JPH0222319B2 - - Google Patents

Info

Publication number
JPH0222319B2
JPH0222319B2 JP12652885A JP12652885A JPH0222319B2 JP H0222319 B2 JPH0222319 B2 JP H0222319B2 JP 12652885 A JP12652885 A JP 12652885A JP 12652885 A JP12652885 A JP 12652885A JP H0222319 B2 JPH0222319 B2 JP H0222319B2
Authority
JP
Japan
Prior art keywords
refrigerant flow
flow path
airflow
flat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12652885A
Other languages
Japanese (ja)
Other versions
JPS61285395A (en
Inventor
Mitsuhiro Ikoma
Yoshiaki Yamamoto
Tsutomu Harada
Ryutaro Akutagawa
Isao Takeshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12652885A priority Critical patent/JPS61285395A/en
Publication of JPS61285395A publication Critical patent/JPS61285395A/en
Publication of JPH0222319B2 publication Critical patent/JPH0222319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は主として冷蔵庫に用いられる蒸発器用
熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an evaporator heat exchanger mainly used in refrigerators.

従来の技術 従来のこの種の熱交換器は、例えば実開昭57−
120889号公報に示されているように、第4図のよ
うな構造になつていた。
Conventional technology A conventional heat exchanger of this type is, for example,
As shown in Publication No. 120889, it had a structure as shown in Figure 4.

すなわち、多数並列されたフイン1と、これら
フイン1に直交するように貫通された冷媒管2よ
り構成され、矢印3の方向に送風される空気と、
冷媒管2内を流通する冷媒との熱交換を行うよう
になつている。
That is, it is composed of a large number of fins 1 arranged in parallel, and refrigerant pipes 2 that pass through the fins 1 perpendicularly, and the air is blown in the direction of the arrow 3.
Heat exchange is performed with the refrigerant flowing in the refrigerant pipe 2.

発明が解決しようとする問題点 しかし、そのように気流方向の冷媒管の段数が
多い熱交換器では、冷媒管の後流側にできる死水
域のためフインが有効に使用されないという問題
があつた。
Problems to be Solved by the Invention However, in a heat exchanger with such a large number of stages of refrigerant pipes in the airflow direction, there was a problem in that the fins were not used effectively because of the dead area formed on the downstream side of the refrigerant pipes. .

すなわち、第5図に示すように、各冷媒管2の
後流側には死水域4が形成される。従つて、フイ
ン1のこの部分に相当する部分は、非常に熱伝達
が悪く、有効に作用しないため、伝熱性能も低い
ものであつた。また冷蔵庫用蒸発器のように、高
湿気流中で使用される場合には、着霜現象が生じ
る。この着霜現象も熱伝達の良い部分では着霜量
が多く、熱伝達の悪い部分では着霜量も少ない。
よつて、フイン1の死水域4に相当する部分と、
その他の部分での着霜量の差が大きくなる。その
ため均一に着霜する場合に比べて、短時間で着霜
量が多い部分で空気通路が閉塞され、運転を中止
して除霜する必要が生じるものであつた。
That is, as shown in FIG. 5, a dead area 4 is formed on the downstream side of each refrigerant pipe 2. Therefore, the portion of the fin 1 corresponding to this portion has very poor heat transfer and does not work effectively, and therefore has low heat transfer performance. Furthermore, when used in a high humidity stream, such as in a refrigerator evaporator, frost formation occurs. In this frosting phenomenon, the amount of frost is large in areas with good heat transfer, and the amount of frost is small in areas with poor heat transfer.
Therefore, the part corresponding to the dead area 4 of the fin 1,
Differences in the amount of frost in other parts become larger. Therefore, compared to the case where frost forms uniformly, the air passage becomes blocked in areas where a large amount of frost forms in a short period of time, making it necessary to stop operation and defrost.

