JPH0222634Y2 - - Google Patents

Info

Publication number
JPH0222634Y2
JPH0222634Y2 JP14657083U JP14657083U JPH0222634Y2 JP H0222634 Y2 JPH0222634 Y2 JP H0222634Y2 JP 14657083 U JP14657083 U JP 14657083U JP 14657083 U JP14657083 U JP 14657083U JP H0222634 Y2 JPH0222634 Y2 JP H0222634Y2
Authority
JP
Japan
Prior art keywords
waste gas
convection
preheating zone
zone
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14657083U
Other languages
Japanese (ja)
Other versions
JPS6054098U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14657083U priority Critical patent/JPS6054098U/en
Publication of JPS6054098U publication Critical patent/JPS6054098U/en
Application granted granted Critical
Publication of JPH0222634Y2 publication Critical patent/JPH0222634Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案はカテナリ型連続焼鈍炉の改良に関す
るものである。 ステンレス鋼の製造工程において、直火式カテ
ナリ型の連続焼鈍炉が使われている。そして近時
省エネルギーを期して炉の効率を向上させるため
の改善がなされている。 第1図は従来のカテナリ型連続焼鈍炉の一例を
示す垂直切断側面図で、バーナー1を備えた直火
加熱ゾーン2の前側に放射予熱ゾーン3が配置さ
れ、送板ロール4上に載せられ矢印の方向に通板
される鋼帯5が直火加熱ゾーン2からバーナーを
持つていない放射予熱ゾーン3を通つて廃ガスダ
クト6に送られるところの高温廃ガスにより予熱
されるものである(特公昭52−26723号公報参
照)。第2図は従来のカテナリ型連続焼鈍炉の他
例を示す垂直切断側面図であるが、第1図と同一
または略同一のものについては、同一の符号をつ
けその説明を省略する。この第2図のものは放射
予熱ゾーン3と対流予熱ゾーン7を組合わせたも
のである(特公昭54−42804号公報参照)。ここで
対流予熱ゾーン7は、直火加熱ゾーン2から放射
予熱ゾーン3を経由して送られてきた廃ガスを、
対流フアン10により上下の気体吹付器11,1
2を介して鋼帯5の上下両面に吹付け、廃ガスの
吹付けによつて鋼帯5を循環加熱するものである
(特公昭54−42804号公報参照)。 第1図や第2図に示す従来のものには、次のよ
うな欠点がある。すなわち第1図の連続焼鈍炉に
おいては、廃ガス温度が900℃付近になると放射
予熱効果が悪くなり、廃ガスを有効に利用せんと
すれば予熱ゾーンの炉長が長くなり好ましくな
い。この欠点を補うものとして放射型と対流型と
を組合わせた第2図のものが提案されたのであ
る。 しかしながら第2図の放射予熱ゾーン3と対流
予熱ゾーン7を組合わせたものにおいても、対流
温度範囲を対流フアン10の許容耐熱温度から上
限を900℃付近迄にしているが、より高い温度範
囲において対流予熱を行なえば、尚一層早く伝達
が行なわれ炉長を短くすることが出来るので設備
費も安くなることは勿論、熱効率の向上等の効果
がある。 しかしながら上述の如く、廃ガス温度が900℃
以上になると対流フアン10の寿命が極端に短く
なり経済的な操業ができない。本考案はこの問題
を解決するために、予熱ゾーンの全てを対流予熱
ゾーン7として、炉長を短くし一層省エネルギー
性の良い炉を得たものである。 第3図は本考案の一実施例を示す垂直切断側面
図、第4図は第3図においては概略的に示されて
いる昇圧器16において、最も望ましいコアンダ
効果を奏する昇圧器(以下、コアンダ式昇圧器と
称する)の詳細垂直切断拡大側面図である。第3
図及び第4図に基いて本発明の一実施例を説明す
るが、第1図及び第2図と同一または略同一のも
のには同一の符号をつけその説明を省略する。 本考案においては、対流予熱ゾーン7が直火加
熱ゾーン2に近い側の炉外処理型対流予熱ゾーン
8と、鋼帯入口に近い側の炉内処理型対流予熱ゾ
ーン9とに分かれている。13はブロワーで、そ
の吸込側はパイプ14を介して廃ガスダクト6に
連通され、また吐出側はパイプ15を介して少な
くとも1個のコアンダ(Coanda)式昇圧器16
に連通している。昇圧器16は入口17と喉部1
9を介して連通した出口18を有しており、喉部
19の内壁全周又は略内壁全周に瓦つて設けた円
環状吹出口20に前記ブロワー13の吐出側のパ
イプ15が連通している。昇圧器16の出口18
がパイプ21を介して風箱22に連通され、この
風箱22に設けられた空気噴出口25又はその噴
出口25の群は、前記対流予熱ゾーン7の炉外処
理型対流予熱ゾーン8において鋼帯5を上下より
挟む如く相対向させて配置され噴射装置を構成し
ている。一方、直火加熱ゾーン2に一番近い空気
噴出口25に繋がるコアンダ式昇圧器16の入口
17はパイプ26を介して対流予熱ゾーン7に一
番近い箇所に当る直火加熱ゾーン2に連通してい
る。又、このコアンダ式昇圧器16が複数個配置
された場合、上記の如く直火加熱ゾーン2に連通
している少なくとも1個のコアンダ式昇圧器16
とは別に直火加熱ゾーン2に第n+1番目(ただ
しn≧1)に近い空気噴出口25に繋がるコアン
ダ式昇圧器16の入口17はパイプ27を介して
第n+1番目の空気噴出口25と第n番目の空気
噴出口25の間に当る対流予熱ゾーン7の炉外処
理型対流予熱ゾーン8に連通している。 このような構成において、コアンダ式昇圧器1
6による昇圧廃ガスによつて直火加熱ゾーン2の
廃ガスを誘引するパイプ26や対流予熱ゾーン7
の炉外処理型対流予熱ゾーン8の廃ガスを誘引す
るパイプ27群が配置され誘引装置を構成してい
る。 従つてブロワー13を回わすと、廃ガスダクト
6中の廃ガスの一部が気路即ちパイプ14及びパ
イプ15を介してコアンダ式昇圧器16の喉部1
9に送り込まれる。すると喉部19から出口18
に向けこの廃ガスが流れ込む。このとき直火加熱
ゾーン2や対流予熱ゾーン7の炉外処理型対流予
熱ゾーン8内の廃ガスを該当するパイプ26,2
7を介してそれぞれの昇圧器16の入口17から
吸込み出口18へ向けて吐出させる。このコアン
ダ式昇圧器16そのものは公知のものであるが、
これを応用し喉部19から噴出される廃ガス量に
対し入口17から略その5〜15倍の直火加熱ゾー
ン2の廃ガス量や炉外処理型対流予熱ゾーン8の
廃ガス量を吸込んで出口18へ送り出すことが出
来るのである。 本考案は、対流予熱ゾーン7から直火加熱ゾー
ン2に続きカテナリー状に鋼帯5を搬送する如く
構成された焼鈍炉において、 対流予熱ゾーン7の廃ガスの一部を導く気路に
設けられたブロワー13によつて昇圧された廃ガ
スにより直火加熱ゾーン2や(=及び/又は)対
流予熱ゾーン7の各廃ガスを誘引昇圧する昇圧器
16と、 該昇圧器16による昇圧廃ガスによつて直火加
熱ゾーン2や対流予熱ゾーン7の各廃ガスを誘引
するパイプ26,27を有する誘引装置と、 該誘引装置を経た廃ガスを対流予熱ゾーン7に
おいて鋼帯5に吹き付ける噴射装置とを具備する
ことを特徴とするものである。 すなわち本考案の眼目とするところは、カテナ
リ型連続焼鈍炉の熱効率を上げるために、直火加
熱ゾーン2や対流予熱ゾーン7内の出来るだけ高
温の廃ガスを強制対流せしめ鋼帯5に吹き付け
て、この高温廃ガスの有する熱エネルギーを鋼帯
5に移動させることが必要であり、このためには
高温廃ガスをいかに昇圧するかにあり、廃ガスダ
クト6中の廃ガスの一部をブロワー13にて昇圧
し、そのガス体の有する圧力エネルギーによつて
直火加熱ゾーン2や対流予熱ゾーン7内の高温廃
ガスを誘引移動せしめるのである。 このようにして昇圧された高温廃ガスは風箱2
2に導かれその空気噴出口25から噴射する噴射
装置を通して鋼帯5に吹付けられる。このような
強制対流を数回繰返せば、高温廃ガスの有する熱
エネルギーを鋼帯5に容易に移動せしめ廃ガスの
温度を下げることが出来るのである。 次に実施例における結果を挙げてみる。 但し、 加熱ゾーン廃ガス温度 1250℃ 予熱ゾーン廃ガス温度 200℃ 予熱ゾーン昇圧後圧力 2000mm(水中) 風量 廃ガスの20%
