウム,水酸化カリウム.水酸化カルシ
ウム.酸化カルシウム等を添加し中和反応する. 重合反応において生成するボリマーの溶媒に対リる漂度
は重要である.均質な高重合度のボリマーを得るには生
成ボリマー濃度として20重量%以下か好ましい.とり
わけ数%から10%の範囲が安定したボリマーを得るの
に好都合である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a novel wholly aromatic polyamide that has excellent mechanical properties such as strength and modulus, and is rich in heat resistance, flame retardance, and chemical resistance. (aramid). More specifically, it relates to a copolymerized aramid that is soluble in 81-positive solvents and has good 1-processability. [Prior art] Aramid has high strength. 4 is widely used in fibers, films, etc. due to its high modulus and high heat resistance.
In particular, boly p-phenylene terephthalamide (P }) 1゛A), which is a rose-shaped aramid, has become the mainstream aramid for industrial materials, protective equipment, etc., taking advantage of its characteristics. However, when looking at the production and spinning molding of PPT A, there are problems caused by the rigidity of the molecule, and M1 uses hexamethylphosphorotriamide, which is highly toxic to living organisms, as the polymerization reaction solvent. In addition, a liquid crystalline spinning dope must be made into pA using concentrated sulfuric acid, and so-called liquid crystal spinning must be performed. However, in order to neutralize this sulfuric acid, a large amount of neutralization is required, and =a ions from these neutralizing agents are mixed into the product, impairing the quality of the product. It is also disadvantageous in terms of process. On the other hand, an attempt has been made to simplify the process by preparing an isotropic spinning stock solution using a general organic polar solvent for polymerizing Fg. Specifically, a method of copolymerizing ether bonds into molecular chains to improve solubility (
tJ Epa, JP-A-51-76386, JP-A-51-1
No. 34743, JP-A-51-136916, Special [1st issue No. 61-252229, JP-A-62-27431,
JP-A-62-225530, JP-A-62-17702
No. 2, Japanese Unexamined Patent Publication No. 177023/1983, etc.), and many others have been proposed. Among these, copolymerized aramid, which is a copolymerization of P-phenylenediamine (PPDA) and 3,4°-diaminodiphenyl ether (3.4'DAPE), has excellent strength, rigidity, and chemical resistance. N-methyl pyrrolidone (N-IP), which is a polymer with ft, and is a general organic polar solvent, can be used as a polymerization reaction solvent, and the polymer solution after this polymerization reaction can be directly used. It can be used for spinning, etc., making it possible to significantly improve the process. Introducing ether bonds, which are flexible bonding species, into the polymer chain is an effective means in terms of the solubility propensity L, but as can be inferred from the primary structure of the polymer, heat resistance. It has not yet achieved sufficient performance in terms of physical properties such as rigidity and miscellaneous flammability. 6 When seeking even higher mechanical properties, heat resistance, and flame retardance, it is also soluble in organic solvents.
Currently, aramid, which can be manufactured using a simple manufacturing process, is not yet available. Furthermore, in recent years, flame retardancy and non-combustibility have been required more than ever from the viewpoint of safety, and this performance is especially necessary for safety protection equipment and materials for aircraft interiors. In this respect as well, existing aramids have inadequate flammability and non-combustibility properties, so the field of use is currently limited. +LObject of the Invention] The object of the present invention is to create an aramid that is soluble in organic solvents with low toxicity to living organisms, has excellent thread-making stability, and has high Rja physical properties, heat resistance, flame retardancy, and noncombustibility. The goal is to provide the following. [Achievement of the invention] Improved mechanical properties while maintaining solubility in organic solvents during the polymerization stage. As a result of intensive research on copolymerized aramid with chemical resistance and B flammability, PPDA, 3,4°-DAP
It was discovered that an aramid of diamine containing halogenated benzidine as a third component in addition to E and terephthalic acid halide (T' P C ) has good performance, leading to the present invention. That is, the present invention is a wholly aromatic copolyamide in which the main repeating unit is exposed, X is a halogen element, and l and n are integers of 4 or less. In the present invention, diamine component A,
B and C are essential components. Examples of the halogenated benchcine represented by component A include 3-chlorobenzidine. 3-promobenzidine, 3.3′-dibromobenzidine, 3,3°-dibromobenzidine, 3,
3゜-difluorobenzidine, 2,2゜-difluorobentizine, 2,2゛-difluorobenzidine, 3.3',
5,5°-tetrafluorbenzidine, 3,3°. 5,
Examples include 5°-dichlorobenzine, but 3.3°-dichlorobennadine is preferred from the viewpoint of ease of synthesis and production. The composition ratio of diamine components A, B, and C influences the solubility during the polymerization reaction. In the present invention, in which an organic solvent such as NMP is used, the area C D E F shown in FIG.
