JPH02227120A - Separation of isotope - Google Patents

Separation of isotope

Info

Publication number
JPH02227120A
JPH02227120A JP2654689A JP2654689A JPH02227120A JP H02227120 A JPH02227120 A JP H02227120A JP 2654689 A JP2654689 A JP 2654689A JP 2654689 A JP2654689 A JP 2654689A JP H02227120 A JPH02227120 A JP H02227120A
Authority
JP
Japan
Prior art keywords
ionization
isotope
ionized
laser beams
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2654689A
Other languages
Japanese (ja)
Inventor
Tadashi Yoshida
正 吉田
Katsuhiko Nakahara
克彦 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2654689A priority Critical patent/JPH02227120A/en
Publication of JPH02227120A publication Critical patent/JPH02227120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently ionize and recover only the specified isotope component and to enhance the quality of a recovered article by simultaneously irradiating laser beams for trapping which are utilized to inhibit ionization of isotope excepting the specified isotope together with the laser beams for excitation and ionization. CONSTITUTION:When metallic uranium 1 is housed in a crucible 2 for evaporation and irradiated by the electron beams 4 emitted from a linear electron gun 3, metallic uranium 1 is heated and evaporated and vapor flow 5 is formed. The anodic electrodes 6 and the cathodic electrodes 7 are alternately provided over the crucible 2 for evaporation and the photoreaction parts 8 are provided. When pulse laser beams 10 are made incident from a laser beam irradiator 9, <235>U atom is selectively excited by absorbing them, ionized and made an ionized isotope, attracted and recovered on the surfaces of the cathodic electrodes 7. At this time, since the frequency of the pulse laser beams 10 is regulated to a wide region, <234>U is simultaneously excited and ionized. When the laser beams for trapping which are utilized to inhibit ionization thereof are simultaneously and coaxially irradiated, ionization of <234>U is inhibited and only <235>U is selectively ionized and recovered.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は例えばウラン濃縮法として適用される原子法に
基づ(同位体分離方法に係り、特にし−ザ光による同位
体の選択・励起工程を改良した同位体分離方法に関する
Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention is based on an atomic method applied, for example, as a uranium enrichment method (relating to an isotope separation method, in particular isotope separation using This paper relates to an isotope separation method with improved body selection and excitation steps.

(従来の技術) 一般に、天然あるいは回収ウランには、ウラン234 
(U−234>、ウラン235 (U−235)、ウラ
ン236 (U−236) 、ウラン238 (U−2
38)等の同位体成分が含まれている。そして、よく知
られているように、原子炉用燃料として使用されるU−
235は天然ウラン中に0.7%程度しか含まれず、燃
料とするために3%程度まで濃縮される。
(Prior art) Generally, natural or recovered uranium includes uranium-234
(U-234>, Uranium-235 (U-235), Uranium-236 (U-236), Uranium-238 (U-2
Contains isotopic components such as 38). As is well known, U-
Natural uranium contains only about 0.7% of 235, and is enriched to about 3% to make it into fuel.

この濃縮技術として近年レーザ式同位体分離方法、特に
原子法の開発が進められている。原子法に基づく同位体
分離方法は、金属ウランを電子ビームによって真空中で
加熱してウラン蒸気流を発生させ、このウラン蒸気流に
レーザ光を照射してU−235を選択的に励起・電離さ
せ、電離したLJ−235を電極に回収する方法である
。即ち、U−235とU−238等の他の同位体とのエ
ネルギ準位に基づく光吸収周波数の差異〈同位体シフト
)を利用して、U−235のみを選択的に励起し、さら
に電離回収して濃縮するものである。
In recent years, laser isotope separation methods, particularly atomic methods, have been developed as this enrichment technology. The isotope separation method based on the atomic method heats metallic uranium in a vacuum with an electron beam to generate a uranium vapor flow, and irradiates this uranium vapor flow with laser light to selectively excite and ionize U-235. In this method, the ionized LJ-235 is recovered to an electrode. That is, by utilizing the difference in optical absorption frequency based on the energy level (isotope shift) between U-235 and other isotopes such as U-238, only U-235 is selectively excited and further ionized. It is collected and concentrated.

