JPH02228490A - Thallium plating method - Google Patents

Thallium plating method

Info

Publication number
JPH02228490A
JPH02228490A JP4645889A JP4645889A JPH02228490A JP H02228490 A JPH02228490 A JP H02228490A JP 4645889 A JP4645889 A JP 4645889A JP 4645889 A JP4645889 A JP 4645889A JP H02228490 A JPH02228490 A JP H02228490A
Authority
JP
Japan
Prior art keywords
thallium
plating
current
film
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4645889A
Other languages
Japanese (ja)
Other versions
JPH0329874B2 (en
Inventor
Takahiro Yamada
隆裕 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHI PREF GOV
Original Assignee
YAMAGUCHI PREF GOV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHI PREF GOV filed Critical YAMAGUCHI PREF GOV
Priority to JP4645889A priority Critical patent/JPH02228490A/en
Publication of JPH02228490A publication Critical patent/JPH02228490A/en
Publication of JPH0329874B2 publication Critical patent/JPH0329874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50

Abstract

PURPOSE:To obtain a dense thallium plating film having satisfactory adhesion by using a plating bath contg. sulfuric acid and thallium ions as essential components and by adopting a constant-current pulse plating method. CONSTITUTION:A thallium plating bath is prepd. by adding about 1-50g/l dextrin to a basic bath contg. about 1-30g/l thallium sulfate and about 5-25ml/l sulfuric acid. The plating bath is adjusted to pH about 0.6-1.0 and about 40-60 deg.C and a thallium plating film is formed on a body to be plated by a constant-current pulse plating method by which high electric current is intermittently supplied. The formed thallium plating film is dense and has satisfactory adhesion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、タリウムめっき法に関し、特に被めっき体上
に緻密で密着性の良好なタリウムめっき皮膜を形成する
タリウムめっき法に間する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a thallium plating method, and particularly to a thallium plating method for forming a dense thallium plating film with good adhesion on an object to be plated.

(従来の技術及び発明が解決しようとする課題)現在、
タリウムあるいはタリウム合金のめっきは内燃機関の軸
受等に利用されており、その際のタリウムめっきは、例
えば銅系又はアルミニウム系すべり軸受表面の鉛−錫合
金めっき層の上に施され、その後熱処理により合金化さ
れて使用されている。
(Problems to be solved by conventional technology and invention) Currently,
Thallium or thallium alloy plating is used for internal combustion engine bearings, etc. In this case, thallium plating is applied, for example, on a lead-tin alloy plating layer on the surface of a copper-based or aluminum-based plain bearing, and then heat-treated. It is used as an alloy.

しかしながら、従来のタリウムめっき法により得られた
タリウムあるいはタリウム合金のめっき皮膜は密着性に
乏しく、苔状若しくは樹枝状の粗雑な皮膜しか得られな
かった。
However, plating films of thallium or thallium alloys obtained by conventional thallium plating methods have poor adhesion, and only rough mossy or dendritic films can be obtained.

よって、前記軸受に適用する場合らタリウムめっき皮膜
が狙雑なため、合金化された鉛−錫一タリウム合金めっ
き皮膜中に空孔を生じ、軸受としての特性を劣化させる
欠点があった。
Therefore, when applied to the above-mentioned bearings, the thallium plating film is unscrupulous, resulting in the formation of pores in the alloyed lead-tin-thallium alloy plating film, which deteriorates the properties of the bearing.

(課題を解決するための手段) 本発明は上記のような問題点を解決するためになされた
もので、被めっき体上に緻密で密着性の良好なタリウム
めっき皮膜を形成することを可能としたタリウムめっき
法であって、すなわち硫酸及びタリウムイオンを主成分
として含むめっき浴を用い、間欠的に大電流を流す定電
流パルス法によって、被めっき体上に緻密で密着性の良
好なタリウムめっき皮膜を形成することを特徴とするタ
リウムめっき法である。
(Means for Solving the Problems) The present invention was made to solve the above-mentioned problems, and makes it possible to form a dense thallium plating film with good adhesion on an object to be plated. This is a thallium plating method that uses a plating bath containing sulfuric acid and thallium ions as main components, and uses a constant current pulse method in which a large current is passed intermittently to form a dense thallium plating with good adhesion on the object to be plated. This is a thallium plating method characterized by forming a film.