GH is preferred. Here, each point D to H indicates the following composition. With a composition within this range, a polymer with excellent solubility in the reaction solvent and a high degree of polymerization can be obtained. Furthermore, the performance of the obtained molded product is particularly poor, and its industrial value is also high. Especially flame retardant. In order to impart nonflammability, it is effective to increase the halogen in aramid;
The height should be 0.5% or more, preferably 1.0% or more. Methods for producing this aramid include melt polymerization, solid phase polymerization, interfacial polymerization, and solution polymerization, but solution polymerization is preferred. In addition, as a reaction solvent, dimethylformamide, which is generally known as an organic polar solvent,
Dimethylacetamide. N-methylpyrrolidone, N-
At least one selected from methylprolactam, dimethylsulfone, tetramethylurea, etc. can be used as the main component. In this case, before polymerization to increase solubility. in the middle. At the end of the process, an appropriate amount of a generally known salt-free salt may be added. Examples of such salts include lithium chloride and calcium chloride. In addition, although the ratio of the acid component and the diamine component is substantially equimolar, the reaction component can be used in excess in order to control the weight. , amino components, etc. may also be used. Furthermore, aliphatic and aromatic amines are used to capture acids such as hydrogen chloride produced by the reaction. Can be used in combination with quaternary ammonium salt. After the reaction is completed, a basic inorganic compound such as sodium hydroxide or potassium hydroxide may be added as necessary. Calcium hydroxide. Calcium oxide etc. are added to carry out a neutralization reaction. The drift of the polymer produced in a polymerization reaction with respect to the solvent is important. In order to obtain a homogeneous polymer with a high degree of polymerization, the concentration of the produced polymer is preferably 20% by weight or less. In particular, a range of from several % to 10% is convenient for obtaining a stable polymer.

反応染件は特別な制限を必要としない.酸ハライドとジ
