JPH02225681A - Method for vapor-phase etching - Google Patents

Method for vapor-phase etching

Info

Publication number
JPH02225681A
JPH02225681A JP1282546A JP28254689A JPH02225681A JP H02225681 A JPH02225681 A JP H02225681A JP 1282546 A JP1282546 A JP 1282546A JP 28254689 A JP28254689 A JP 28254689A JP H02225681 A JPH02225681 A JP H02225681A
Authority
JP
Japan
Prior art keywords
substrate
gas
etching
reaction space
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1282546A
Other languages
Japanese (ja)
Other versions
JPH0762262B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22808185A external-priority patent/JPS6289882A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP1282546A priority Critical patent/JPH0762262B2/en
Publication of JPH02225681A publication Critical patent/JPH02225681A/en
Publication of JPH0762262B2 publication Critical patent/JPH0762262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To efficiently carry out anisotropic etching in a vapor phase without damaging the surface of a substrate to be etched by impressing a high-frequency or DC electric field on a reactive gas activated by utilizing cyclotron resonance in the direction vertical to the substrate. CONSTITUTION:The reaction space 1 in a stainless steel vessel 1' in which the substrate 10 heated to a specified temp. by a halogen lamp 7 is arranged and the resonance space 2 in a quartz tube 29 connected to the reaction space 1 are evacuated to a specified pressure by an evacuating system 11 including a vacuum pump 9. An inert gas such as Ar or a nonproductive gas is introduced into the resonance space 2, and cyclotron resonance is produced by the microwave from a microwave oscillator 3 and the magnetic fields of air-core coils 5 and 5'. The formed electron and the excited gas 21 are discharged into the reaction space 1. An etching gaseous reactant 22 such as fluorocarbon capable of generating at least halogen element is introduced into the reaction space 1 and excited. Furthermore, a high-frequency or DC electric field vertical to the substrate 10 is impressed by the reticular electrodes 20 and 20' arranged at the upper and lower parts of the reaction space 1. As a result, anisotropic etching is applied selectively on the surface to be etched or over the whole surface of the substrate 10.

Description

【発明の詳細な説明】 r発明の利用分野1 本発明は、電子サイクロトロン共鳴を用い、エツチング
用反応性気体を活性化または分解せしめ、さらにエツチ
ングされるべき基板表面に垂直方向に高周波または直流
電界を同時に加えることにより、基板または基板上の被
エツチング材料に異方性エツチングを行わしめる気相エ
ツチング方法に関する。
Detailed Description of the Invention Field of Application of the Invention 1 The present invention uses electron cyclotron resonance to activate or decompose a reactive gas for etching, and further applies a high frequency or direct current electric field in a direction perpendicular to the surface of the substrate to be etched. This invention relates to a vapor phase etching method in which a substrate or a material to be etched on a substrate is anisotropically etched by simultaneously adding .

r従来技術j 気相エツチング反応によるエツチング(気相化学的除去
方法)技術として、高周波または直流電界により反応性
気体を活性にさせるプラズマエツチング法(グロー放電
エツチング法)が知られている。
rPrior Art j A plasma etching method (glow discharge etching method) in which a reactive gas is activated by a high frequency or a direct current electric field is known as an etching technique (vapor phase chemical removal method) using a gas phase etching reaction.

しかし、かかるグロー放電を用いる異方性エツチング法
においては、被膜の異方性が超LSIの進歩に比べて十
分でなく、さらにその異方性エッチングの精度をさらに
向上することが求められていた。
However, in the anisotropic etching method using such glow discharge, the anisotropy of the film is not sufficient compared to the progress of VLSI, and there has been a need to further improve the accuracy of the anisotropic etching. .