ところで、このような同位体分離方法によってウラン濃
縮を行なった場合、U−235と同時にU−234ある
いはU−236が電離回収される場合がある。このよう
な他の同位体成分が含まれた燃料では品位が低下し、特
にU−234はγ線放射物質に変換され易いことから、
これが混入すると遮蔽施設の増大等につながり、取扱い
上および経済上好ましくない。
By the way, when uranium is enriched by such an isotope separation method, U-234 or U-236 may be ionized and recovered at the same time as U-235. Fuel containing such other isotopic components has a lower quality, and U-234 in particular is easily converted into gamma-ray emitting substances.
If this is mixed in, it will lead to an increase in shielding facilities, etc., which is undesirable from a handling and economical point of view.

発明者において検討したところ、U−234あるいはU
−236は、U−235と光吸収周波数が接近している
。そして、LJ−235の選択励起・電離用パルスレー
ザ光をウラン蒸気に照射した場合、Ll−235のみな
らず、u−234あるいはU−236にも光吸収が行な
われ、これらが同時にエネルギ単位を高められる結果と
なると考えられる。
Upon investigation by the inventor, U-234 or U
-236 has a light absorption frequency close to that of U-235. When uranium vapor is irradiated with LJ-235's pulsed laser beam for selective excitation and ionization, light is absorbed not only by Ll-235 but also by u-234 or U-236, which simultaneously converts energy units. It is thought that the result will be improved.

(発明が解決しようとする課題) 従来の方法では、目標とする同位体成分に付随して、こ
れと光吸収周波数が接近している他の同位体成分も励起
・電離され、同位体回収品の品位を低下させる等の問題
があった。
(Problems to be Solved by the Invention) In the conventional method, other isotope components whose optical absorption frequencies are close to the target isotope component are also excited and ionized, resulting in isotope recovery products. There were problems such as degrading the quality of the product.

本発明はこのような事情に鑑みてなされたもので、特定
の同位体成分のみを効率よく電離回収することができ、
回収品の品位向上が図れる同位体分離方法を提供するこ
とを目的とする。
The present invention was made in view of these circumstances, and allows efficient ionization recovery of only specific isotope components.
The purpose is to provide an isotope separation method that can improve the quality of recovered products.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、複数種類の同位体を含む原料を加熱して蒸気
流を発生させ、この蒸気流に特定同位体成分のみを電離
に導く励起・電離用レーザ光を照射し、電離した特定同
位体成分を電極に回収する同位体分離方法において、前
記特定同位体以外の同位体の電離を阻止するためのトラ
ップ用レーザ光を、前記励起・電離用レーザ光と同時に
照射することを特徴とする。
(Means for solving the problem) The present invention heats a raw material containing multiple types of isotopes to generate a vapor flow, and uses an excitation/ionization laser to ionize only a specific isotope component in the vapor flow. In an isotope separation method in which ionized specific isotope components are collected in an electrode by irradiation with light, a trapping laser beam for preventing ionization of isotopes other than the specific isotope is combined with the excitation/ionization laser beam. It is characterized by simultaneous irradiation.

(作用) トラップ用レーザ光を励起・電離用レーザ光と同時に照
射すると、特定同位体以外の同位体の原子は基底学位と
トラップ単位の間に捕捉され、選択励起単位に実質的に
励起される割合が大幅に低下する。このため、特定同位
体以外の同位体が、特定同位体を電離に導くための励起
・電離用レーザ光を吸収し、電離する確率も大幅に低下
する。
(Function) When the trapping laser beam is irradiated with the excitation/ionization laser beam at the same time, atoms of isotopes other than the specific isotope are trapped between the base degree and the trap unit, and are substantially excited into the selective excitation unit. The percentage decreases significantly. Therefore, the probability that isotopes other than the specific isotope will absorb the excitation/ionization laser light for guiding the specific isotope into ionization and become ionized is also significantly reduced.

一方、特定同位体は電離確率が低下しないため、特定同
位体のみが効率よく回収される。
On the other hand, since the ionization probability of specific isotopes does not decrease, only specific isotopes can be efficiently recovered.

(実施例) 以下、本発明に係る同位体分離方法の一実施例を図面を
参照して説明する。
(Example) Hereinafter, an example of the isotope separation method according to the present invention will be described with reference to the drawings.

まず第1図によってこの方法を概略的に説明する。First, this method will be schematically explained with reference to FIG.