本発明めっき法においては、めっき浴に添加剤例えばデ
キストリンを加えることが好ましく、その場合、1〜5
0 g/l添加することによって、平滑性に富んだタリ
ウムめっき皮膜を得ることができる。
In the plating method of the present invention, it is preferable to add an additive such as dextrin to the plating bath.
By adding 0 g/l, a thallium plating film with high smoothness can be obtained.

また、タリウムイオンは1〜20g/l含有せしめるこ
とが好ましく、例えば硫酸タリウムを溶解して生成させ
る。
Further, it is preferable to contain 1 to 20 g/l of thallium ion, and for example, it is generated by dissolving thallium sulfate.

通常、電気めっきは直流法で行われるが、直流法でタリ
ウムめっきを施した場合は、第3図に電子よ微鏡写真で
示すように少数個の結晶が大きく成長するため、粗雑な
めっき皮膜となる。
Normally, electroplating is performed using the DC method, but when thallium plating is performed using the DC method, a small number of crystals grow large, as shown in the electron micrograph in Figure 3, resulting in a rough plating film. becomes.

このなめ、!:i密なめっき皮膜を得るためには結晶成
長の基となる結晶核を多数発生させることが好ましく、
少数個の結晶が大きく成長するのを抑制する必要がある
This lick! :i In order to obtain a dense plating film, it is preferable to generate a large number of crystal nuclei that serve as the basis for crystal growth.
It is necessary to suppress the growth of a small number of crystals.

結晶核を多数発生させる方法としてはめっき作業の際に
、使用する電流密度を高くする方法があるが、従来の直
流法では使用するめっき洛中のタリウム含有量により限
界がある。すなわち、めっき作業に際して電流密度を増
大して行くと、被めっき体付近のタリウムイオンは極度
に減少し、局所的にタリウム濃度ゼロの状態となる。
One way to generate a large number of crystal nuclei is to increase the current density used during plating, but the conventional direct current method is limited by the thallium content in the plating solution used. That is, when the current density is increased during plating work, the number of thallium ions near the object to be plated is extremely reduced, and the thallium concentration locally becomes zero.

そしてそのような高い電流密度でタリウムめっき作業を
行うとタリウムめっき皮膜が粉状になることが知られて
いる。
It is known that when thallium plating is performed at such a high current density, the thallium plating film becomes powdery.

本発明においては、定電流パルスめっき法を採用するが
、パルスめっき法は間欠的に大電流を流すめっき法であ
り、電流のオン オフ′が定期的に繰り返されるもので
ある。
In the present invention, a constant current pulse plating method is employed, and the pulse plating method is a plating method in which a large current is passed intermittently, and the current is turned on and off regularly.

この電流がオンになる時間を11することにより、直流
法では適用できない程の大電流を流すことが可能となる
By setting the time during which this current is turned on to 11, it becomes possible to flow a large current that cannot be applied using the direct current method.

その理由は、前述のごとく、もし大電流を流し続けると
被めっき体付近のタリウムイオンが濃度ゼロとなるが、
パルスめっき法においては、それ以前に電流が断たれる
こととなる。すると、その周囲液から拡散によって被め
っき体付近へタリウムイオンが移動して来て、その濃度
が回復される。
The reason for this is, as mentioned above, if a large current continues to flow, the concentration of thallium ions near the object to be plated becomes zero.
In the pulse plating method, the current is cut off before that. Then, thallium ions move from the surrounding liquid to the vicinity of the object to be plated by diffusion, and its concentration is restored.