他方、電子サイクロトロン共鳴を用いたエツチング法が
知られている。しかしかかる方法は被膜全体のエツチン
グを行うことを可とするが、選択的な異方性エツチング
には不充分であった。なぜなら、共鳴により反応性気体
が基板表面に平行に移動するため、凹部での形成がほと
んど不可能であり、加えて共鳴させる時、例えば共鳴原
子としてアルゴンを用い、周波数を2.45GH,zと
すると、875ガウスの強磁場を必要とする。このため
磁場作用の空心コイルが大きくなりがちで、励起気体を
大面積に広げることができない、結果として、サブミク
ロン(1μ以下例えば0.2μ)の巾または径を有し、
深さが2〜4μを有する穴状のエツチングはまったく不
可能であった。
On the other hand, an etching method using electron cyclotron resonance is known. However, although such a method allows etching of the entire film, it is insufficient for selective anisotropic etching. This is because the reactive gas moves parallel to the substrate surface due to resonance, making it almost impossible to form a recess.In addition, when creating resonance, for example, argon is used as the resonant atom, and the frequency is set to 2.45 GH,z. This requires a strong magnetic field of 875 Gauss. For this reason, the air-core coil for magnetic field action tends to be large, and the excited gas cannot be spread over a large area.As a result, it has a width or diameter of submicron (less than 1μ, for example 0.2μ)
Hole-like etching with a depth of 2 to 4 microns was not possible at all.

r問題を解決すべき手段j 本発明はこれらの問題を解決するため、反応性気体の活
性化はサイクロトロン共鳴を用いて行う。
Means for Solving Problems j In order to solve these problems, the present invention uses cyclotron resonance to activate the reactive gas.

このため、電子または活性化気体によりエツチング用反
応性気体の活性化、分解または反応がきわめて効率よく
行うことができる。この活性状態の気体をグロー放電が
行われている雰囲気に導き、共鳴エネルギの共鳴がなく
なった後も活性状態を持続し、かつこの電界を基板に垂
直とすることによりその方向性を与え、基板または基板
上の被エツチング材料を異方性エツチングさせんとする
もので、基板上部にサブミクロンレベルでも十分深い凹
部を有し得るようにしたものである。
Therefore, activation, decomposition, or reaction of the reactive gas for etching can be carried out extremely efficiently using electrons or activated gas. This activated gas is introduced into the atmosphere where the glow discharge is occurring, and the active state is maintained even after the resonance energy has ceased to resonate, and this electric field is made perpendicular to the substrate, giving it directionality. Alternatively, the material to be etched on the substrate is anisotropically etched, and the upper part of the substrate is capable of having sufficiently deep recesses even at the submicron level.

r作用j するとこのプラズマグロー放電の技術により、活性状態
の気体は広い空間に広げられ、このため広い面積にわた
って基板または基板上の被エツチング材料を多量に高精
度の異方性エツチングを場所的なバラツキもなく均一に
行うことが可能となる。
Then, by this plasma glow discharge technique, the activated gas is spread over a wide space, and therefore, a large amount of the substrate or the material to be etched on the substrate can be etched with high precision anisotropically over a wide area. It becomes possible to perform the process uniformly without any variation.

本発明においてはグロー放電用電源としては直流電源を
用いた。しかし高周波グロー放電であっても励起した反
応性気体の励起状態を持続し、同時に作られるセルフバ
イアスにより異方性エツチングを行うことができる。
In the present invention, a DC power source was used as the glow discharge power source. However, even with high-frequency glow discharge, the excited state of the excited reactive gas can be maintained, and anisotropic etching can be performed by the self-bias created at the same time.

さらにサイクロトロン共鳴は不活性気体または非生成物
気体(分解または反応をしてもそれ自体は気体しか生じ
ない気体)を用いる。不活性気体としてはアルゴンが代
表的なものである。しかしヘリニーム、ネオン、クリプ
トンを用いてもよい。
Furthermore, cyclotron resonance uses an inert gas or a non-product gas (a gas that itself produces only a gas when decomposed or reacted). Argon is a typical inert gas. However, helinium, neon, and krypton may also be used.

エツチング用非生成物反応性気体としては、cpイ。As the non-product reactive gas for etching, CPI is used.

CFtHt=CFHy、CFsH,CC1a、弗化窒素
(Nh、NzFi)、弗化水素()IP) 、弗素(p
n) 、塩化水素(HCI)、塩素(C1g)またはこ
れらにキャリアガスまたは酸素を混合した気体が代表的
なものである。
CFtHt=CFHy, CFsH, CC1a, nitrogen fluoride (Nh, NzFi), hydrogen fluoride ()IP), fluorine (p
n), hydrogen chloride (HCI), chlorine (Clg), or a mixture of these with a carrier gas or oxygen is typical.