アミンとの反応は、一般に急速であり、反応温度は例え
ば−25℃〜100゜C好ましくは−10℃〜80℃で
ある.反応系に混入する水等、反応を阻害する異物は避
けなければならないのは言うまでもない. このようにして得られるアラミドはアルコール,水とい
った非溶媒に投入して、沈澱せしめ、バルプ状にして収
り出すことができる.これを再度他の溶媒に溶解して成
型に洪ずることしできるが、重合反応によって得た溶液
をそのまま成型用溶液として用いることができる. 特に本発明の組成のアラミドは溶解性に優れたものであ
り、重合反応中にボリマーが析出ずることかないので紡
糸等の成型用溶液として直接用いることができる. 成型法としては、先にのべたパルプ状あるいは粉体状と
したのち圧縮成型する方法、流延.−’rヤスト法によ
るボリマー溶液からの製膜、湿式法による紡糸、製膜等
が挙げられる. 溶液から成型する場合、凝固浴中に押し出し、成型物を
一旦固化せしめ、次いで水洗.延仲,熱処理を行うこと
によって繊維,フイルムを得ることができる.このばあ
い凝固浴としては有機極性濱媒/水系が好ましく用いら
れる. [発明の効果] 本発明のアラミドは、溶媒に対する溶解性が高く強度、
モジュラス等の機械的物性に1是れ耐熱性、耐薬品性、
難燃性に富む成型品を提供する.[実維例] 以下実施例を挙げて本発明をさらに詳細に説明するが、
本発明がこれに限定されないのは言うまでもない.また
実施例でいう部とは重量部をいい重合度の目安となる対
数粘度ηinhは98.5重量%の.f4硫酸に濃度0
.5t/旧で溶かした/8滝を30゛Cにて通常の方法
で測定したものである.実施例1 十分に乾燥した撹拌装置1寸きの三つ口フラスコにN−
メチルビロリドン( N M P ) 1888.5部
、3,3′−ジクロロベンチジン(DCB ;成分A)
33.534部、及びp−フエニレンジアミン(PPD
A;成分B ) 23.687部、3,4゜−ジアミノ
ジフェニルエーテル(3.4’− D A P E ;
成分C ) 17.545部を常温下で添加し、窒素中
で溶解した後撹拌しながらT P O 88. 945
部を添加した.重合反応の進行に従って粘度は徐々に上
昇した.最終的には80℃で60分間反応せしめたとこ
ろ、透明性に優れた粘調なボリマー溶液が得られた.つ
いで、この生成物に22.5重斌%の水酸化力ルシュウ
ムを含有するN M P 143.824部を添加し中
和反応を行った.得られたボリマー溶液から析出せしめ
たボリマーについて測定した粘度、ηinhは3.59
であった.該アラミド溶液を孔径0.1?on孔数25
ケのキャップを備えたシリンダーにとり、80℃に保ち
つつ、N M P 30重量%の水溶液である凝固浴中
へ押しだした.紡糸した繊維は水洗、乾燥したのち、熱
板上、300℃及び460℃で全延伸倍率9,5で二段
延仲し、全繊度37deのフィラメントを得た.この繊
維の機械的物性は強度23−8t/de.仲度2.6%
,モジュラス910g/dθであった.つぎに、このフ
ィラメントを100本集束させて、銅線で作った直径1
0鰭のコイルの中にセットし45度に保って下部から火
炎をあて燃焼状態を観察したところ火炎の伝ばんは認め
られず不燃性のIm雌であった.また元素分析によると
ボリマー中の塩素含有量は7.3重凰%であった.参考
のため、PPTA(ボリーρ−フエニレンテレフタルア
ミド)1/a維についても同様の評価をしたところ、火
炎は伝ばんし、10011の試験片は4回着火すること
によって燃焼し尽した. 実施例2 DC850モル%.PPDA40モル%、3,4゜一D
A P E 10モル%となるようにジアミン成分を計
量し重合した. 即ち、D C 8 33.811部、P P D A 
11.449部、3,4゜−DAPE  5.300部
をN M P 1932. 7部にとり室温で溶解した
のち、53. 737部のTPOを撹拌しながら添加し
、室温で60分間、続いて80℃で60分間重合した.
11合の進行とともに粘調になるが反応系は透明性がよ
く、濁りは認められなかった.反応終了後、水酸化力ル
シュム22.5重1%を倉むN M Pスラリーi86
.892部を徐々に添加し、中和反応を終了した.得ら
れたボリマーから析出して得たボリマーについて測定し
たθinhは3.36であった.このボリマー溶液を用
いて実施例1で示した方法で紡糸延伸(全延伸倍率3.
2) l,て全繊度73デニールの繊維を得た.この繊
維は、強度14.3g/dG、仲度1.8%、モジュラ
ス890g/deの潰れた機械的物性を示した.燃焼性
の簡易評価(実施例11#照)によると、本ボリマーも
不燃性のボリマーであった.又、ボリマー中の塩素は、
11.17重量%であった. 実施例3 DC840モル%.PPDA30モル%、3.4’−D
APE30モル%となるようにジアミン成分を計量し重
合した. 即ち、D C 8 48.633部、PPDA12。0
22部、3.4’− D A P E 22。262部
をN M P 1905.6部にとり室温で溶解したの
ち、75.289部のT P Oを撹拌しながら添加し
、室温で60分間、続いて80℃で60分間重合した.