この状態で再び電流がオンとなる結果、タリウムめっき
が好適に行われるためである。
This is because the current is turned on again in this state, and as a result, thallium plating is suitably performed.

以上の過程を繰り返すことにより大電流を流しつつ、適
正なタリウムめっき作業を実現することができる。
By repeating the above process, proper thallium plating work can be achieved while passing a large current.

さらに、本発明においてはめっき洛中の主成分の一つと
して硫酸を含有せしめているため、電流が流れないオフ
の時閉の間に、既に電析したタリウム結晶の表面が一部
化学的に溶解されるものと考えられる。
Furthermore, in the present invention, since sulfuric acid is contained as one of the main components of the plating material, some of the surface of the thallium crystals that have already been deposited is chemically dissolved during the off and closed periods when no current flows. It is considered that

該溶解されたタリウム結晶表面は結晶成長点として作用
しなくなるため、次のオン時間において、新たな結晶の
成長点の場所を求めてタリウムの電析が行われるものと
考えられる。
Since the surface of the dissolved thallium crystal no longer acts as a crystal growth point, it is considered that during the next on-time, thallium is deposited in search of a new crystal growth point.

本発明のタリウムめっき法によれば、以上のメスニズム
により、緻密で密着性の良好なタリウムめっき皮膜を得
ることが可能となる。
According to the thallium plating method of the present invention, it is possible to obtain a thallium plating film that is dense and has good adhesion due to the above-mentioned method.

(実施例) 本発明を実施例によって具体的に説明する。(Example) The present invention will be specifically explained by examples.

本発明において使用したタリウムめっき浴は硫酸タリウ
ム1〜30g/l、Ta酸5〜25m1/lを基本浴と
したものにデキストリンを1〜50g/l添加したもの
である。
The thallium plating bath used in the present invention is a basic bath containing 1 to 30 g/l of thallium sulfate and 5 to 25 ml/l of Ta acid, to which 1 to 50 g/l of dextrin is added.

このめっき浴のpHは06〜1.0であり、浴温は40
〜60℃であった。これらの条件に加えて、パルス電流
密度(電流がオンの時に流れる電流密度)10〜l 0
00A/dm2 パルスオン時間(電流が流れる時閉)
0.1〜100ミリ秒、パルスオフ時間(電流が遮断さ
れている時間)0.1〜100ミリ秒のパルス条件でめ
っき作業を行うことにより緻密で密着性の良好なタリウ
ムめっき皮膜を得ることが可能となった。
The pH of this plating bath is 06 to 1.0, and the bath temperature is 40
The temperature was ~60°C. In addition to these conditions, pulse current density (current density that flows when the current is on) 10 to l 0
00A/dm2 Pulse on time (closed when current flows)
By performing plating under pulse conditions of 0.1 to 100 milliseconds and pulse off time (time when the current is interrupted) of 0.1 to 100 milliseconds, it is possible to obtain a dense thallium plating film with good adhesion. It has become possible.

膜厚】〜100μmのタリウム皮膜を得るのに要しため
つき時間は、1〜180分であった。
The heating time required to obtain a thallium film with a film thickness of ~100 μm was 1 to 180 minutes.

実施例1: [めっき浴] 硫酸タリウム         10 g/l硫酸  
           10g/lデキストリン   
       10 g/l上記各成分含有のタリウム
めっき浴を使用して、撹拌しなから浴温的50℃で以下
のパルス条件によりタリウムめっきを行った。
Example 1: [Plating bath] Thallium sulfate 10 g/l sulfuric acid
10g/l dextrin
Using a thallium plating bath containing 10 g/l of each of the above components, thallium plating was carried out under the following pulse conditions at a bath temperature of 50° C. without stirring.