これらの非生成物エツチング気体をサイクロトロン共鳴
をさせて活性化せしめ、この共鳴領域より外部の反応空
間で生成物気体と混合し、励起エネルギを生成物気体に
移す、するとエツチング用気体にきわめて大きい電磁エ
ネルギを受けるため、はぼ100χ活性化または分解さ
せることができ、かつ異方性エツチングをするための電
界により加速されて基板上に所定の角度一般には基板に
垂直に衝突しエツチング反応をする。さらに室温〜30
0℃の温度で基板を加熱することにより、この基板また
は基板上に被エツチング材料を異方性エツチングさせる
ことができる。
These non-product etching gases are activated by cyclotron resonance, mixed with the product gas in a reaction space outside this resonance region, and the excitation energy is transferred to the product gas, which causes the etching gas to undergo extremely large electromagnetic Because of the energy it receives, it can be activated or decomposed by approximately 100x, and is accelerated by the electric field for anisotropic etching and impinges on the substrate at a predetermined angle, generally perpendicular to the substrate, to cause an etching reaction. Furthermore, room temperature ~ 30
By heating the substrate at a temperature of 0° C., it is possible to anisotropically etch the substrate or the material to be etched on the substrate.

以下に実施例に従い本発明を示す。The present invention will be illustrated below with reference to Examples.

実施N1 第1図は本発明のサイクロトロン共鳴型プラズマエツチ
ング装置の概要を示す。
Implementation N1 FIG. 1 shows an outline of the cyclotron resonance type plasma etching apparatus of the present invention.

図面において、ステンレス容器(l゛)は蓋(1”)を
有し反応空間(1)を構成させている。この容器(1′
)は、上部に基板(10)を基板ホルダ(10°)に設
け、その裏側の蓋(1°°)側にはハロゲンランプヒー
タ(7)を設け、基板の装着の時は蓋(1”)を上方向
に開けて行う0石英窓(19)を通して赤外線を基板に
照射し加熱している。さらにこの基板の裏側に一つの網
状電極(20’)と容器(1”)の下部には他の一方の
網状電極(20)とを有せしめ、ここに高周波または直
流電源(6)より13.56M1(zまたは直流の電界
を加える。基板(10)はこの電界に垂直に第1図では
位置させている。
In the drawing, a stainless steel container (l゛) has a lid (1") and constitutes a reaction space (1). This container (1'
), the board (10) is installed on the board holder (10°) on the top, and the halogen lamp heater (7) is installed on the back side of the lid (1°). ) is opened upwards to heat the substrate by irradiating infrared rays through a quartz window (19).Furthermore, there is one mesh electrode (20') on the back side of this substrate and one at the bottom of the container (1"). A 13.56 M1 (z or direct current) electric field is applied thereto from a high frequency or direct current power source (6). It is located.

また非生成物気体をドーピング系(13)より(18)
を経て石英管(29)で作られた共鳴空間(2)に供給
する。この共鳴空間はその外側に空心コイル(5)。
In addition, the non-product gas is extracted from the doping system (13) (18)
It is then supplied to the resonant space (2) made of a quartz tube (29). This resonant space has an air-core coil (5) outside it.

(5°)を配し磁場を加える。同時にマイクロ波発振器
(3)によりアナライザー(4)を経て例えば2.45
GH2のマイクロ波が共鳴空間(2)に供給される。
(5°) and apply a magnetic field. At the same time, the microwave oscillator (3) passes through the analyzer (4), e.g.
GH2 microwaves are supplied to the resonance space (2).

この空間では共鳴を起こすべく非生成物気体をアルゴン
とするとその質量、周波数により決められた磁場(例え
ば875ガウス)が空心コイルにより加えられる。
In this space, when the non-product gas is argon, a magnetic field (for example, 875 Gauss) determined by its mass and frequency is applied by an air-core coil in order to cause resonance.

