JPH0222354A - Shape memory resin composition - Google Patents

Shape memory resin composition

Info

Publication number
JPH0222354A
JPH0222354A JP17103288A JP17103288A JPH0222354A JP H0222354 A JPH0222354 A JP H0222354A JP 17103288 A JP17103288 A JP 17103288A JP 17103288 A JP17103288 A JP 17103288A JP H0222354 A JPH0222354 A JP H0222354A
Authority
JP
Japan
Prior art keywords
polymer
conjugated diene
glass transition
transition temperature
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17103288A
Other languages
Japanese (ja)
Inventor
Takeshi Ikematsu
武司 池松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17103288A priority Critical patent/JPH0222354A/en
Publication of JPH0222354A publication Critical patent/JPH0222354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a composition improved in processability by blending a norbornene based polymer with a specific crystalline polymer. CONSTITUTION:The aimed composition obtained by blending 100 pts. wt. norbornene based polymer having >=10 deg.C glass transition temperature and >=1000000 number-average molecular weight with 3-100 pts.wt. crystalline polymer having <=200 deg.C crystal melting point exceeding glass transition temperature of norbornene based polymer, >=10% crystallinity at ordinary temperature, <0 deg.C glass transition temperature and 500-200000 number-average molecular weight. The crystalline polymer is a homopolymer of conjugated diene being >=80% in 1,4-trans content of the conjugated diene part or copolymer of a conjugated diene and other conjugated diene or conjugated diene and vinyl aromatic compound. The conjugated diene is 1,3-butadiene.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はノルボルネン系重合体に特定の結晶性重合体を
混合することにより、加工性を改良したノルボルネン系
形状記憶性樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a norbornene-based shape memory resin composition with improved processability by mixing a specific crystalline polymer with a norbornene-based polymer.

[従来の技術及びその問題点コ ノルボルネン系重合体、特にガラス転移温度が10℃以
上で数平均分子量が100万以上のノルボルネン系重合
体の成形体は成形温度未満の温度で変形を加え、次いで
重合体のガラス転移温度以下に冷却するとその変形を固
定でき、これをガラス転移温度以上に加熱すると再度元
の形状に回復することが知られている(特開昭59−5
3528号参照)。
[Prior art and its problems Molded articles of conorbornene polymers, especially norbornene polymers with a glass transition temperature of 10°C or higher and a number average molecular weight of 1 million or higher, are deformed at a temperature below the molding temperature, and then It is known that when a polymer is cooled below its glass transition temperature, its deformation can be fixed, and when it is heated above its glass transition temperature, it recovers to its original shape (Japanese Patent Laid-Open No. 59-5
3528).

ノルボルネン系重合体は一般にガラス転移温度が約−2
0〜100℃の範囲にある重合体である。この内特にガ
ラス転移温度が室温を越える重合体は単味あるいは少量
の可塑剤を添加して、プラスチックスとしての利用が考
えられている。しかし、通常この種の重合体は分子量が
極めて大きいため、ガラス転移温度でも流動性が悪く、
成形手段としては一般に圧縮成形が用いられ、射出成形
、トランスファー成形等の量産型の成形方法を利用する
ことは困難であった。
Norbornene polymers generally have a glass transition temperature of approximately -2
It is a polymer in the range of 0 to 100°C. Among these, polymers whose glass transition temperature exceeds room temperature are considered to be used alone or with the addition of a small amount of plasticizer for use as plastics. However, because this type of polymer usually has an extremely large molecular weight, it has poor fluidity even at the glass transition temperature.
Compression molding is generally used as a molding means, and it has been difficult to use mass-produced molding methods such as injection molding and transfer molding.

また、圧縮成形でも、形状記憶特性を有すノルボルネン
系重合体の場合、室温で嵩比重が0.25〜0.35の
樹脂状の粉体であるため、成形体への気泡の混入、流動
不良等により加工性、成形性がよくないという問題点を
有している。
In addition, even in compression molding, norbornene-based polymers with shape memory properties are resin-like powders with a bulk specific gravity of 0.25 to 0.35 at room temperature, so air bubbles may be mixed into the molded product, and flow may occur. There is a problem in that workability and moldability are poor due to defects and the like.