[パルス条件] パルス電流密度      100A/dm2パルスオ
ン時量        1ミリ秒パルスオフ時間   
     9ミリ秒上記のめつき浴及びパルス条件でコ
バール合金板上にタリウムめっき作業を1分間行うこと
により、第1図(a)(倍率=500倍)、(b)(倍
率: 5000倍)の電子顕微鏡写真に示すごとく緻密
で密着性の良好なタリウムめっき皮膜が得られた。特に
第1図(b)から明らかなごとく、被めっき体の全表面
が微細なタリウム電析物で覆われており、かつ各結晶粒
子の表面は一部溶解されて平滑面となっていることが判
る。
[Pulse conditions] Pulse current density 100A/dm2 Pulse on time 1ms Pulse off time
By performing the thallium plating operation on the Kovar alloy plate for 1 minute under the above plating bath and pulse conditions for 9 milliseconds, the results of Figure 1 (a) (magnification = 500x) and (b) (magnification: 5000x) were obtained. As shown in the electron micrograph, a dense thallium plating film with good adhesion was obtained. In particular, as is clear from Figure 1(b), the entire surface of the object to be plated is covered with fine thallium deposits, and the surface of each crystal grain is partially dissolved to form a smooth surface. I understand.

実施例2: [めっき浴] 硫酸タリウム          20g/l硫酸  
            20 g/lデキストリン 
          2層g/l上記タリウムめっき浴
を使用して、撹拌しなから浴温的60℃で以下のパルス
条件によりタリウムめっきを行った。
Example 2: [Plating bath] Thallium sulfate 20g/l sulfuric acid
20 g/l dextrin
Two-layer g/l Using the above thallium plating bath, thallium plating was carried out under the following pulse conditions at a bath temperature of 60° C. without stirring.

[パルス条件コ パルス電流密度        10A/dm”パルス
オン時間        0.1ミリ秒パルスオフ時間
        0.9ミリ秒上記のめっき浴及びパル
ス条件でコバール合金板上にタリウムめっき作業を10
分間行うことにより、第2図(a)(倍率=350倍)
、(b)(倍率:1500倍)に示したように緻密で密
着性の良好なタリウムめっき皮膜が得られた。
[Pulse conditions Co-pulse current density 10A/dm"Pulse on time 0.1 msPulse off time 0.9 msThallium plating work was performed on Kovar alloy plate for 10 minutes using the above plating bath and pulse conditions.
Figure 2 (a) (magnification = 350x)
, (b) (magnification: 1500 times), a dense thallium plating film with good adhesion was obtained.

同図から明らかなごとく、本例においても被めっき体の
全表面が微細なタリウム電析物で覆われていることが判
る。
As is clear from the figure, the entire surface of the object to be plated is covered with fine thallium deposits in this example as well.

比較例: [めつき浴] 硫酸タリウム         10g/i’硫a10
 g/l デキストリン          10g/l上記各成
上記育成タリウムめっき浴を使用して、撹拌しなから浴
温的50℃で以下の通電条件により直流法でタリウムめ
っきを行った。
Comparative example: [Plating bath] Thallium sulfate 10g/i' sulfur a10
g/l Dextrin 10 g/l Each of the above-mentioned products Using the above-mentioned growth thallium plating bath, thallium plating was performed by direct current method at a bath temperature of 50° C. without stirring under the following energization conditions.

[通電条件] 直流電流密度      0.5A/dm2上記のめつ
き浴及び通電条件でコバール合金板上にタリウムめっき
作業を30分間行ったが、第3図(a)(倍率:500
倍)、(b)(倍率二3500倍)の電子顕微鏡写真に
示すごとくまばらに散在するタリウム結晶からなるめっ
き皮膜が得られた。
[Electrification conditions] Direct current density 0.5 A/dm2 Thallium plating was performed on a Kovar alloy plate for 30 minutes using the above plating bath and current conditions.
A plating film consisting of sparsely scattered thallium crystals was obtained as shown in the electron micrographs (magnification: 23,500 times) and (b) (magnification: 23,500 times).