このため、アルゴンガスが励起して磁場によりビンチン
グすると同時に共鳴し、十分励起した後に反応空間(1
)へ電子および励起したアルゴンガスとして放出(21
)される、この空間の出口にはエツチング用気体がドー
ピング系(13’)の系(16)を経て複数のリング状
ノズル(17)により放出(22)される、その結果、
エツチング用気体(22)は非生成物気体(21)によ
り励起され、活性化する。加えて一対の電極(20) 
、 (20’ )により生じた電界が同時にこれら反応
性気体に加えられる。
For this reason, the argon gas is excited and resonates at the same time as it is binned by the magnetic field, and after being sufficiently excited, the reaction space (1
) is released as electrons and excited argon gas (21
), and at the outlet of this space, an etching gas is discharged (22) through a system (16) of a doping system (13') by a plurality of ring-shaped nozzles (17), as a result,
The etching gas (22) is excited and activated by the non-product gas (21). In addition, a pair of electrodes (20)
, (20') is simultaneously applied to these reactive gases.

その結果、この電界にそって活性化した気体は飛翔し、
基板を選択的にエツチングさせることができる。
As a result, the activated gas flies along this electric field,
The substrate can be selectively etched.

また反応性気体を十分反応室で広げ、かつサイクロトロ
ンをさせるため、反応空間(1)、共鳴空間(2)の圧
力を1〜10−’torr例えば0.03〜0.0QL
torrとした。この圧力は排気系(11)のコントロ
ールバルブ(14)によりターボポンプを併用して真空
ポンプ(9)の排気量を調整して行った。
In addition, in order to sufficiently spread the reactive gas in the reaction chamber and to activate the cyclotron, the pressure in the reaction space (1) and resonance space (2) is set to 1 to 10-'torr, for example 0.03 to 0.0QL.
It was set to torr. This pressure was achieved by adjusting the displacement of the vacuum pump (9) using a turbo pump together with the control valve (14) of the exhaust system (11).

実験例1 この実験例は実施例1を用い、シリコン半導体を弗化窒
素にてエツチングさせたものである。
Experimental Example 1 In this experimental example, Example 1 was used, and a silicon semiconductor was etched with nitrogen fluoride.

即ち反応空間の圧力0.003torr 、非生成物気
体として(18)よりアルゴンを50cc/分で供給し
た。
That is, the pressure in the reaction space was 0.003 torr, and argon was supplied as a non-product gas from (18) at a rate of 50 cc/min.

加えて、NF2を(16)より20cc/分で供給した
。電界は自己バイアスが加わった13.56LHzの高
周波電界を加えた。マイクロ波は2.45GH2の周波
数を有し、30〜500−の出力例えば200−で調整
した。磁場(5) 、 (5°)の共鳴強度は875ガ
ウスとした。
In addition, NF2 was supplied from (16) at 20 cc/min. As the electric field, a high frequency electric field of 13.56 LHz with a self-bias was applied. The microwave had a frequency of 2.45 GH2 and was regulated with a power of 30-500-, for example 200-. The resonance intensity of the magnetic field (5) and (5°) was set to 875 Gauss.

基板(lO)はシリコン半導体とし、その上面には選択
的にフォトレジストがコーティングされているものを用
いた。この被形成面上の非単結晶半導体例えばアモルフ
ァスシリコン半導体を除去し、不要気体を排気系(11
)より放出した。するとエツチング速度15人/秒を得
ることができた。この速度はプラズマエツチングのみで
得られる5人/秒に比べ3倍の速さである。またこのシ
リコン基板上に0.3μの巾のレジストによるパターン
を切っておくと、0.3μ巾深さ4μの異方性エツチン
グを得ることができた。
The substrate (lO) was a silicon semiconductor whose upper surface was selectively coated with photoresist. A non-single crystal semiconductor, such as an amorphous silicon semiconductor, on the surface to be formed is removed, and unnecessary gas is removed from the exhaust system (11
) was released. As a result, it was possible to obtain an etching speed of 15 people/second. This speed is three times faster than the 5 per second obtained with plasma etching alone. Furthermore, by cutting a resist pattern with a width of 0.3μ on this silicon substrate, it was possible to obtain anisotropic etching with a width of 0.3μ and a depth of 4μ.