This invention relates to the improvement of a catenary type continuous annealing furnace. Direct-fired catenary-type continuous annealing furnaces are used in the stainless steel manufacturing process. Recently, improvements have been made to improve the efficiency of furnaces in hopes of saving energy. FIG. 1 is a vertically cut side view showing an example of a conventional catenary-type continuous annealing furnace, in which a radiant preheating zone 3 is arranged in front of a direct-fire heating zone 2 equipped with a burner 1, and a radiant preheating zone 3 is placed on a feed plate roll 4. A steel strip 5 passed in the direction of the arrow is preheated by high-temperature waste gas that is sent from an open heating zone 2 through a radiant preheating zone 3 without a burner to an exhaust gas duct 6 (specially (See Publication No. 52-26723). FIG. 2 is a vertically sectioned side view showing another example of a conventional catenary type continuous annealing furnace. Components that are the same or substantially the same as those in FIG. The device shown in FIG. 2 is a combination of a radiation preheating zone 3 and a convection preheating zone 7 (see Japanese Patent Publication No. 42804/1983). Here, the convection preheating zone 7 receives the waste gas sent from the direct heating zone 2 via the radiant preheating zone 3.
Upper and lower gas blowers 11, 1 by convection fan 10
The waste gas is sprayed onto both the upper and lower surfaces of the steel strip 5 through the gas pipe 2, and the steel strip 5 is circulated and heated by the sprayed waste gas (see Japanese Patent Publication No. 54-42804). The conventional devices shown in FIGS. 1 and 2 have the following drawbacks. That is, in the continuous annealing furnace shown in FIG. 1, when the waste gas temperature approaches 900°C, the radiation preheating effect deteriorates, and if the waste gas is not to be used effectively, the furnace length of the preheating zone becomes undesirably long. In order to compensate for this drawback, the system shown in FIG. 2, which combines a radiation type and a convection type, was proposed. However, even in the combination of radiant preheating zone 3 and convection preheating zone 7 shown in Fig. 2, the convection temperature range is set from the allowable heat-resistant temperature of the convection fan 10 to around 900°C, but in a higher temperature range. If convection preheating is performed, the transfer will occur even more quickly and the length of the furnace can be shortened, which will not only reduce equipment costs but also have the effect of improving thermal efficiency. However, as mentioned above, the exhaust gas temperature is 900℃.
If the temperature exceeds the limit, the life of the convection fan 10 will be extremely shortened, and economical operation will not be possible. In the present invention, in order to solve this problem, all of the preheating zones are made into convection preheating zones 7, the length of the furnace is shortened, and a furnace with better energy saving performance is obtained. FIG. 3 is a vertically cut side view showing one embodiment of the present invention, and FIG. 4 is a booster 16 schematically shown in FIG. 3, which exhibits the most desirable Coanda effect. FIG. 2 is a detailed vertically cut enlarged side view of a type booster. Third
An embodiment of the present invention will be described based on FIGS. 1 and 4. Components that are the same or substantially the same as those in FIGS. 1 and 2 are given the same reference numerals, and their explanations will be omitted. In the present invention, the convection preheating zone 7 is divided into an out-of-furnace treatment type convection preheating zone 8 near the direct-fired heating zone 2 and an in-furnace treatment type convection preheating zone 9 closer to the steel strip inlet. Reference numeral 13 denotes a blower, whose suction side is connected to the waste gas duct 6 via a pipe 14, and whose discharge side is connected via a pipe 15 to at least one Coanda type booster 16.
is connected to. The booster 16 has an inlet 17 and a throat 1
9, and the pipe 15 on the discharge side of the blower 13 communicates with an annular outlet 20 which is arranged around the entire inner wall or substantially the entire inner wall of the throat section 19. There is. Outlet 18 of booster 16