また、ノルボルネン系重合体は各種オイル類との混和性
に優れるため、多量のオイルを配合することによりガラ
ス転移温度および粘度を下げ、天然ゴムや通常の合成ゴ
ムと同様の加工性を付与することもできる。しかしなが
ら、この様な方策では加工性は改良できるものの、本発
明の目的とする形状記憶性樹脂としての特性は著しく低
下するという問題が生じる。
In addition, norbornene polymers have excellent miscibility with various oils, so blending a large amount of oil can lower the glass transition temperature and viscosity, giving it the same processability as natural rubber or ordinary synthetic rubber. You can also do it. However, although such measures can improve processability, a problem arises in that the properties as a shape memory resin, which is the object of the present invention, are significantly deteriorated.

これに対して、常温で樹脂状にある低ガラス転移温度の
樹脂を混合することにより、組成物のガラス転移温度を
室温以上に保持したまま、加工時の粘度を下げることに
よって、形状記憶特性を保持し、加工性を改良する方法
も知られている(特開昭63−54460号参照)。
On the other hand, by mixing a resin with a low glass transition temperature that is in resin form at room temperature, the glass transition temperature of the composition can be maintained above room temperature and the viscosity during processing can be lowered, thereby improving shape memory properties. A method of retaining and improving workability is also known (see JP-A-63-54460).

しかし、このような方法でも、多量の低ガラス転移温度
の樹脂の混合によりガラス転移温度以上で加工する際、
成形体の形状回復の原動力となる歪みの応力緩和が起り
易くなり、形状記憶特性が低下してしまい、一方少nの
低ガラス転移温度の樹脂の混合にも十分な加工性改良効
果を期待できないという問題点を有していた。
However, even with this method, when processing at temperatures above the glass transition temperature by mixing a large amount of resin with a low glass transition temperature,
Stress relaxation of strain, which is the driving force for shape recovery of the molded object, becomes more likely to occur, resulting in a decline in shape memory properties, and on the other hand, a sufficient processability improvement effect cannot be expected even when a small amount of resin with a low glass transition temperature is mixed. There was a problem.

[問題点を解決するための手段] 本発明者等はノルボルネン系重合体の加工性を改良すべ
く検討を重ねた結果、ノルボルネン系重合体に、特定の
結晶性重合体を混合することにより、形状記憶特性を大
きく低下させることなく加工性を改良できることを見出
し、本発明に到達した。
[Means for Solving the Problems] As a result of repeated studies to improve the processability of norbornene-based polymers, the present inventors found that by mixing a specific crystalline polymer with norbornene-based polymers, The present invention was achieved by discovering that processability can be improved without significantly reducing shape memory properties.

すなわち、本発明はガラス転移温度10℃以上、数平均
分子量100万以上のノルボルネン系重合体100重量
部に対して、ノルボルネン系重合体のガラス転移温度を
越え、200℃以下の結晶融点を持ち、かつ常温での結
晶化度が10%以上、ガラス転移温度が0℃未満、数平
均分子量が500〜20万の範囲の結晶性重合体3〜1
00重田部を混合して成る改良された加工性を有するノ
ルボルネン系形状記憶性樹脂組成物を提供するものであ
る。
That is, the present invention has a crystal melting point exceeding the glass transition temperature of the norbornene polymer and 200° C. or less, for 100 parts by weight of a norbornene polymer having a glass transition temperature of 10° C. or more and a number average molecular weight of 1 million or more. and a crystalline polymer having a crystallinity of 10% or more at room temperature, a glass transition temperature of less than 0°C, and a number average molecular weight in the range of 500 to 200,000 3 to 1
The object of the present invention is to provide a norbornene-based shape memory resin composition having improved processability, which is made by mixing 00 Jutabe.