また、従来のように冷媒管2にフイン1を固定
する構造のものでは、気流方向の冷媒管の段数以
上に、気流方向にフインを分断して、フイン間隔
を変えたり、高性能化あるいは着霜時の性能向上
を図ることができなかつた。
In addition, with the conventional structure in which the fins 1 are fixed to the refrigerant pipes 2, it is possible to divide the fins in the airflow direction more than the number of stages of the refrigerant pipes in the airflow direction, change the fin spacing, improve performance, or It was not possible to improve performance during frost.

そこで、本発明は冷媒流路の後流側に死水域が
形成されるのを防止すると共に、フインの分断等
により高性能化を図れる熱交換器構造を提供する
ものである。
Therefore, the present invention provides a heat exchanger structure that prevents the formation of a dead area on the downstream side of a refrigerant flow path and that can improve performance by dividing the fins or the like.

問題点を解決するための手段 本発明は上記問題点を解決するため、複数枚の
平板状部材を適当な間隔をもつて積層して平板状
冷媒流路を構成し、上記平板状冷媒流路を気流方
向に平行に配置すると共に、上記平板状冷媒流路
の外壁に、気流の下流側ほど間隔が狭く、かつ気
流方向の寸法が長い複数のフイン部材を、気流方
向に平行に取り付けたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention includes a plurality of flat refrigerant flow channels laminated at appropriate intervals, and a plurality of flat refrigerant flow channels. are arranged parallel to the airflow direction, and a plurality of fin members are attached to the outer wall of the flat refrigerant flow path in parallel to the airflow direction, the spacing being narrower toward the downstream side of the airflow, and the dimension in the airflow direction being longer. It is.

作 用 本発明は上記した構成により、冷媒流路が平板
状となり、しかも気流方向に平行の配置されてい
ることによつて、フインには死水域の悪影響もな
く、また、着霜現象を考慮したフイン配置を採用
したため、空気通路が閉塞されにくく、長時間の
運転継続が可能である。
Effects According to the present invention, the refrigerant flow path has a flat plate shape and is arranged parallel to the air flow direction, so that there is no negative effect of dead areas on the fins, and the frosting phenomenon is taken into account. Adopting a fin arrangement that prevents air passages from becoming clogged, it is possible to continue operation for long periods of time.

実施例 以下、本発明の一実施例を添付図面に基づいて
説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明の熱交換器の構成を示す平面
図、第2図は正面図である。両面において、5は
平板状冷媒流路で、気流方向に平行に配置されて
いる。6はフイン部材であり、気流の下流側ほど
間隔が狭く、かつ気流方向の寸法が長くなるよう
分断された複数のフイン部材6a,6b,6c,
6dより構成されて、平板状冷媒流路5の外壁
に、気流方向とほぼ平行となるよう取り付けられ
ている。また、7,8は平板状冷媒流路5に接続
された入口管および出口管である。なお、矢印9
は気流方向、矢印10は冷媒の流れ方向を示して
いる。
FIG. 1 is a plan view showing the structure of the heat exchanger of the present invention, and FIG. 2 is a front view. On both sides, reference numeral 5 denotes a flat refrigerant flow path, which is arranged parallel to the airflow direction. Reference numeral 6 denotes a fin member, which includes a plurality of fin members 6a, 6b, 6c, which are divided such that the distance is narrower toward the downstream side of the airflow, and the dimension in the airflow direction becomes longer.
6d, and is attached to the outer wall of the flat refrigerant flow path 5 so as to be substantially parallel to the airflow direction. Further, 7 and 8 are an inlet pipe and an outlet pipe connected to the flat refrigerant flow path 5. In addition, arrow 9
indicates the airflow direction, and arrow 10 indicates the flow direction of the refrigerant.