is communicated with a wind box 22 via a pipe 21, and an air outlet 25 or a group of air outlets 25 provided in this wind box 22 is used to cool the steel in the out-of-furnace convection preheating zone 8 of the convection preheating zone 7. They are arranged opposite to each other so as to sandwich the band 5 from above and below to constitute an injection device. On the other hand, the inlet 17 of the Coanda booster 16 connected to the air outlet 25 closest to the direct flame heating zone 2 is connected to the direct flame heating zone 2 which is the closest to the convection preheating zone 7 via a pipe 26. ing. In addition, when a plurality of Coanda type boosters 16 are arranged, at least one Coanda type booster 16 communicating with the direct flame heating zone 2 as described above is provided.
Separately, the inlet 17 of the Coanda booster 16 connected to the n+1st air outlet 25 (where n≧1) in the direct fire heating zone 2 is connected to the n+1st air outlet 25 and the The convection preheating zone 7 located between the nth air jet ports 25 communicates with the out-of-furnace treatment type convection preheating zone 8 . In such a configuration, the Coanda type booster 1
A pipe 26 and a convection preheating zone 7 that draw the waste gas from the direct fire heating zone 2 by the pressurized waste gas produced by the pipe 26
A group of pipes 27 are arranged to induce waste gas from the out-of-furnace treatment type convection preheating zone 8 to constitute an induction device. Therefore, when the blower 13 is turned, a part of the waste gas in the waste gas duct 6 flows through the air passage, that is, the pipe 14 and the pipe 15, to the throat 1 of the Coanda booster 16.
Sent to 9th. Then, from the throat 19 to the exit 18
This waste gas flows towards. At this time, the waste gas in the direct fire heating zone 2 and the out-of-furnace treatment type convection preheating zone 8 of the convection preheating zone 7 is transferred to the corresponding pipes 26 and 2.
7 from the inlet 17 of each booster 16 to the suction outlet 18. Although this Coanda type booster 16 itself is well known,
By applying this, approximately 5 to 15 times the amount of waste gas ejected from the throat 19 is sucked in from the inlet 17 in the direct fire heating zone 2 and the out-of-furnace treatment type convection preheating zone 8. Then, it can be sent out to the exit 18. The present invention is an annealing furnace configured to convey a steel strip 5 in a catenary form from a convection preheating zone 7 to a direct-fire heating zone 2. a booster 16 that induces and boosts the pressure of each waste gas in the direct heating zone 2 and (= and/or) convection preheating zone 7 by the waste gas boosted by the blower 13; Therefore, an induction device having pipes 26 and 27 that induces each waste gas from the direct flame heating zone 2 and the convection preheating zone 7, and an injection device that sprays the waste gas that has passed through the induction device onto the steel strip 5 in the convection preheating zone 7. It is characterized by comprising the following. In other words, the focus of the present invention is to forcefully convect the waste gas as high as possible in the direct flame heating zone 2 and the convection preheating zone 7 and to blow it onto the steel strip 5 in order to increase the thermal efficiency of the catenary type continuous annealing furnace. It is necessary to transfer the thermal energy of this high-temperature waste gas to the steel strip 5, and for this purpose, it is necessary to determine how to increase the pressure of the high-temperature waste gas. The pressure is increased in the gas body, and the high-temperature waste gas in the direct heating zone 2 and convection preheating zone 7 is induced to move by the pressure energy of the gas body. The high-temperature waste gas pressurized in this way is transported to the wind box 2.
2 and is blown onto the steel strip 5 through an injector which injects the air from its air outlet 25. By repeating such forced convection several times, the thermal energy of the high-temperature waste gas can be easily transferred to the steel strip 5, and the temperature of the waste gas can be lowered. Next, the results of Examples will be listed. However, heating zone waste gas temperature 1250℃ Preheating zone waste gas temperature 200℃ Pressure after preheating zone pressure increase 2000mm (underwater) Air volume 20% of waste gas