本発明の形状記憶性樹脂組成物を用いて得られる成形体
は、その成形温度未満の温度で変形を与え、次いでその
組成物のガラス転移温度以下に冷却して変形を固定させ
、使用に際しガラス転移温度以上、結晶性重合体の結晶
融点未満の温度に加熱することにより、元の形状を良好
に回復する性能を有している。
A molded article obtained using the shape memory resin composition of the present invention is deformed at a temperature lower than its molding temperature, and then cooled to a temperature lower than the glass transition temperature of the composition to fix the deformation. It has the ability to satisfactorily recover its original shape by heating to a temperature above the transition temperature and below the crystal melting point of the crystalline polymer.

すなわち、本発明の組成物は加工の際ノルボルネン系重
合体のガラス転移温度を越える如く設計されたる結晶性
重合体の融点以上の温度では、結晶性重合体が可塑剤と
して働き、本発明の組成物は優れた加工性を有すること
になる。反面、形状記憶性能が発揮される結晶性重合体
の融点以下の温度では、結晶性重合体が結晶相としての
相分離が起り、組成物の形状記憶特性に可塑化効果に伴
う悪影響を及ぼさない。
That is, when the composition of the present invention is processed, the crystalline polymer acts as a plasticizer at a temperature higher than the melting point of the crystalline polymer, which is designed to exceed the glass transition temperature of the norbornene-based polymer. The product will have excellent workability. On the other hand, at temperatures below the melting point of the crystalline polymer at which shape memory performance is exhibited, the crystalline polymer undergoes phase separation as a crystalline phase, and the shape memory properties of the composition are not adversely affected by the plasticizing effect. .

本発明の形状記憶性樹脂組成物において用いられるノル
ボルネン系重合体はガラス転移温度が10℃以上、好ま
しくは20℃以上、より好ましくは30℃〜60℃の範
囲であり、数平均分子量は100万以上である。ガラス
転移温度が10℃未満、数平均分子量が100万未満で
は本発明の目的とする優れた形状記憶性能は十分達成で
きない。
The norbornene polymer used in the shape memory resin composition of the present invention has a glass transition temperature of 10°C or higher, preferably 20°C or higher, more preferably 30°C to 60°C, and a number average molecular weight of 1 million That's all. When the glass transition temperature is less than 10° C. and the number average molecular weight is less than 1 million, the excellent shape memory performance aimed at by the present invention cannot be sufficiently achieved.

本発明で使用されるノルボルネン系重合体は、ビシクロ
(2,2,1)へブテン−2あるいはこの誘導体の開環
重合体あるいは共重合体である。構成する単量体の具体
例としてはビシクロ(2,2,1)へブテン−2、メチ
ル−5−ビシクロ(2,2,1)へブテン−2等のアル
キル−5−ビシクロ(2,2,1)へブテン−2系単量
体、メトキシ−5−ビシクロ(2,2,1)へブテン−
2、エトキシ−5−ビシクロ(2,2,1)へブテン−
2等のアルコキシ−5−ビシクロ(2,2,1)へブテ
ン−2、ビシクロ(2,2,1)へブテン−2−5力ル
ボン酸エステル系単全体、ビシクロ(2,2,1)へブ
テン−2−5,8ジカルボン酸のジエステル系重合体お
よびこれらの混合物等が挙げられる。
The norbornene polymer used in the present invention is a ring-opening polymer or copolymer of bicyclo(2,2,1)hebutene-2 or a derivative thereof. Specific examples of the constituent monomers include alkyl-5-bicyclo(2,2,1) such as bicyclo(2,2,1)hebutene-2, methyl-5-bicyclo(2,2,1)hebutene-2, etc. ,1) Hebutene-2 monomer, methoxy-5-bicyclo(2,2,1)hebutene-
2, Ethoxy-5-bicyclo(2,2,1)hebutene-
Alkoxy-5-bicyclo(2,2,1)butene-2, bicyclo(2,2,1)butene-2-5-carboxylic acid ester, bicyclo(2,2,1) Examples include diester polymers of hebutene-2-5,8 dicarboxylic acid and mixtures thereof.

代表的重合体としてはビシクロ(2,2,1)へブテン
−2の開環重合体であるノルボルネン重合体が挙げられ
る。
A typical polymer is a norbornene polymer which is a ring-opening polymer of bicyclo(2,2,1)hebutene-2.