さらにこれを異方性エツチングの後反応性気体を除去し
、かわりに酸素を導入し、このエツチング後この表面に
残っているレジストをアッシングして除去することは有
効である。
Furthermore, it is effective to remove the reactive gas after anisotropic etching, introduce oxygen instead, and remove the resist remaining on the surface by ashing after this etching.

「効果」 本発明は、以上の説明より明らかなごとく、大面積の基
板または基板上の被エツチング材料を異方性エツチング
をするにあたり、被エツチング面の損傷をきわめて少な
くして成就させることができた。加えて、サイクロトロ
ン共鳴を用いているため、大きいエツチング速度を得る
ことができる。
``Effects'' As is clear from the above description, the present invention can perform anisotropic etching of a large area substrate or a material to be etched on a substrate with extremely little damage to the surface to be etched. Ta. In addition, since cyclotron resonance is used, a high etching rate can be obtained.

本発明のエツチング方法は半導体装置である光電変換装
置、発光素子旧S、PET(電界効果半導体装置)、S
L素子(スーパーラティス素子) 、 HEHT素子お
よび超LSIに十分応用し得る。さらに、その他生導体
レーザまたは光集積回路に対しても本発明は有効である
The etching method of the present invention is applied to semiconductor devices such as photoelectric conversion devices, light emitting devices (former S), PET (field effect semiconductor devices), S
It can be fully applied to L elements (super lattice elements), HEHT elements, and VLSIs. Furthermore, the present invention is also effective for other live conductor lasers or optical integrated circuits.

本発明のサイクロトロン共鳴を用いたエツチング方法に
おいて、同時に光エネルギを加え光エッチングを併用さ
せることは有効である。特に光源として低圧水銀灯では
なくエキシマレーザ(波長100〜400+v) 、ア
ルゴンレーザ、窒素レーザ等を用い共鳴波長を選択する
ことは有効である。
In the etching method using cyclotron resonance of the present invention, it is effective to simultaneously apply optical energy and perform optical etching. In particular, it is effective to use an excimer laser (wavelength: 100 to 400+V), argon laser, nitrogen laser, etc. as a light source instead of a low-pressure mercury lamp, and select a resonant wavelength.

本発明において、エツチングされるべき基板としてはシ
リコン半導体、ガラス基板、ステンレス基板が主たるも
のである。しかし、加えて■−■化合物例えばGaAs
、GaAlAs、 InP、GaN等、またアルミニニ
ーム、珪化物金属も用い得る。
In the present invention, the substrates to be etched are mainly silicon semiconductors, glass substrates, and stainless steel substrates. However, in addition ■-■ compounds such as GaAs
, GaAlAs, InP, GaN, etc. Aluminum, silicide metals may also be used.

又本発明のエツチング方法は単結晶半導体のみではな(
非単結晶半導体、例えばアモルファス半導体をSl)み
ならず5iGe1−x (0<Xd)、Stow−x(
0<X<2)、SlMCl−31(0<X<1)、5i
Jn−x (0<X<4)に対しても有効である。
Furthermore, the etching method of the present invention is applicable not only to single crystal semiconductors (
Non-single-crystal semiconductors, such as amorphous semiconductors, are not only 5iGe1-x (0<Xd)
0<X<2), SlMCl-31 (0<X<1), 5i
It is also valid for Jn-x (0<X<4).