【表】 上記実施例にで示す如く、3回の対流予熱を行
なうことにより、最初1250℃であつた直火加熱ゾ
ーンの廃ガスの温度が890℃迄降下しており4回
終了後では820℃程度であつた。 このように廃ガスが高温領域であつても強制対
流による熱伝達効果は非常に良好であり数回の繰
返しにより廃ガス温度を充分降下せしめることが
できる。このことは廃ガスの有する多量の熱エネ
ルギーを鋼帯5に移動せしめたことを意味する。 温度が降下した後では直接対流フアン10で昇
圧すればよく、この対流フアン10にとつて、廃
ガス温度900℃と800℃では寿命、性能面で大きく
差があり、その点で大きな利がある。 前記実施例における効果を従来法と同等な効率
を期し得る炉の長さにおいて比較すると、従来の
放射予熱によるもの48m、放射予熱と対流予熱の
組合わせによるもの17mに対し、本考案では12m
と短縮が可能となつた。 第3図の実施例では、対流予熱ゾーン7が炉外
処理型対流予熱ゾーン8と炉内処理型対流予熱ゾ
ーン9とよりなるものを示したが、炉内処理型対
流予熱ゾーン9を省き、炉外処理型対流予熱ゾー
ン8のみとすることも出来るのである。 さらにまた第3図の実施例では風箱22が対流
予熱ゾーン7内に設けられたものを示したが、第
5図に示す如く対流予熱ゾーン7外に設けること
も出来るものである。
[Table] As shown in the above example, by performing convection preheating three times, the temperature of the waste gas in the direct fire heating zone, which was initially 1250°C, decreased to 890°C, and after the fourth time, the temperature of the waste gas decreased to 820°C. It was about ℃. As described above, even if the exhaust gas is in a high temperature range, the heat transfer effect by forced convection is very good, and the exhaust gas temperature can be sufficiently lowered by repeating the process several times. This means that a large amount of thermal energy possessed by the waste gas was transferred to the steel strip 5. After the temperature drops, it is only necessary to increase the pressure with the direct convection fan 10, and this convection fan 10 has a great advantage in that there is a big difference in life and performance between waste gas temperatures of 900°C and 800°C. . Comparing the effects of the above embodiments in terms of the length of the furnace that can achieve the same efficiency as the conventional method, the length of the furnace using the conventional radiant preheating method is 48 m, and the length of the furnace using a combination of radiant preheating and convection preheating is 17 m, while the length of the furnace using the present invention is 12 m.
This made it possible to shorten the time. In the embodiment shown in FIG. 3, the convection preheating zone 7 is composed of an out-of-furnace treatment type convection preheating zone 8 and an in-furnace treatment type convection preheating zone 9, but the in-furnace treatment type convection preheating zone 9 is omitted. It is also possible to provide only the out-of-furnace treatment type convection preheating zone 8. Furthermore, although the embodiment shown in FIG. 3 shows that the wind box 22 is provided within the convection preheating zone 7, it can also be provided outside the convection preheating zone 7 as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のカテナリ型連続焼鈍炉の一例を
示す垂直切断側面図、第2図は従来のカテナリ型
連続焼鈍炉の他例を示す垂直切断側面図である。
第3図は本考案に係るカテナリ型連続焼鈍炉の一
実施例を示す垂直切断側面図、第4図はコアンダ
式ガス昇圧器の垂直切断側面図、第5図は本考案
に係るカテナリ型連続焼鈍炉の変形実施例におけ
る要部の垂直切断側面図である。 1……バーナー、2……直火加熱ゾーン、3…
…対射予熱ゾーン、4……送板ロール、5……鋼
帯、6……廃ガスダクト、7……対流予熱ゾー
ン、8……炉外処理型対流予熱ゾーン、9……炉
内処理型対流予熱ゾーン、10……対流フアン、
11……気体吹付器、12……気体吹付器、13
……ブロワー、14……パイプ、15……パイ
プ、16……昇圧器、17……入口、18……出
口、19……喉部、20……円環状吹出口、21
……パイプ、22……風箱、25……空気噴出
口、26……パイプ、27……パイプ。
FIG. 1 is a vertically cut side view showing an example of a conventional catenary type continuous annealing furnace, and FIG. 2 is a vertically cut side view showing another example of the conventional catenary type continuous annealing furnace.
Fig. 3 is a vertical cut side view showing an embodiment of a catenary type continuous annealing furnace according to the present invention, Fig. 4 is a vertical cut side view of a Coanda type gas booster, and Fig. 5 is a catenary type continuous annealing furnace according to the present invention. FIG. 7 is a vertically cut side view of main parts in a modified embodiment of the annealing furnace. 1... Burner, 2... Direct flame heating zone, 3...
...Radiation preheating zone, 4...Feed plate roll, 5...Steel strip, 6...Waste gas duct, 7...Convection preheating zone, 8...Out-of-furnace treatment type convection preheating zone, 9...In-furnace treatment type Convection preheating zone, 10... Convection fan,
11... Gas blower, 12... Gas blower, 13
... Blower, 14 ... Pipe, 15 ... Pipe, 16 ... Booster, 17 ... Inlet, 18 ... Outlet, 19 ... Throat, 20 ... Annular outlet, 21
...pipe, 22 ... wind box, 25 ... air outlet, 26 ... pipe, 27 ... pipe.