本発明で使用される結晶性重合体は組成物を構成するノ
ルボルネン系重合体のガラス転移温度を越え、200℃
以下の結晶融点、好ましくはノルボルネン系重合体のガ
ラス転移温度を10℃以上越え、180℃以下の結晶融
点、さらに好ましくはノルボルネン系重合体のガラス転
移温度を20℃以上越え、150℃以下の結晶融点を持
ち、その単味の室温における結晶化度が10%以上、好
ましくは20%以上、さらに好ましくは30%以上であ
り、そのガラス転移温度が0℃未満さらにその数平均分
子量が500〜20万、好ましくは1000〜10万、
さらに好ましくは5000〜5万の範囲にある各種の重
合体から選ばれる。
The crystalline polymer used in the present invention has a temperature exceeding the glass transition temperature of the norbornene polymer constituting the composition, and has a temperature of 200°C.
A crystalline melting point of the following, preferably a crystalline melting point exceeding the glass transition temperature of the norbornene polymer by 10°C or more and 180°C or less, more preferably a crystalline melting point exceeding the glass transition temperature of the norbornene polymer by 20°C or more and 150°C or less. melting point, its single crystallinity at room temperature is 10% or more, preferably 20% or more, more preferably 30% or more, its glass transition temperature is less than 0°C, and its number average molecular weight is 500 to 20%. 10,000, preferably 1,000 to 100,000,
More preferably, it is selected from various polymers in the range of 5,000 to 50,000.

結晶性重合体の結晶融点がノルボルネン系重合体のガラ
ス転移温度以下では、結晶の相分離が十分に進まず、組
成物の形状記憶特性を著しく低下させて好ましくない。
If the crystalline melting point of the crystalline polymer is lower than the glass transition temperature of the norbornene polymer, phase separation of the crystals will not proceed sufficiently and the shape memory properties of the composition will significantly deteriorate, which is undesirable.

結晶性重合体の結晶融点が200℃を越えると、組成物
の加工温度を高くすることが必要になり、その結果加工
性が低下して好ましくない。またその室温における結晶
化度が105未満でも相分離が十分に進まず、組成物の
形状記憶特性が低下して好ましくない。さらに結晶性重
合体のガラス転移温度が0℃以上の場合、その結晶成長
速度が著しく低下し、加工上好ましくない。結晶性重合
体の分子量が500未満では組成物の混合性が低下し、
20万以上では加工時の組成物の、加工性が著しく低下
して好ましくない。
If the crystalline melting point of the crystalline polymer exceeds 200° C., it is necessary to increase the processing temperature of the composition, which is undesirable because the processability decreases. Moreover, if the crystallinity at room temperature is less than 105, phase separation will not proceed sufficiently and the shape memory properties of the composition will deteriorate, which is not preferable. Furthermore, if the glass transition temperature of the crystalline polymer is 0° C. or higher, the crystal growth rate will be significantly reduced, which is unfavorable for processing. When the molecular weight of the crystalline polymer is less than 500, the mixability of the composition decreases,
If it is more than 200,000, the processability of the composition during processing will be significantly reduced, which is not preferable.

結晶性重合体の好ましい例としては、トランスブタジェ
ン重合体、トランスブタジェンスチレンブロック共重合
体、シンジオ−1,2−ブタジエン重合体、トランスイ
ソプレン重合体、ε−カプロラクトン重合体を挙げるこ
とができる。最も好ましい結晶性重合体はトランスブタ
ジェン重合体である。また結晶性重合体はホモ重合体で
あっても、共重合体であっても構わない。
Preferred examples of the crystalline polymer include trans-butadiene polymer, trans-butadiene styrene block copolymer, syndio-1,2-butadiene polymer, trans-isoprene polymer, and ε-caprolactone polymer. . The most preferred crystalline polymer is trans-butadiene polymer. Further, the crystalline polymer may be a homopolymer or a copolymer.