該比較例における通電量(電流密度0.5A/dm” 
Xめっき時間30分=900クーロン/dm2)は、実
施例1における通電量(平均電流密度10A/dm”x
めツキ時間1分=600クーロン/dm”)及び実施例
2における通電量(平均電流密度LA/dm” Xめつ
き時間10分=600クーロン/dm” )の1.5倍
であり、多くの電気が通電されているにもかかわらず、
第3図に口承のごとく、該比較例によるタリウムめっき
皮膜は粗雑なものであった。
Amount of current in the comparative example (current density 0.5 A/dm)
X plating time 30 minutes = 900 coulombs/dm2) is the amount of current in Example 1 (average current density 10A/dm"x
plating time = 600 coulombs/dm") and the amount of current in Example 2 (average current density LA/dm" x plating time of 10 minutes = 600 coulombs/dm"), Even though electricity is on,
As shown in FIG. 3, the thallium plating film according to the comparative example was rough.

以上各実施例におけるタリウムめっき皮膜の密着性につ
いてガムテープ貼付による試験を行った結果、被めっき
体と強固に密着していて非常に優れたものであった。
The adhesion of the thallium plating film in each of the examples above was tested by pasting adhesive tape, and the results showed that the film adhered firmly to the object to be plated, which was very excellent.

ところで、めっきは1層だけでなく、各種金属の多層の
めっきが行われる場合が多いが、その際各層間での密着
性が問題となる。このため、そうした多層めっきにおけ
る密着性を評価すべく、鋼板を素材として、まず金めつ
きを行い、その上に本発明実施例方法によるタリウムめ
っきを行い、さらにその上に金めつきを施した品物につ
いて、布製のガムテープにより密着性試験を行った結果
、各層間での剥離が認められず、本発明により得られた
タリウムめっき皮膜は優良な密着性を有することが証明
された。
Incidentally, plating is often performed not only in one layer but also in multiple layers of various metals, but in this case, adhesion between each layer becomes a problem. Therefore, in order to evaluate the adhesion in such multilayer plating, a steel plate was used as a material, first gold plating was performed, thallium plating was performed on top of it by the method of the embodiment of the present invention, and then gold plating was applied on top of that. The product was subjected to an adhesion test using cloth tape, and no peeling was observed between the layers, proving that the thallium plating film obtained by the present invention has excellent adhesion.

これに対して、比較例として、鋼板上にまず金めつきを
行い、その上に前記比較例のめっき条件で、実施例1の
めっき浴を用い直流法でタリウムめっきを行い、さらに
その上に金めつきを施した品物について、布製のガムテ
ープにより密着性試験を行ったところ、容易に剥離を生
じてしまい、密着性が弱いものであった。
On the other hand, as a comparative example, gold plating was first performed on a steel plate, and then thallium plating was performed on top of that by a direct current method using the plating bath of Example 1 under the plating conditions of the comparative example, and then When adhesion tests were conducted on gold-plated items using cloth gummed tape, they peeled off easily and the adhesion was weak.

(発明の効果) 以上のとおり、硫酸及びタリウムイオンを主成分として
含むめっき浴を用い、定電流パルス法によって被めっき
体上にタリウムめっきを施す本発明によれば、緻密で密
着性の良好なタリウムめっき皮膜を被めっき体上に形成
することができる。
(Effects of the Invention) As described above, according to the present invention, which uses a plating bath containing sulfuric acid and thallium ions as main components and performs thallium plating on an object to be plated by a constant current pulse method, it is possible to achieve dense plating with good adhesion. A thallium plating film can be formed on an object to be plated.

電子ま微鏡写真、第2図(a)及び第2図(b)は本発
明実施例2により形成された電析物の結晶構造の電子ま
微鏡写真、第3図<a)及び第3図(b)は比較例方法
により形成されたタリウム電析物の結晶構造の電子ぼ微
鏡写真を夫々示す。
Electron micrographs, Figures 2(a) and 2(b) are electron micrographs of the crystal structure of the deposit formed according to Example 2 of the present invention, Figures 3<a) and 2(b). FIG. 3(b) shows electron micrographs of the crystal structure of thallium deposits formed by the comparative method.