天然ウランもしくは濃縮過程において副生する廃品ウラ
ンなどの金属ウラン1を熱化学的耐性に優れた蒸発用る
つぼ2内に収容する。次に、リニア電子銃3から発射さ
れる電子ビーム4を図示しない外部磁場コイルにより偏
向して1発用るっぽ2内の金属ウラン1に照射する。電
子ビーム4の照射を受けた金属ウラン1は2500〜3
700X程度まで加熱されて蒸発し、蒸気15を形成す
る。
Metal uranium 1 such as natural uranium or waste uranium produced by-product in the enrichment process is stored in an evaporation crucible 2 having excellent thermochemical resistance. Next, the electron beam 4 emitted from the linear electron gun 3 is deflected by an external magnetic field coil (not shown) and irradiated onto the metal uranium 1 in the one-shot ruppo 2 . Metallic uranium 1 irradiated by electron beam 4 has a concentration of 2500 to 3
It is heated to about 700X and evaporates to form steam 15.

一方、蒸発用るつぼ2の上方には、帯状の陽電極6とl
I!電極7とを交互に配設し、その電極層にそれぞれ光
反応部8を設け、この光反応部8の長手方向にレーザ光
照射装置29からパルスレーザ光10を入射する。そし
て、パルスレーザ光10の吸収によってU−235原子
が選択的に励起され、さらに電離されてイオン化同位体
となる。
On the other hand, above the evaporation crucible 2, a strip-shaped positive electrode 6 and a l
I! The electrodes 7 are arranged alternately, a photoreaction section 8 is provided on each of the electrode layers, and a pulsed laser beam 10 is incident on the photoreaction section 8 from a laser beam irradiation device 29 in the longitudinal direction. Then, the U-235 atoms are selectively excited by absorption of the pulsed laser beam 10 and are further ionized to become ionized isotopes.

また、陽電極6とlI!電極7との間には電圧を印加し
、これにより形成された電界によって陰電極7の表面に
LJ−235が吸着回収される。なお、電離せずに光反
応部8を通過した蒸気流は、光反応部8の外縁側に配設
した回収板11に吸引回収される。
Also, the positive electrode 6 and lI! A voltage is applied between the cathode 7 and the cathode 7, and LJ-235 is adsorbed and collected on the surface of the cathode 7 by the electric field formed thereby. Note that the vapor flow that has passed through the photoreaction section 8 without being ionized is suctioned and collected by a recovery plate 11 disposed on the outer edge side of the photoreaction section 8 .

第2図はウランの各同位体についての光吸収強度と光吸
収周波数との関係(なお、各原子数は等しいものとして
表している)を示している。
FIG. 2 shows the relationship between the optical absorption intensity and the optical absorption frequency for each isotope of uranium (the numbers of atoms are expressed as being equal).

第2図に示すように、U−234、U−236の光吸収
強度のピークはそれぞれ略一定周波数域に表われるが、
Ll−235の場合はピークが複数周波数域に亘って広
がり、これらは互いに接近している。
As shown in Figure 2, the peaks of the optical absorption intensity of U-234 and U-236 appear in approximately constant frequency ranges, but
In the case of Ll-235, the peaks are spread over multiple frequency ranges, and these are close to each other.

従来はU−235の光吸収周波数に対応する周波数のパ
ルスレーザ光10を照射していたが、このパルスレーザ
光10の周波数は広域に亘るため、U−234も同時に
励起・電離されていた。
Conventionally, pulsed laser light 10 having a frequency corresponding to the light absorption frequency of U-235 was irradiated, but since the frequency of this pulsed laser light 10 was over a wide range, U-234 was also excited and ionized at the same time.

このため、本実施例では、U−234の電離を阻止する
ためのトラップ用レーザ光を、パルスレーザ光10と同
時タイミングで同軸状に照射する。
Therefore, in this embodiment, the trapping laser beam for preventing the ionization of U-234 is coaxially irradiated at the same timing as the pulsed laser beam 10.

