JPH0222289B2 - - Google Patents

Info

Publication number
JPH0222289B2
JPH0222289B2 JP57228271A JP22827182A JPH0222289B2 JP H0222289 B2 JPH0222289 B2 JP H0222289B2 JP 57228271 A JP57228271 A JP 57228271A JP 22827182 A JP22827182 A JP 22827182A JP H0222289 B2 JPH0222289 B2 JP H0222289B2
Authority
JP
Japan
Prior art keywords
pulverized fuel
burner
solid pulverized
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228271A
Other languages
Japanese (ja)
Other versions
JPS59122805A (en
Inventor
Masumi Nakagawa
Tadayoshi Nakamura
Makoto Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP22827182A priority Critical patent/JPS59122805A/en
Publication of JPS59122805A publication Critical patent/JPS59122805A/en
Publication of JPH0222289B2 publication Critical patent/JPH0222289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus

Description

【発明の詳細な説明】 本発明は、微粉炭、コークス粉等の固体微粉燃
料の燃焼方法の改良およびその装置に関する。 従来の固体微粉燃料バーナは第1図に示すよう
に固体微粉燃料とその輪送用一次空気の混合体1
を円形、角形などの断面の固体微粉燃料バーナ2
の噴出口3から噴出させ、燃焼室内において円錐
形、角錐形などの固体微粉燃料の吹込み噴流4を
作り、この噴流4の外側から二次空気5を供給し
て、噴流4中に二次空気5を拡散せしめて固体微
粉燃料を燃焼させる形式が一般である。すなわち
固体微粉燃料と一次空気との混合体1を炉内に高
速で噴出させて混合体の吹込み噴流4を形成さ
せ、この噴流4中にさらに二次空気5を拡散させ
て固体微粉燃料を燃焼させる燃焼方法が基本であ
る。 その変形として、第2図に示すようにバーナ2
の中心部に高圧一次空気を噴出させる空気噴出口
6を設け、固体微粉燃料と空気との混合体1に図
示のような中心部を欠く噴流4を形成させこの噴
流4の外側にさらに一次空気の噴出口7を設けて
固体微粉燃料を燃焼させる固体微粉燃料バーナを
用いた燃焼方法も知られており、上記混合体を噴
出させる固体微粉燃料噴出口3、一次空気噴出口
6,7には流れに旋回流を与えるためそれぞれ旋
回翼を取り付け固体微粉燃料と空気との接触混合
を高めるようにした燃焼方法も知られている。 以下、セメント焼成用ロータリーキルンにおけ
る固体微粉燃料の燃焼方法とその装置を例にあげ
て詳細に説明する。 セメント焼成用ロータリーキルンにおいて固体
微粉燃料を燃焼させる場合には、キルン内に吹込
まれた固体微粉燃料は焼成帯を通過するまでには
未燃分を残さず完全燃焼させる必要があるほか、
長大なキルンに対しバーナ炎を一定の長さ以下と
しいわゆる焼成帯を形成させてクリンカー生成反
応の最終段階を終了させなければならず、特に仮
焼炉付きのサスペンシヨンプレヒーターから仮焼
度の高い、例えば脱炭酸が100%近くに達した原
料がキルンに供給される場合は、キルンに入る原
料の仮焼度が高くない場合に比し、より短炎で燃
焼させることが要求される。またキルン内におい
て焼成帯の位置を多少前後に移す、すなわち、い
わゆる焼点の位置をキルン内で前後に移動するた
めバーナ炎の長さを調節する必要もある。 以上のように、セメント焼成用ロータリーキル
ンにおいては、固体微粉燃料を高速度で燃焼を完
結させて、クリンカー鉱物生成のため安定した燃
焼状態を形成維持することが要請される。固体微
粉燃料を微粉燃料にしてバーナに吹込むのがそも
そも上記の要請に応えるものであり、固体微粉燃
料噴出口から固体微粉燃料と一次空気との混合体
を高速で炉内に吹込み、これに旋回流を与え、ク
リンカークーラーからの高温空気をこれに供給す
るなどの方法ないし手段はこの要請に基づくもの
である。 しかし、従来の固体微粉燃料の燃焼方法は上記
要請に対して未だ十分とは言い難く、本発明者ら
はこの点に着目して種々研究の結果、本発明を完
成した。本発明は、固体微粉燃料の燃焼速度を従
来よりもさらに早め、バーナ炎を短くすることを
目的とし、一方一次空気(冷風)を減少してこれ
を800〜900℃の高温の二次空気と置きかえ、燃焼
効率と熱効率とを高めた燃焼方法を提供するもの
である。なお、本発明では、固体微粉燃料の搬送
用その他バーナを通る空気を一次空気、バーナを
通らない燃焼用空気を二次空気という。 本発明の燃焼方法は石炭に限らずコークス粉な
どの固体微粉燃料の燃焼に適用して著しい効果を
奏するが、さらにこの技術思想は、ガス燃料、液