さらに第1図において、基板を下側または垂直構造とし
、サイクロトロンおよび電界を上方向より下方向または
横方向に放出してもよい。
Further, in FIG. 1, the substrate may be in a lower or vertical structure, and the cyclotron and electric field may be emitted downward or laterally from the upper direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のサイクロトロン共鳴型プラズマエツチ
ング装置を示す。
FIG. 1 shows a cyclotron resonance type plasma etching apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1、サイクロトロン共鳴を利用して電子または活性化し
たエッチング用反応性気体を反応室内に設けられた電極
によって、基板に対して垂直方向に高周波電界または直
流電界を加えることにより、被エッチング面を選択的又
は基板全面にわたって異方性エッチングすることを特徴
とした気相エッチング方法。 2、特許請求の範囲第1項において、サイクロトロン共
鳴を利用して活性化する気体は不活性気体または非生成
物気体より選ばれ、さらにエッチング用反応性気体には
少なくともハロゲン元素を発生する気体が選ばれたこと
を特徴とする気相エッチング方法。 3、特許請求の範囲第1項において、エッチング用気体
は弗化炭素(CHnF_4_−_■0≦n<4)、塩化
炭素(CHnCl_4_−_■0≦n<4)、弗化珪素
(SiF_4、Si_2F_6等)または弗化窒素(N
F_3、N_2F_4)が用いられることを特徴とする
気相エッチング方法。
[Claims] 1. By applying electrons or activated reactive gas for etching using cyclotron resonance to a high frequency electric field or a direct current electric field in a direction perpendicular to the substrate using an electrode provided in a reaction chamber. A vapor phase etching method characterized by selectively etching the surface to be etched or anisotropically etching the entire surface of the substrate. 2. In claim 1, the gas activated using cyclotron resonance is selected from inert gases or non-product gases, and the reactive gas for etching includes at least a gas that generates a halogen element. A vapor phase etching method characterized by being selected. 3. In claim 1, the etching gas is carbon fluoride (CHnF_4_-_■0≦n<4), carbon chloride (CHnCl_4_-_■0≦n<4), silicon fluoride (SiF_4, Si_2F_6, etc.) or nitrogen fluoride (N
A vapor phase etching method characterized in that F_3, N_2F_4) is used.
JP1282546A 1985-10-14 1989-10-30 Vapor phase etching method Expired - Lifetime JPH0762262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282546A JPH0762262B2 (en) 1985-10-14 1989-10-30 Vapor phase etching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22808185A JPS6289882A (en) 1985-10-14 1985-10-14 Vapor phase etching method
JP1282546A JPH0762262B2 (en) 1985-10-14 1989-10-30 Vapor phase etching method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22808185A Division JPS6289882A (en) 1985-10-14 1985-10-14 Vapor phase etching method

Publications (2)

Publication Number Publication Date
JPH02225681A true JPH02225681A (en) 1990-09-07
JPH0762262B2 JPH0762262B2 (en) 1995-07-05

Family

ID=26528036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282546A Expired - Lifetime JPH0762262B2 (en) 1985-10-14 1989-10-30 Vapor phase etching method

Country Status (1)

Country Link
JP (1) JPH0762262B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813627A (en) * 1981-06-16 1983-01-26 モンサント・カンパニ− Acid halide functional substance and acyl lactam functional substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813627A (en) * 1981-06-16 1983-01-26 モンサント・カンパニ− Acid halide functional substance and acyl lactam functional substance

Also Published As

Publication number Publication date
JPH0762262B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US4689112A (en) Method and apparatus for dry processing of substrates
US4699689A (en) Method and apparatus for dry processing of substrates
US4918031A (en) Processes depending on plasma generation using a helical resonator
US4687544A (en) Method and apparatus for dry processing of substrates
EP0379301B1 (en) Method of stripping organic material
US5980999A (en) Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
JPH02503614A (en) Etching method using gas plasma
WO2004093175A1 (en) Hydrogen plasma downflow processing method and hydrogen plasma downflow processing apparatus
US5304514A (en) Dry etching method
JPS6289882A (en) Vapor phase etching method
JPH09137274A (en) Formation of thin film by radical regulation microfabricating method and device therefor
JPH02225681A (en) Method for vapor-phase etching
JP2700297B2 (en) Processing method
JPH02224229A (en) Vapor phase etching
JP2564663B2 (en) Vapor phase etching equipment
JPH02297931A (en) Vapor-phase etching method
JP2532353B2 (en) Vapor phase etching method and apparatus
JP2535517B2 (en) Processing method
JP3089925B2 (en) Plasma processing apparatus and plasma processing method using the apparatus
JPS6380525A (en) Formation of coat
JP3092559B2 (en) Plasma processing apparatus and gas introduction method for the apparatus
JPH0635663B2 (en) Surface treatment method and apparatus
JPS62118521A (en) Formation of semiconductor film
JPS63117424A (en) Substrate surface treatment device and substrate surface treatment method
JPS62237729A (en) Dry etching method for silicon oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term