重合の進行とともに粘調になるが反応系は透明性がよく
、濁りは認められなかった.反応終了後、水酸化力ルシ
ュム22.5重量%を含むNMPスラリー液121.7
8部を徐々に添加し、中相反応を終了した.得られたボ
リマーから析出して得たボリマーについて測定したηi
nhは2.30であった.このボリマー溶液を用いて実
施例1で示した方法により、300℃、460℃の2段
で延沖(全延伸倍率22.0) Lて全繊度29デニー
ルの繊維を得た.この繊維は、強度12.5g/de、
仲度2.0%、モジュラス790g/deの優れた機械
的物性を示した.ボリマー中の塩素3有量は8。9重旦
%で難燃性に潰れた1m維であった. 実施例4 DC860モル%.PPDA20モル%、3.4’−D
APE20モル%となるようにジアミン成分を計麓し重
合した. 即ち、溶解性を上げるため塩化力ルシュム19.374
部をN M P 1937. 4部にとり溶解せしめ次
いで、DC837.709部、PPDA 5.320部
、3.4’− D A P E 9.8!)2部を投入
して室温で溶解したのち、49.944部のTPOを撹
拌しながら添加し、室温で00+間、続いて80℃でG
O分間重合した.重合の進行とともに粘調になるかf&
終反応物はやや濁りのある黄色のfinとなった. 反応終了後、水酸化力ルシュム22.5重量%を含むN
MPスラリ−i80.759部を徐々に添加し、中和反
応を終了した.得られたボリマーから析出して1二}た
ボリマーについて測定したηinhは3.83であった
.このボリマー溶液を用いて実施例1で示した方法によ
り、300℃、440℃の2段で延伸(全延沖倍率2.
50) Lて全繊度90デニールの繊維を得た.この繊
維は、強度17.3sr/de、仲度1.8%、モジュ
ラス830g/deであり機械的性能に優れたものであ
った.同様に測定した塩素含有監は11.2重景%であ
り、不燃性のm維であった.実施例5 DC85モル%,PPDA45モル%、3,4゜−DA
PE45モル%となるようにジアミン成分を計量し重合
しηinh 3.56のボリマーをえた.次いで、実施
例1と同様に300℃、490″Cで全延仲倍率20,
Oとして得られた33deのこの繊維は、強度23.5
+r/dB、伸度3、9%、モジュラス780t/de
の澤れた機械的物性を示した.燃焼性の簡易,tV価(
実施例1参照)によると、本ボリマーは1G(至)の燃
焼に12回の着火が必要であった.尚、ボリマー中の塩
素は、1.3重量%であった.表1 実施例6〜12  比較例1〜5 次いで組成を種々変更してボリマー溶液の溶解性を評価
した.何れも組成を変更した以外は実施例Iの方法によ
った. ボリマーの溶液濁度は重合初期.中期に濁る場合をX、
反応後期で濁る場合をΔ、濁りがなく透明性の良い溶液
は○で表示した.何れら目視によって判定した.尚、表
1の参考例は本発明の範囲外の組成の場合である。
Reactive staining requires no special restrictions. The reaction between an acid halide and a diamine is generally rapid, and the reaction temperature is, for example, -25°C to 100°C, preferably -10°C to 80°C. It goes without saying that foreign substances that inhibit the reaction, such as water, entering the reaction system must be avoided. The aramid obtained in this way can be poured into a non-solvent such as alcohol or water to precipitate it, and then recovered in the form of a bulb. This can be redissolved in another solvent and used for molding, but the solution obtained by the polymerization reaction can be used as it is as a molding solution. In particular, the aramid having the composition of the present invention has excellent solubility and does not precipitate polymers during the polymerization reaction, so it can be used directly as a forming solution for spinning, etc. Molding methods include first applying the pulp or powder and then compression molding, and casting. Examples include film formation from a polymer solution by the -'r Yast method, spinning by a wet method, and film formation. When molding from a solution, it is extruded into a coagulation bath, the molded product is once solidified, and then washed with water. Nobunaka: Fibers and films can be obtained by heat treatment. In this case, an organic polar surfactant/water system is preferably used as the coagulation bath. [Effects of the Invention] The aramid of the present invention has high solubility in solvents, strength,
Mechanical properties such as modulus, heat resistance, chemical resistance,
We provide molded products with high flame retardancy. [Examples] The present invention will be explained in more detail with reference to Examples below.