これらの結晶性重合体は単独あるいは2種以上併用して
ノルボルネン系ポリマーと混合される。
These crystalline polymers may be used alone or in combination of two or more and mixed with the norbornene polymer.

本発明の形状記憶性樹脂組成物の重合体成分の組成比は
ノルボルネン重合体100重景部に対して、結晶性重合
体3〜100重合部、好ましくは5〜80重母部さらに
好ましくは10〜50重全部の範囲である。結晶性重合
体の組成比が3重量部未満では加工性の改良効果は十分
ではないし、100重量部を越えると加工性は大幅に向
上するが、形状記憶性能も著しく低下する。
The composition ratio of the polymer components of the shape memory resin composition of the present invention is 3 to 100 polymer parts, preferably 5 to 80 polymer parts, and more preferably 10 polymer parts to 100 polymer parts of the norbornene polymer. ~50 weights. If the composition ratio of the crystalline polymer is less than 3 parts by weight, the effect of improving processability is not sufficient, and if it exceeds 100 parts by weight, processability is greatly improved, but shape memory performance is also significantly reduced.

本発明の形状記憶性樹脂組成物においては、上記の重合
体成分の他に、硬度や可塑性等を調整するために無機充
填剤や可塑剤を配合することができる。また、重合体樹
脂材料に添加する一般的な添加剤である安定剤や顔料等
は本発明の場合でも従来樹脂材料と同様に適宜添加する
ことができる。
In the shape memory resin composition of the present invention, in addition to the above-mentioned polymer components, inorganic fillers and plasticizers can be blended in order to adjust hardness, plasticity, etc. Further, stabilizers, pigments, etc., which are general additives added to polymer resin materials, can be appropriately added in the case of the present invention as well as in conventional resin materials.

使用される無機充填剤の貴は、通常重合体成分100重
曾部当り2〜100重n部、好ましくは5〜30重量部
の範囲である。無機充填剤の例としては、酸化チタン、
炭酸カルシウム、クレー、タルク、マイカ、ベントナイ
ト、シリカ、カーボン等が挙げられる。100重量部を
越える無機充填剤の使用は、得られる樹脂組成物の衝撃
強度や形状記憶特性を著しく低下させて好ましくない。
The amount of the inorganic filler used is usually in the range of 2 to 100 parts by weight, preferably 5 to 30 parts by weight, per 100 parts by weight of the polymer component. Examples of inorganic fillers include titanium oxide,
Examples include calcium carbonate, clay, talc, mica, bentonite, silica, and carbon. The use of more than 100 parts by weight of an inorganic filler is undesirable because it significantly reduces the impact strength and shape memory properties of the resulting resin composition.

使用される可塑剤の量は、通常重合体成分100重量部
当り1〜20重量部の範囲である。可塑剤の例としては
、ジブチルフタレート、ジー (2−エチルヘキシル)
フタレート、ジー (2−エチルヘキシル)アジペート
、ジエチレングリコールジベンゾエート、ブチルステア
レート、ブチルエポキシステアレート、トリー (2−
エチルヘキシル)ホスフェート、各種石油オイル等が挙
げられる。
The amount of plasticizer used usually ranges from 1 to 20 parts by weight per 100 parts by weight of polymer component. Examples of plasticizers include dibutyl phthalate, di(2-ethylhexyl)
Phthalate, di(2-ethylhexyl)adipate, diethylene glycol dibenzoate, butyl stearate, butyl epoxy stearate, tri(2-
Examples include ethylhexyl) phosphate, various petroleum oils, and the like.

本発明の形状記憶性樹脂組成物は、押出機、ニーダ−、
ロール等によって容易に混合することができる。また適
当な溶剤に溶解し、溶液中で混合することもできる。
The shape memory resin composition of the present invention can be used in an extruder, a kneader,
It can be easily mixed using a roll or the like. Alternatively, they can be dissolved in a suitable solvent and mixed in the solution.