Claims (3)

【特許請求の範囲】[Claims] (1)硫酸及びタリウムイオンを主成分として含むめっ
き浴を用い、間欠的に大電流を流す定電流パルス法によ
って、被めっき体上に緻密で密着性の良好なタリウムめ
っき皮膜を形成することを特徴とするタリウムめっき法
(1) Using a plating bath containing sulfuric acid and thallium ions as main components, a constant current pulse method in which a large current is passed intermittently is used to form a dense thallium plating film with good adhesion on the object to be plated. Characteristic thallium plating method.
(2)めっき浴が、添加剤としてのデキストリンを含む
ものであることを特徴とする請求項1記載のタリウムめ
っき法。
(2) The thallium plating method according to claim 1, wherein the plating bath contains dextrin as an additive.
(3)タリウムイオンが、硫酸タリウムの解離によるも
のであることを特徴とする請求項1又は2記載のタリウ
ムめっき法。
(3) The thallium plating method according to claim 1 or 2, wherein the thallium ions are produced by dissociation of thallium sulfate.
JP4645889A 1989-03-01 1989-03-01 Thallium plating method Granted JPH02228490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4645889A JPH02228490A (en) 1989-03-01 1989-03-01 Thallium plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4645889A JPH02228490A (en) 1989-03-01 1989-03-01 Thallium plating method

Publications (2)

Publication Number Publication Date
JPH02228490A true JPH02228490A (en) 1990-09-11
JPH0329874B2 JPH0329874B2 (en) 1991-04-25

Family

ID=12747718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4645889A Granted JPH02228490A (en) 1989-03-01 1989-03-01 Thallium plating method

Country Status (1)

Country Link
JP (1) JPH02228490A (en)

Also Published As

Publication number Publication date
JPH0329874B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
Goh et al. Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder
Schlesinger Electroless and electrodeposition of silver
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
US3354059A (en) Electrodeposition of nickel-iron magnetic alloy films
JPS62500941A (en) Electrodeposition method for iron-zinc alloy coating and electrolyte used in the method
JPS5932553B2 (en) How to form a strippable copper coating on aluminum
Boto Organic additives in zinc electroplating
US3032436A (en) Method and composition for plating by chemical reduction
US4613388A (en) Superplastic alloys formed by electrodeposition
JPS59136491A (en) Cyanide-free copper plating process and alloy anode plating solution
CN100487168C (en) Electrolyte media for the deposition of tin alloys and methods for depositing tin alloys
Fujiwara et al. Electrodeposition of β′‐Brass from Cyanide Baths with Accumulative Underpotential Deposition of Zn
JP2017186673A (en) High strength, high conductivity electroformed copper alloy and method of making
US6281157B1 (en) Self-catalytic bath and method for the deposition of a nickel-phosphorus alloy on a substrate
US3691027A (en) Method of producing corrosion resistant chromium plated articles
US20040074775A1 (en) Pulse reverse electrolysis of acidic copper electroplating solutions
JPH05503316A (en) Methods and products for applying finish coatings to anodizable metal substrates
Krishnan et al. Electroplating of Copper from a Non-cyanide Electrolyte
JP2007254866A (en) Plating pretreatment method for aluminum or aluminum alloy raw material
JPH02228490A (en) Thallium plating method
Swathirajan et al. Characterization of New Corrosion Resistant Nickel‐Zinc‐Phosphorus Alloys Obtained by Electrodeposition
JPS61238994A (en) Method for precipitating palladium-nickel alloy
DE3347593C2 (en)
US5605565A (en) Process for attaining metallized articles
US3767540A (en) Additive for electrodeposition of bright zinc from aqueous, acid, electroplating baths