Needless to say, the present invention is not limited to this. Further, in the examples, parts refer to parts by weight, and the logarithmic viscosity ηinh, which is a guideline for the degree of polymerization, is 98.5% by weight. Concentration 0 in f4 sulfuric acid
.. Measurements were made using the usual method at 30°C for the 5t/8 waterfall melted in the old water. Example 1 N-
Methyl pyrrolidone (NMP) 1888.5 parts, 3,3'-dichlorobenzidine (DCB; component A)
33.534 parts, and p-phenylenediamine (PPD
A; Component B) 23.687 parts, 3,4°-diaminodiphenyl ether (3.4'-DAPE;
Component C) 17.545 parts were added at room temperature, dissolved in nitrogen, and then stirred to give T P O 88. 945
part was added. The viscosity gradually increased as the polymerization reaction progressed. When the reaction was finally carried out at 80°C for 60 minutes, a viscous polymer solution with excellent transparency was obtained. Next, 143.824 parts of NMP containing 22.5% by weight of rhusium hydroxide was added to this product to carry out a neutralization reaction. The viscosity, ηinh, measured for the polymer precipitated from the obtained polymer solution was 3.59.
Met. The aramid solution has a pore size of 0.1? Number of on holes: 25
The mixture was placed in a cylinder equipped with a cap of 1,000 ml, and was extruded into a coagulation bath containing a 30% by weight NMP aqueous solution while maintaining the temperature at 80°C. The spun fibers were washed with water, dried, and then stretched in two stages on a hot plate at 300°C and 460°C at a total draw ratio of 9.5 to obtain filaments with a total fineness of 37 de. The mechanical properties of this fiber are strength 23-8t/de. Nakajima 2.6%
, the modulus was 910g/dθ. Next, we focused 100 of these filaments and made a copper wire with a diameter of 1
I set it in a coil with 0 fins, kept it at 45 degrees, and observed the combustion condition by applying a flame from the bottom. No flame spread was observed, indicating that it was a nonflammable Im female. According to elemental analysis, the chlorine content in the polymer was 7.3%. For reference, a similar evaluation was performed on PPTA (bory ρ-phenylene terephthalamide) 1/a fiber, and the flame spread, and the 10011 test piece was completely burnt out after igniting four times. Example 2 DC850 mol%. PPDA 40 mol%, 3,4°-D
The diamine component was weighed and polymerized so that the APE content was 10 mol%. That is, D C 8 33.811 parts, P P D A
11.449 parts and 5.300 parts of 3,4°-DAPE were added to NMP 1932. After dissolving in 7 parts at room temperature, 53. 737 parts of TPO was added with stirring and polymerized for 60 minutes at room temperature, followed by 60 minutes at 80°C.
Although it became viscous as the 11th cup progressed, the reaction system had good transparency and no turbidity was observed. After the reaction is completed, NMP slurry i86 containing 22.5% by weight of hydroxide
.. 892 parts were gradually added to complete the neutralization reaction. The θinh measured for the polymer obtained by precipitation from the obtained polymer was 3.36. Using this polymer solution, the method shown in Example 1 was used for spinning and drawing (total draw ratio: 3.
2) A fiber with a total fineness of 73 denier was obtained. This fiber exhibited collapsed mechanical properties with a strength of 14.3 g/dG, a stiffness of 1.8%, and a modulus of 890 g/de. According to a simple evaluation of flammability (see Example 11), this polymer was also a nonflammable polymer. Also, chlorine in the polymer is
It was 11.17% by weight. Example 3 DC840 mol%. PPDA 30 mol%, 3.4'-D
The diamine component was weighed and polymerized so that APE was 30 mol%. i.e. D C 8 48.633 parts, PPDA 12.0
22 parts, 3.4'-DAPE 22.262 parts were dissolved in 1905.6 parts of NMP at room temperature, then 75.289 parts of TPO was added with stirring, and the mixture was heated at room temperature for 60 minutes. , followed by polymerization at 80°C for 60 minutes.