このようにして得られる形状記憶性樹脂組成物はその特
長、すなわち優れた形状記憶特性、剛性、強度、耐衝撃
性等の物性上の特長、および射出成形性、押出成形性等
の量産型加工が可能であるという特長を生かし、種々の
樹脂材料としての用途に利用できる。
The shape memory resin composition obtained in this way has the following characteristics: excellent shape memory properties, physical properties such as rigidity, strength, and impact resistance, and mass production processing such as injection moldability and extrusion moldability. It can be used for various resin materials by taking advantage of its ability to

例えば(1〉比較的低温すなわち人膚に触れてまたは手
作業で加工もしくは部分修正が容易であるという特徴を
生かして副木、ギブス等の医療用右部固定材およびスポ
ーツ用各種プロテクター材料、(2)シート状等に押出
成形した後の冷延伸もしくは加熱延伸処理した感熱収縮
フィルムもしくは積層体(ラミネートフィルム)、(3
)射出成形もしくは押出成形等によって円筒状もしくは
各種形状に成形した後、冷延伸することによって延伸拡
張処理した感熱収縮性スリーブ、カップリングデバイス
もしくは電線の集束、絶縁チューブ、(4)低温で一時
的に変形させられた形状から、一定の温度に達すると射
出成形もしくはコンプレッション成形された原形に形状
を回復するという形状記憶特性を生かした自動車バンパ
ー、玩具、人形、造花もしくはそれを利用した感熱セン
サー、(5)成形加工により予め大まかな形状を記憶さ
せた後、熱収縮もしくは形状回復による型表面へのフィ
ツトと人膚に触れての細部の加温加工もしくは修正が容
易であるという特徴を生かした各種形取り材およびかつ
ら用頭部形取り材等に利用できる。
For example, (1) medical right-hand fixation materials such as splints and casts, and various protector materials for sports, taking advantage of the relatively low temperature, which means that they can be easily processed or partially corrected by touching the human skin or by hand; 2) A heat-sensitive shrink film or laminate (laminate film) that has been extruded into a sheet shape and then subjected to cold stretching or hot stretching, (3)
) Heat-sensitive shrinkable sleeves, coupling devices or bundles of electric wires, insulating tubes, which are formed into cylindrical or various shapes by injection molding or extrusion molding, and then cold-stretched to expand them; (4) Temporary at low temperatures; Automobile bumpers, toys, dolls, artificial flowers, or heat-sensitive sensors using them, which take advantage of the shape memory property of recovering the shape from the deformed shape to the original injection molded or compression molded shape when a certain temperature is reached. (5) After memorizing the rough shape in advance through molding, it takes advantage of the characteristics that it is easy to fit to the mold surface by heat shrinkage or shape recovery, and it is easy to heat or modify details by touching the human body. Can be used for various shaping materials and head shaping materials for wigs, etc.

[発明の効果コ 以上詳細に説明したように、本発明はノルボルネン系重
合体の樹脂としての各種の優れた物理的特性、例えば剛
性、強度、耐衝撃性における優れた性質と優れた形状記
憶特性を保持すると共に、さらにその成形、加工性を改
良した形状記憶性樹脂組成物を提供するものである。
[Effects of the Invention] As explained in detail above, the present invention provides various excellent physical properties of norbornene-based polymers as resins, such as excellent properties in stiffness, strength, impact resistance, and excellent shape memory properties. The object of the present invention is to provide a shape-memory resin composition that maintains the properties of the shape-memory resin composition and has improved moldability and processability.

[実 施 例] 以下に実施例を示し、本発明を具体的に説明するが、本
発明の範囲がこれらに限定されるものではない。
[Examples] The present invention will be specifically explained with reference to Examples below, but the scope of the present invention is not limited thereto.

実施例 1〜4 第1表記載のノルボルネン系重合体とトランスブタジェ
ン重合体もしくはε−カプロラクトン重合体とを3.5
インチオーブンロールを用いて150℃で混練りした。
Examples 1 to 4 Norbornene polymers listed in Table 1 and trans-butadiene polymers or ε-caprolactone polymers were mixed at 3.5
The mixture was kneaded at 150°C using an inch oven roll.