第3図は、平板状冷媒流路5を構成する平板状
部材の分解斜視図であり、冷媒流路となるスリツ
ト11を複数本設けた流路部材12に、上記複数
のスリツト11を互いに連通させ、しかも、冷媒
の入口管7、出口管8を取り付けるためのヘツダ
ー13を設けたヘツダー部材14を積層し、さら
に、これらの上下両面に冷媒流路外壁となる外壁
部材15を積層し一体することにより、平板状冷
媒流路5を構成している。
FIG. 3 is an exploded perspective view of a flat member constituting the flat refrigerant flow path 5, in which a flow path member 12 is provided with a plurality of slits 11 serving as refrigerant flow paths, and the plurality of slits 11 are connected to each other. In addition, a header member 14 provided with a header 13 for attaching the refrigerant inlet pipe 7 and outlet pipe 8 is laminated, and furthermore, outer wall members 15 serving as outer walls of the refrigerant flow path are laminated and integrated on both upper and lower surfaces thereof. This constitutes a flat refrigerant flow path 5.

このように構成された熱交換器において、気流
は平板状冷媒流路5に沿つて、しかも、フイン部
材6の間をスムーズに流動しながら、冷媒入口管
7から入り、ヘツダー13で分流され、スリツト
11内を気流方向と対向して流れる冷媒と、熱交
換を行う。従つて、冷媒流路の死水域の悪影響が
フインに及ぶこともなく、フインを有効に活用し
て伝熱性能を高くすることができる。
In the heat exchanger configured in this manner, the airflow enters from the refrigerant inlet pipe 7 along the flat refrigerant flow path 5 and smoothly flows between the fin members 6, and is divided by the header 13. Heat exchange is performed with the refrigerant flowing in the slit 11 opposite to the airflow direction. Therefore, the fins are not adversely affected by the dead area of the refrigerant flow path, and the fins can be effectively utilized to improve heat transfer performance.

また、単一平面上の流れとみなせるフイン間隔
の広い部分では、流れ方向の寸法を短くして、平
均熱伝達率の向上を図り、平行平板間の流れに近
い、フイン間の狭い部分では、流れ方向の寸法を
長くして、伝熱面積の拡大を図つているため、着
霜現象による気流通路の閉塞を防止し、かつ、高
性能化を実現しているものである。
In addition, in areas with wide fin spacing that can be regarded as flow on a single plane, the dimension in the flow direction is shortened to improve the average heat transfer coefficient, and in narrow areas between fins that are similar to flow between parallel plates, Since the size in the flow direction is increased to increase the heat transfer area, the airflow passage is prevented from being blocked by frost formation, and high performance is achieved.

発明の効果 本発明は、複数枚の平板状部材を適当な間隔を
もつて積層して平板状冷媒流路を構成し、上記平
板状冷媒流路を、気流方向に平行に配置すると共
に、上記平板状冷媒流路の外壁に、気流の下流側
ほど間隔が狭く、かつ、気流方向の寸法が長い複
数のフイン部材を気流方向に平行に取り付けたも
のであるから、冷媒流路の死水域の悪影響がフイ
ンに及ぶこともなく、フインの平均熱伝達率の向
上と、伝熱面積の拡大により、着霜現象による気
流通路の閉塞防止と、伝熱性能の向上を同時に実
現できるものである。また、冷媒流路を薄い平板
状とするため、気流側の通風抵抗も小さくなるな
ど、実用上、多大な効果を発揮するものである。
Effects of the Invention The present invention comprises a plurality of plate-shaped refrigerant flow paths stacked at appropriate intervals, and the flat refrigerant flow paths are arranged parallel to the airflow direction, and Since a plurality of fin members are attached to the outer wall of the flat refrigerant flow path in parallel to the air flow direction, the spacing is narrower toward the downstream side of the air flow, and the dimensions in the air flow direction are longer. By improving the average heat transfer coefficient of the fins and expanding the heat transfer area without any adverse effects on the fins, it is possible to simultaneously prevent airflow passages from being blocked due to frost formation and improve heat transfer performance. Furthermore, since the refrigerant flow path is formed into a thin flat plate, the ventilation resistance on the airflow side is also reduced, which provides great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱交換器の構成を
示す平面図、第2図は同正面図、第3図は平板状
冷媒流路の分解斜視図、第4図は従来の熱交換器
を示す構成図、第5図は同部分図である。 5……平板状冷媒流路、6,6a,6b,6
c,6d……フイン部材、11……スリツト、1
2……流路部材、13……ヘツダー、14……ヘ
ツダー部材、15……外壁部材。
Fig. 1 is a plan view showing the configuration of a heat exchanger according to an embodiment of the present invention, Fig. 2 is a front view thereof, Fig. 3 is an exploded perspective view of a flat refrigerant flow path, and Fig. 4 is a conventional heat exchanger. A block diagram showing the exchanger, and FIG. 5 is a partial view of the same. 5... Flat refrigerant channel, 6, 6a, 6b, 6
c, 6d...Fin member, 11...Slit, 1
2... Channel member, 13... Header, 14... Header member, 15... Outer wall member.