Although it became viscous as the polymerization progressed, the reaction system was transparent and no turbidity was observed. After the reaction, 121.7% of NMP slurry containing 22.5% by weight of hydroxide
8 parts were gradually added to complete the middle phase reaction. ηi measured for the polymer obtained by precipitation from the obtained polymer
nh was 2.30. Using this polymer solution, a fiber having a total fineness of 29 denier was obtained by stretching in two stages at 300°C and 460°C (total draw ratio 22.0) by the method shown in Example 1. This fiber has a strength of 12.5 g/de,
It exhibited excellent mechanical properties with a density of 2.0% and a modulus of 790 g/de. The amount of chlorine 3 in the polymer was 8.9% by weight, and the 1m fiber was crushed to be flame retardant. Example 4 DC860 mol%. PPDA 20 mol%, 3.4'-D
The diamine component was measured and polymerized so that the APE content was 20 mol%. That is, to increase solubility, the chloride force 19.374
Part of NMP 1937. Then, DC837.709 parts, PPDA 5.320 parts, 3.4'-DAPE 9.8! ) and dissolved at room temperature, then 49.944 parts of TPO was added with stirring and heated at room temperature for 00+ hours, then at 80° C.
Polymerized for 0 minutes. Does it become viscous as the polymerization progresses?
The final reaction product was a slightly cloudy yellow fin. After the reaction, N containing 22.5% by weight of hydroxide
80.759 parts of MP slurry i was gradually added to complete the neutralization reaction. The ηinh measured for the polymer precipitated from the obtained polymer was 3.83. Using this polymer solution, stretching was carried out in two stages at 300°C and 440°C according to the method shown in Example 1 (total stretching ratio 2.
50) A fiber with a total fineness of 90 denier was obtained. This fiber had a strength of 17.3 sr/de, a stiffness of 1.8%, and a modulus of 830 g/de, and had excellent mechanical performance. The chlorine content measured in the same manner was 11.2%, indicating that it was a nonflammable fiber. Example 5 DC 85 mol%, PPDA 45 mol%, 3,4°-DA
The diamine component was weighed and polymerized so that PE was 45 mol %, and a polymer with ηinh 3.56 was obtained. Next, as in Example 1, the total expansion ratio was 20 at 300°C and 490″C.
This fiber of 33de obtained as O has a strength of 23.5
+r/dB, elongation 3.9%, modulus 780t/de
It showed excellent mechanical properties. Simple flammability, tV value (
According to Example 1), the present polymer required 12 ignitions for combustion of 1G (up to). The chlorine content in the polymer was 1.3% by weight. Table 1 Examples 6 to 12 Comparative Examples 1 to 5 Next, the compositions were variously changed and the solubility of the polymer solutions was evaluated. The method of Example I was followed except that the composition was changed. Polymer solution turbidity is the initial stage of polymerization. If it becomes cloudy in the middle stage,
A solution that becomes turbid in the late stage of the reaction is indicated by Δ, and a solution that is not cloudy and has good transparency is indicated by ○. Both were determined visually. Note that the reference examples in Table 1 are cases where the composition is outside the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (5)

【特許請求の範囲】[Claims] (1)主たる繰り返し単位が ▲数式、化学式、表等があります▼・・・(A) 但し、Xはハロゲン元素、m、nは4以下の整数▲数式
、化学式、表等があります▼・・・(B) ▲数式、化学式、表等があります▼・・・(C) からなる全芳香族共重合ポリアミド。
(1) The main repeating unit is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼... (A) However, X is a halogen element, m and n are integers of 4 or less ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼...・(B) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(C) A wholly aromatic copolymer polyamide consisting of.
(2)アミン成分A、B、Cが、図1で示した範囲CD
EFGHである請求項(1)に記載の全芳香族共重合ポ
リアミド。
(2) Amine components A, B, and C are within the range CD shown in Figure 1.
The wholly aromatic copolyamide according to claim (1), which is EFGH.
(3)アミン成分(A)が、クロロベンチジン基である
請求項(1)または(2)に記載の全芳香族共重合ポリ
アミド。
(3) The wholly aromatic copolyamide according to claim (1) or (2), wherein the amine component (A) is a chlorobenzidine group.
(4)アミン成分(A)が、3,3′−ジクロロベンチ
ジン基である請求項(1)〜(3)のいずれかに記載の
全芳香族共重合ポリアミド。
(4) The wholly aromatic copolyamide according to any one of claims (1) to (3), wherein the amine component (A) is a 3,3'-dichlorobenzidine group.