得られた組成物を成形温度160℃、成形圧力150k
g/cJで5分間コンプレッション成形することにより
、厚さ2mrnのシート状成形物を得た。
The resulting composition was molded at a molding temperature of 160°C and a molding pressure of 150k.
A sheet-like molded product with a thickness of 2 mrn was obtained by compression molding at g/cJ for 5 minutes.

しかる後に、この成形物を50℃の空気エアーオーブン
中に5分間放置後、延伸ホルダーで100%延伸し、5
0℃のエアーオーブン中で15分放置した。その後、室
温で5分間放冷し、ホルダーより取り外したところ引延
ばされた状態のままで形状が固定された。さらにこのも
のを再度50℃の温水中に5分間浸し、形状回復性能を
永久歪の特性値で評価した。
Thereafter, this molded product was left in an air oven at 50°C for 5 minutes, and then stretched 100% with a stretching holder.
It was left in an air oven at 0°C for 15 minutes. Thereafter, it was left to cool at room temperature for 5 minutes, and when removed from the holder, the shape was fixed in the stretched state. Furthermore, this product was immersed again in hot water at 50° C. for 5 minutes, and the shape recovery performance was evaluated using the characteristic value of permanent deformation.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

この結果から、本発明に係る形状記憶性樹脂組成物が、
ノルボルネン系重合体の形状記憶性能をほとんど損うこ
となく、大幅に改良された加工性を有することが明らか
である。
From this result, it was found that the shape memory resin composition according to the present invention
It is clear that the norbornene polymer has significantly improved processability without substantially impairing the shape memory performance of the norbornene polymer.

(以下余白) 部1表 注(1)フランスCdF社製 N0RSOREXガラス
転移温度35℃、分子量200万以」二(2)  1.
4− トランス結合金率91%、分子ff11.9万 
融点98℃、 ガラス転移温度−90℃のブタジェン重合体(3)ダイ
セル化学工業製 Placcel H−1融点60℃、
ガラス転移温度−60℃、分子量1万のε−カプロラク
トン重合体オープンロール加工性 1:オープンロールに巻きつかない。
(Margins below) Part 1 Table Notes (1) N0RSOREX manufactured by CdF, France Glass transition temperature 35°C, molecular weight 2 million or more 2 (2) 1.
4- Trans-bonded gold rate 91%, molecule ff 119,000
Butadiene polymer with melting point of 98°C and glass transition temperature of -90°C (3) Placel H-1 manufactured by Daicel Chemical Industries, melting point of 60°C,
ε-caprolactone polymer with a glass transition temperature of -60°C and a molecular weight of 10,000 Open roll processability 1: Does not wrap around an open roll.

2:オープンロールに巻きつかないがシート状になる。2: It does not wrap around an open roll, but becomes a sheet.

3:オープンロールに巻きつきシート状になるがバギン
グする。
3: It wraps around an open roll and becomes a sheet, but it is bagged.

4:オープンロールに巻きつきシート状になる。4: Wrap around an open roll to form a sheet.

5:オープンロールに巻きつきシート状になると共にバ
ンクも良好に回る。
5: It wraps around an open roll and becomes a sheet, and the bank also rotates well.

Claims (1)

【特許請求の範囲】 1、ガラス転移温度10℃以上、数平均分子量100万
以上のノルボルネン系重合体100重量部に対して、ノ
ルボルネン系重合体のガラス転移温度を越え、200℃
以下の結晶融点を持ち、かつ常温での結晶化度が10%
以上、ガラス転移温度が0℃未満、数平均分子量が50
0〜20万の範囲の結晶性重合体3〜100重量部を混
合して成る改良された加工性を有するノルボルネン系形
状記憶性樹脂組成物。 2、結晶性重合体が共役ジエン部の1,4−トランス含
率80%以上の共役ジエン単独重合体、共役ジエンと他
の共役ジエンとの共重合体もしくは共役ジエンとビニル
芳香族化合物との共重合体である請求項1記載の形状記
憶性樹脂組成物。 3、共役ジエンが1,3−ブタジエンである請求項2記
載の形状記憶性樹脂組成物。
[Claims] 1. For 100 parts by weight of a norbornene polymer having a glass transition temperature of 10°C or more and a number average molecular weight of 1 million or more,
It has a crystal melting point below and a crystallinity of 10% at room temperature.
or more, the glass transition temperature is less than 0°C, the number average molecular weight is 50
A norbornene-based shape memory resin composition having improved processability and comprising 3 to 100 parts by weight of a crystalline polymer in a range of 0 to 200,000 parts by weight. 2. The crystalline polymer is a conjugated diene homopolymer with a 1,4-trans content of 80% or more in the conjugated diene part, a copolymer of a conjugated diene and another conjugated diene, or a copolymer of a conjugated diene and a vinyl aromatic compound. The shape memory resin composition according to claim 1, which is a copolymer. 3. The shape memory resin composition according to claim 2, wherein the conjugated diene is 1,3-butadiene.
JP17103288A 1988-07-11 1988-07-11 Shape memory resin composition Pending JPH0222354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17103288A JPH0222354A (en) 1988-07-11 1988-07-11 Shape memory resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17103288A JPH0222354A (en) 1988-07-11 1988-07-11 Shape memory resin composition