トラップ用レーザ光は、第3図に示すように、U−23
4のみを基底準位W1から選択励起準位W2に結付ける
第1トラツプ用レーザ光と、このLl−234をトラッ
プ準位W3に結付ける第2トラツプ用レーザ光とからな
る。なお、第1トラツプ用レーザ光としてパルスレーザ
光10の周波数成分の一部を代用してもよい。
As shown in Figure 3, the trapping laser beam is U-23
The first trapping laser beam connects only L1-234 from the ground level W1 to the selectively excited level W2, and the second trapping laser beam connects this L1-234 to the trap level W3. Note that part of the frequency components of the pulsed laser beam 10 may be substituted for the first trapping laser beam.

第1トラツプ用レーザ光はνa′なる周波数を有する一
方、第2トラツプ用レーザ光はνb′なる周波数を有し
、これら周波数νa′および周波数νb′の間には W2−Wl  −1/a’) −W −(−1−−1−−νb″)−0 ・・・・・・ (1) なる関係を成立させる。この関係はLJ−234につい
て成立し、U−235については成立しないものである
。言い換えれば、U−234について成立し、U−23
5については成立しないように各単位W  、W  、
W  および周波数νa′、νb′を選択するものであ
る。
The first trapping laser beam has a frequency νa', while the second trapping laser beam has a frequency νb'. ) -W -(-1--1--νb'')-0 ...... (1) The following relationship is established. This relationship holds for LJ-234, but does not hold for U-235. In other words, it holds true for U-234, and U-23
5, each unit W , W ,
W and frequencies νa' and νb' are selected.

(1)式が成立するとき、第1および第2トラツプ用レ
ーザ光を照射すると、U−234の原子は基底準位W 
とトラップ準位W3の間に捕捉され、選択励起準位W2
に実質的に励起される割合が大幅に低下する。したがっ
て、U−234がパルスレーザ光10を吸収し、電離す
る確率も大幅に低下する。
When formula (1) holds true, when the first and second trapping laser beams are irradiated, the U-234 atom is brought to the ground level W
is trapped between the trap level W3 and the selectively excited level W2.
The rate of excitation is significantly reduced. Therefore, the probability that U-234 absorbs the pulsed laser beam 10 and becomes ionized is also significantly reduced.

(以下余白) ここで、次式に示すように、 δなる誤差が生じると、第4図に示すように励起量が急
激に上昇する。このため、誤差δ−〇となるように各単
位W、W2.W3および周波数νa′  νb′を選択
する必要がある。また、誤差δ−0とすることにより(
1)式が成立し、U−234の励起量を実質的に0とす
ることができる。
(Left below) Here, as shown in the following equation, when an error of δ occurs, the amount of excitation increases rapidly as shown in FIG. Therefore, each unit W, W2 . It is necessary to select W3 and frequencies νa' and νb'. Also, by setting the error δ-0 (
Equation 1) is established, and the amount of excitation of U-234 can be made substantially zero.

このように、上記実施例によれば、U−234の電離を
阻止するためのトラップ用レーザ光を、パルスレーザ光
10と同時に照射することにより、U−234の電離を
阻止し、tJ−235のみを選択的に電離させて回収す
ることができ、U−234の混入しない高品質の回収品
を得ることができる。
As described above, according to the above embodiment, by irradiating the trapping laser beam for preventing the ionization of U-234 at the same time as the pulsed laser beam 10, the ionization of U-234 is prevented and the tJ-235 Only U-234 can be selectively ionized and recovered, and a high-quality recovered product that is free from U-234 can be obtained.

なお、上記実施例においては、U−234の電離を阻止
する場合について示したが、U−236の電離を阻止す
る場合についても同様に適用することができる。また、
u−2j4の電離を阻止するためのトラップ用レーザ光
と、U−236の電離を阻止するためのトラップ用レー
ザ光とを同時に照射して、u−234およびLl−23
6の電離を同時に阻止することも可能である。
In the above embodiment, the case where the ionization of U-234 is prevented is shown, but the present invention can be similarly applied to the case where the ionization of U-236 is prevented. Also,
U-234 and Ll-23 are simultaneously irradiated with a trapping laser beam for preventing the ionization of u-2j4 and a trapping laser beam for preventing the ionization of U-236.
It is also possible to prevent the ionization of 6 at the same time.