Claims (1)

【特許請求の範囲】[Claims] 1 複数枚の平板状部材を適当な間隔をもつて積
層して平板状冷媒流路を構成し、上記平板状冷媒
流路を、気流方向に平行に配置すると共に、上記
平板状冷媒流路の外壁に、気流の下流側ほど間隔
が狭く、かつ気流方向の寸法が長い複数のフイン
部材を、気流方向に平行に取り付けた熱交換器。
1. A plurality of plate-shaped refrigerant flow paths are stacked at appropriate intervals to form a flat refrigerant flow path, and the flat refrigerant flow path is arranged parallel to the airflow direction, and the flat refrigerant flow path is arranged parallel to the air flow direction. A heat exchanger in which a plurality of fin members are attached to an outer wall in parallel to the airflow direction, and the spacing is narrower toward the downstream side of the airflow, and the dimensions are longer in the airflow direction.
JP12652885A 1985-06-11 1985-06-11 Heat exchanger Granted JPS61285395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12652885A JPS61285395A (en) 1985-06-11 1985-06-11 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12652885A JPS61285395A (en) 1985-06-11 1985-06-11 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS61285395A JPS61285395A (en) 1986-12-16
JPH0222319B2 true JPH0222319B2 (en) 1990-05-18

Family

ID=14937432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12652885A Granted JPS61285395A (en) 1985-06-11 1985-06-11 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61285395A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608552A (en) * 2018-06-15 2019-12-24 杭州三花微通道换热器有限公司 Heat exchange system
JP7452672B2 (en) 2020-08-24 2024-03-19 富士電機株式会社 fin tube heat exchanger

Also Published As

Publication number Publication date
JPS61285395A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
JP2002130988A (en) Laminated heat-exchanger
KR100220723B1 (en) Heat exchanger for air conditioner
JPH0222319B2 (en)
JPH10332162A (en) Heat-exchanger
JPS62172192A (en) Heat exchanger
JPH0252200B2 (en)
JPS6324390Y2 (en)
JPH0335591B2 (en)
JPH025326Y2 (en)
JPS633181A (en) Finned heat exchanger
JPS629182A (en) Heat exchanger
JP2001004291A (en) Heat exchanger and method for manufacturing same
JPH0275897A (en) Heat transfer fan
JPH10253278A (en) Finned heat exchanger
JPH0713552B2 (en) Refrigerator evaporator
JPS6219694A (en) Finned heat exchanger
JP2730649B2 (en) Heat exchanger
JPH033825Y2 (en)
JPS6338892A (en) Fin tube type heat exchanger
JPH0612230B2 (en) Heat exchanger
JPH0689995B2 (en) Heat exchanger with fins
JPH0749247Y2 (en) Fin tube heat exchanger
JP2000266486A (en) Heat exchanger
JP3738404B2 (en) Heat exchanger for air conditioning
JPS61243291A (en) Finned heat exchanger