(5)請求項(1)〜(4)のいづれかに記載の全芳香
族共重合ポリアミドからなる成型物。
(5) A molded product made of the wholly aromatic copolyamide according to any one of claims (1) to (4).
JP1050029A 1988-11-01 1989-03-03 Wholly aromatic copolyamide and molded products thereof Expired - Lifetime JPH0774272B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1050029A JPH0774272B2 (en) 1989-03-03 1989-03-03 Wholly aromatic copolyamide and molded products thereof
EP93101049A EP0541510B1 (en) 1988-11-01 1989-10-30 Wholly aromatic polyamide copolymer
EP89311179A EP0367535B1 (en) 1988-11-01 1989-10-30 Wholly aromatic polyamide copolymer
DE68921844T DE68921844T2 (en) 1988-11-01 1989-10-30 Fully aromatic polyamide copolymer.
DE68927235T DE68927235T2 (en) 1988-11-01 1989-10-30 Fully aromatic polyamide copolymer
US07/428,898 US5006629A (en) 1988-11-01 1989-10-30 Wholly aromatic polyamide copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050029A JPH0774272B2 (en) 1989-03-03 1989-03-03 Wholly aromatic copolyamide and molded products thereof

Publications (2)

Publication Number Publication Date
JPH02229827A true JPH02229827A (en) 1990-09-12
JPH0774272B2 JPH0774272B2 (en) 1995-08-09

Family

ID=12847573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050029A Expired - Lifetime JPH0774272B2 (en) 1988-11-01 1989-03-03 Wholly aromatic copolyamide and molded products thereof

Country Status (1)

Country Link
JP (1) JPH0774272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167387A (en) * 2011-02-10 2012-09-06 Tokyo Institute Of Technology Method for manufacturing meta-aramid fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332838A (en) * 1976-09-08 1978-03-28 Matsushita Electric Works Ltd Restricted fluid and process for producinf the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332838A (en) * 1976-09-08 1978-03-28 Matsushita Electric Works Ltd Restricted fluid and process for producinf the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167387A (en) * 2011-02-10 2012-09-06 Tokyo Institute Of Technology Method for manufacturing meta-aramid fiber

Also Published As

Publication number Publication date
JPH0774272B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US4018735A (en) Anisotropic dopes of aromatic polyamides
EP0045934B1 (en) Wholly aromatic polyamide fiber and film and process for preparation thereof
KR101067338B1 (en) Molecular miscible blend of aromatic polyamide and amorphous polymer, preparing method thereof, aromatic polyamide blend fiber using the same and dyeing method of the polyamide blend fiber
JP3856833B2 (en) Aromatic polyamide, optically anisotropic dope and molded product, and method for producing the same
JPS636649B2 (en)
JP2007154356A (en) Method for producing meta-aromatic polyamide polymer suitable for wet spinning
JP2922431B2 (en) Method for producing meta-type aromatic polyamide fiber
US5274071A (en) Wholly aromatic polyamide
JPH0874123A (en) Production of meta-aramide fiber
JPH03143922A (en) Wholly aromatic copolyamide and its molding
JPH02229827A (en) Wholly aromatic copolymer polyamide and molded article thereof
US4824881A (en) Method for making polyamide anion solutions
EP0541510A2 (en) Wholly aromatic polyamide copolymer
EP0552499B1 (en) Wholly aromatic polyamide resin composition having enhanced light resistance
JP2971335B2 (en) Method for producing meta-type aromatic polyamide fiber
JPS6234848B2 (en)
JP2732879B2 (en) Wholly aromatic copolymer polyamide
JPH04214725A (en) Fully aromatic polyamide, its manufacture, and molded structure made therefrom
US4921933A (en) Aromatic polyamide molded article having storage modulus
KR100422465B1 (en) Wholly aromatic polyamide fibers and production thereof
JPH01108257A (en) Production of processed article from isotropic and anisotripic polyamide anion solution
JPH02123134A (en) Wholly aromatic copolymer polyamide and molded article thereof
US5679758A (en) Method for producing shaped articles of soluble wholly aromatic polyamides
JPH03143923A (en) Wholly aromatic polyamide and its molding
JPH03149225A (en) Wholly aromatic copolyamide