Claims (1)

【実用新案登録請求の範囲】 対流予熱ゾーン7から直火加熱ゾーン2に続き
カテナリー状に鋼帯5を搬送する如く構成された
焼鈍炉において、 対流予熱ゾーン7の廃ガスの一部を導く気路に
設けられたブロワー13によつて昇圧された廃ガ
スにより直火加熱ゾーン2や対流予熱ゾーン7の
各廃ガスを誘引昇圧する昇圧器16と、 該昇圧器16による昇圧廃ガスによつて直火加
熱ゾーン2や対流予熱ゾーン7の各廃ガスを誘引
するパイプ26,27を有する誘引装置と、該誘
引装置を経た廃ガスを対流予熱ゾーン7において
鋼帯5に吹き付ける噴射装置とを具備することを
特徴とするカテナリー型焼鈍炉。
[Claims for Utility Model Registration] In an annealing furnace configured to convey a steel strip 5 in a catenary form from a convection preheating zone 7 to a direct-fire heating zone 2, a part of the waste gas in the convection preheating zone 7 is guided. A booster 16 that induces and boosts the pressure of each waste gas in the direct fire heating zone 2 and the convection preheating zone 7 by the waste gas boosted by the blower 13 installed in the channel; Equipped with an induction device having pipes 26 and 27 that induce each waste gas from the direct-fire heating zone 2 and the convection preheating zone 7, and an injection device that sprays the waste gas that has passed through the induction device onto the steel strip 5 in the convection preheating zone 7. A catenary type annealing furnace characterized by:
JP14657083U 1983-09-20 1983-09-20 Catenary type annealing furnace Granted JPS6054098U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14657083U JPS6054098U (en) 1983-09-20 1983-09-20 Catenary type annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14657083U JPS6054098U (en) 1983-09-20 1983-09-20 Catenary type annealing furnace