Publications (1)

Publication Number Publication Date
JPH0222354A true JPH0222354A (en) 1990-01-25

Family

ID=15915825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17103288A Pending JPH0222354A (en) 1988-07-11 1988-07-11 Shape memory resin composition

Country Status (1)

Country Link
JP (1) JPH0222354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199080A (en) * 1995-01-26 1996-08-06 Mitsubishi Cable Ind Ltd Shape-memory composite
JP2011068924A (en) * 2009-09-24 2011-04-07 Jfe Steel Corp Structure for molten iron tilting trough
EP3489278A1 (en) 2017-11-23 2019-05-29 Covestro Deutschland AG High molecular weight polyoxyethylene with deep glass temperature made using the grafting through method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199080A (en) * 1995-01-26 1996-08-06 Mitsubishi Cable Ind Ltd Shape-memory composite
JP2011068924A (en) * 2009-09-24 2011-04-07 Jfe Steel Corp Structure for molten iron tilting trough
EP3489278A1 (en) 2017-11-23 2019-05-29 Covestro Deutschland AG High molecular weight polyoxyethylene with deep glass temperature made using the grafting through method
WO2019101702A1 (en) 2017-11-23 2019-05-31 Covestro Deutschland Ag High molecular weight polyoxyalkylene with low glass transition temperature, produced by the grafting through method

Similar Documents

Publication Publication Date Title
KR101235976B1 (en) Styrol/Butadiene Block Copolymer Mixtures for Shrink Films
JPH0784552B2 (en) Shape memory resin composition
JPH0222354A (en) Shape memory resin composition
JPH08225712A (en) Block copolymer composition and its heat-shrinkable film
JPH0764966B2 (en) Shape memory resin material
JP2972913B2 (en) Shape memory method and shape restoration method for biodegradable shape memory polymer molded article
Chowdhury et al. Structure, shrinkability and thermal property correlations of ethylene vinyl acetate (EVA)/carboxylated nitrile rubber (XNBR) polymer blends
JP2698992B2 (en) Polystyrene heat shrinkable film
JPS59184620A (en) Thermocontracting molded article
JP2938102B2 (en) Shape memory polymer resin, resin composition and shape memory molded article
JPH0255218B2 (en)
JPH0767744B2 (en) Block copolymer uniaxially stretched film, sheet or tube
JPH0557285B2 (en)
JPH05147105A (en) Article molded out of shape-memorizing polymer material composition, shape-memorizable polymer material and usage thereof
JPH0796597B2 (en) Method for manufacturing shape memory resin molded body
JPH06104733B2 (en) Breathable film and manufacturing method thereof
JPH0558026B2 (en)
JPH024412B2 (en)
JPS6354460A (en) Norbornene polymer composition
JPH02269129A (en) Heat shrinkable molded article
JPH0292944A (en) Matte polypropylene-based sheet
JPH0473698B2 (en)
JPH11263853A (en) Heat-shrinkable film
JPH01188323A (en) Manufacture of shape memory polymer molded body
JPH0214186B2 (en)