〔発明の効果〕〔Effect of the invention〕

本発明は、特定同位体以外の同位体の電離を阻止するた
めのトラップ用レーザ光を、励起・電離用レーザ光と同
時に照射するから、特定同位体成分のみを効率よく電離
回収することができ、回収品の品位を向上させることが
できる。
In the present invention, the trapping laser beam for preventing the ionization of isotopes other than the specific isotope is irradiated at the same time as the excitation/ionization laser beam, so that only the specific isotope component can be efficiently ionized and recovered. , the quality of recovered items can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための概略図、第
2図は上記実施例における各同位体の光吸収強度と光吸
収周波数との関係を示す特性図、第3図は上記実施例に
おける基底単位、選択励起単位、トラップ単位の相互関
係を示す図、第4図は上記実施例においてコヒーレント
トラップ現象による励起確率の減少を示す特性図である
。 1・・・金属ウラン(原料)、5・・・蒸気流、10・
・・パルスレーザ光。
FIG. 1 is a schematic diagram for explaining one embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between the optical absorption intensity and optical absorption frequency of each isotope in the above embodiment, and FIG. 3 is a diagram for explaining the above embodiment. FIG. 4 is a diagram showing the mutual relationship between the base unit, selective excitation unit, and trap unit in the embodiment, and is a characteristic diagram showing the decrease in excitation probability due to the coherent trap phenomenon in the above embodiment. 1... Metallic uranium (raw material), 5... Steam flow, 10...
...Pulsed laser light.

Claims (1)

【特許請求の範囲】[Claims] 複数種類の同位体を含む原料を加熱して蒸気流を発生さ
せ、この蒸気流に特定同位体成分のみを電離に導く励起
・電離用レーザ光を照射し、電離した特定同位体成分を
電極に回収する同位体分離方法において、前記特定同位
体以外の同位体の電離を阻止するためのトラップ用レー
ザ光を、前記励起・電離用レーザ光と同時に照射するこ
とを特徴とする同位体分離方法。
A raw material containing multiple types of isotopes is heated to generate a vapor flow, and this vapor flow is irradiated with excitation/ionization laser light that ionizes only specific isotope components, and the ionized specific isotope components are transferred to electrodes. An isotope separation method for recovering isotopes, characterized in that trapping laser light for preventing ionization of isotopes other than the specific isotope is irradiated simultaneously with the excitation/ionization laser light.
JP2654689A 1989-02-07 1989-02-07 Separation of isotope Pending JPH02227120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2654689A JPH02227120A (en) 1989-02-07 1989-02-07 Separation of isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2654689A JPH02227120A (en) 1989-02-07 1989-02-07 Separation of isotope

Publications (1)

Publication Number Publication Date
JPH02227120A true JPH02227120A (en) 1990-09-10

Family

ID=12196508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2654689A Pending JPH02227120A (en) 1989-02-07 1989-02-07 Separation of isotope

Country Status (1)

Country Link
JP (1) JPH02227120A (en)

Similar Documents

Publication Publication Date Title
Facina et al. A gas cell for thermalizing, storing and transporting radioactive ions and atoms. Part II: On-line studies with a laser ion source
GB1489138A (en) Multiple particle type interaction isotopically selective ionization
JPH02227120A (en) Separation of isotope
JPS63242329A (en) Separation of isotope
Kuzyakov et al. Atomic ionization spectrometry: prospects and results
JP2659560B2 (en) Isotope enrichment method, isotope enrichment apparatus, isotope separation method, and isotope separation apparatus
JPH05301028A (en) Separation of isotope
JP2752144B2 (en) Isotope separation method and apparatus
JPS63134038A (en) Device for concentrating uranium
JPH0546243B2 (en)
JPH026822A (en) Separation of isotope
JPH03186321A (en) Selective excitation of isotope
JPS6342723A (en) Separation for isotope by laser and its device
JPH0360721A (en) Method and device for generating metallic vapor
JPS5840757A (en) X-ray device
JPH02261520A (en) Isotope separation device
RU2327239C1 (en) Method of making gas filled neutron tube
JPS61146326A (en) Uranium condensing apparatus by laser
JPH01184030A (en) Separation of isotope and equipment thereof
JPH03258328A (en) Method for selectively exciting isotope
JPS6197020A (en) Separation and recovery cell
Ermer Analysis of fundamental processes accompanying laser irradiation of wide band gap single crystals
JPH03150324A (en) Isotope separating device
JPS6393336A (en) Method and apparatus for isotope separation
JPS63236524A (en) Isotope separator