Publications (2)

Publication Number Publication Date
JPS6054098U JPS6054098U (en) 1985-04-16
JPH0222634Y2 true JPH0222634Y2 (en) 1990-06-19

Family

ID=30326210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14657083U Granted JPS6054098U (en) 1983-09-20 1983-09-20 Catenary type annealing furnace

Country Status (1)

Country Link
JP (1) JPS6054098U (en)

Also Published As

Publication number Publication date
JPS6054098U (en) 1985-04-16

Similar Documents

Publication Publication Date Title
TR201807600T4 (en) Preheating device for a continuous steel strip.
GB1601052A (en) Furnaces
JPH0222634Y2 (en)
US4069008A (en) Method and apparatus for heating a workpiece
US2200731A (en) Heating apparatus
JPS6321730B2 (en)
CN108728629B (en) Energy-saving direct-fire heating continuous heat treatment device
CN105020703A (en) Novel combustion device
CN205874205U (en) Compulsory convection device of glass tempering furnace thermal cycle
US3035824A (en) Furnace with cooled and recirculated atmosphere
JPH0136908Y2 (en)
JPH0987750A (en) Method and device for heating strip
CN213179389U (en) Clean high-efficient type tunnel cave flue gas cyclic utilization system
GB357575A (en) Improvements in or relating to a method of and means for the heat treatment of metal
CN215984020U (en) Gas waste heat through type heat recovery drying furnace device of brazing furnace
CN215063319U (en) Bamboo shoots drying equipment
WO2024056068A1 (en) Jet-type direct-fired preheating system
JPS6040657A (en) Device for recovering heat from equipment behind continuous casting machine
CN220304296U (en) Waste heat utilization system for roller hearth heat treatment furnace
CN215176856U (en) Novel high-efficient tunnel cave
JPS6235020Y2 (en)
CN212512158U (en) Drying furnace pit for wood board
JPH0236647B2 (en) RENZOKUKANETSURONIOKERUHAIGASURYOHOHO
JPS60149759A (en) Galvannealing furnace
JPS6321563Y2 (en)