体燃料にも適用できその効果を発揮するものであ
る。 本発明方法の要旨とするところは、固体微粉燃
料と一次空気との混合物を燃焼室内に吹込み、該
混合体と高温二次空気とを相互に拡散混合させて
固体微粉燃料を燃焼させる方法において、バーナ
の吹込端面における流動抵抗に差を設けて固体微
粉燃料の密度分布を不均一化することにより、固
体微粉燃料の吹込み噴流の横断面における燃料密
度分布を不均一にし、燃焼速度を高めて短炎を形
成させることを特徴とする固体微粉燃料の燃焼方
法にある。 本発明方法は基本的には固体微粉燃料と一次空
気との混合物を燃焼室内に高速で吹込み錐体状の
噴流を形成させ、この噴流に高温の二次空気を拡
散混合させて固体微粉燃料を燃焼させるものであ
る。本発明方法は、前記混合体が形成する吹込み
噴流の一部分に注目すれば固体微粉燃料と燃焼用
空気(一次、二次空気の合計)との比、すなわち
固気比が低く、吹込み噴流内の他の部分に注目す
ればここでの固気比が高くなるように固体微粉燃
料を吹き込む方法であつて、このようにすれば、
バーナの吹込端面から均一な密度分布で吹き込ま
れた固体微粉燃料の分布が吹込み噴流の断面にお
いて一様である従前の燃焼方法に比し、固体微粉
燃料全体の燃焼が速やかに完了するという事実を
本発明者らが見出したことに基づく。 固体微粉燃料と二次空気との混合体が形成する
噴流の一部分において、固気比が低い部分は着火
後速やかに燃焼する。この固気比が低い部分は噴
流の周辺から供給される高温の二次空気を取込ん
で炎の一部を形成するが、燃焼に際し乱気流を生
じておりその作用により噴流の他の部分すなわち
固気比の高い部分への二次空気の取込みの時期を
早め、かつその取込み速度も速くする。従つて全
固体微粉燃料の燃焼速度は全体として従前の方法
よりも速くなる。 固体微粉燃料と一次空気との混合体が燃焼室で
形成する噴流の一部分において速やかに燃焼が起
り、その結果噴流周辺からの高温二次空気が早い
時期に噴流内へ拡散を開始し、かつその拡散速度
が大である本発明の燃焼方法においては、前記し
たように全体の燃焼完了が速くなるが、さらに混
合体を形成する空気の量、換言すれば固体微粉燃
料の搬送用その他の一次空気の量を従来の方法よ
りも減少することができる。従来と同量の一次空
気量で本発明の方法を実施すれば、炎の長さは従
前より短くなるし、前記一次空気を減少させても
なお従来と同一長さの炎を形成させることができ
る。 以上のように本発明方法によれば固体微粉燃料
を効率よく速やかに燃焼させ、燃焼効率、熱効率
を高めることができる。 次に本発明方法を簡易に実現することのできる
燃焼装置について図面により説明する。 第3図、第4図は本発明方法を好適に実施する
に適した固体微粉燃料バーナ10の一実施例を示
し、第3図は縦断面図、第4図は第3図のA−A
矢視図である。 実施例のバーナ10は、中心部の固体微粉燃料
着火用の重油バーナの挿入路11と、その外側に
位置し空気のみを通す一次空気通路12と、その
外側に設けられ固体微粉燃料と搬送用空気との混
合体を通す通路13と、さらにその外側を取り巻
いて空気のみを通す一次空気通路14とからなつ
ている。 挿入路11、通路12,13,14にはそれぞ
れ燃料や空気の供給口11a,12a,13a,
14aが連通して設けられている。 バーナ中心部分の重油バーナガン挿入路11は
固体微粉燃料の着火時にのみ重油バーナガンを挿
入するために使用するものであつて、着火後はガ
ンを引抜いて塞いでおくか、または供給口11a
から一次空気を送る通路として使用することもで
きる。 重油バーナガン挿入路11の外側に一次空気の
通路12があり、その先端部分には通路を絞るた
めのテーパ12cがつけてあり、また旋回翼12
bが取付けてある。通路12からは一次空気が旋
回運動を与えられて燃焼室内へ吹込まれる。 一次空気通路12の外側に固体微粉燃料と搬送
用空気との混合体の通路すなわち燃料輪送路13
があり、燃料輪送路13の外側は直進空気の通路
14が取り巻いている。 燃料輪送路13には先端に近い部分の通路にテ
ーパ13cが付してある。 また燃料輪送路13の先端に近い部分には拡散
翼13bを備えている。 拡散翼13bは固体微粉燃料と一次空気との混
合体と二次空気とを拡散混合させる作用をなすも
のである。 拡散翼13bはスパイラル形状をなし、第3図
の上半部分と下半部分とではそのスパイラルのピ
ツチが同じでなく、上半部分の拡散翼はピツチが
大きく、下半部分の拡散翼はピツチが小さく、ま
た燃料輪送路13はバーナ先端部において、上半
部分では開口面積が広く、下半部分では開口面積
が狭くなつている。すなわち本発明装置は固体微
粉燃料吹込みバーナにおいて、燃料輪送路の先端
部に相互に分割されかつ開口面積に差を設けた噴
出口を配設したことを特徴とするバーナである。 拡散翼13bで分割されている燃料輪送路13
の各分割路は、バーナ先端部において開口面積が
第3図の上半部分で大きく下半部分で小さくなつ
ており、そこに設けられた複数個の拡散翼13b
のピツチが非同一であるからバーナの上半部分と
下半部分とは混合体の流動にとつて抵抗が異な
る。なお、ピツチが同一であつても断面における
開口面積を変えることによつてもほぼ同様な効果
が得られる。 固体微粉燃料と搬送用空気との混合体をバーナ
10に供給すると前記したように燃料輪送路には
流動抵抗の差があるから、第4図の上半部分から
多量の混合体、従つて多量の固体微粉燃料が燃焼
室内に吹き込まれ、下半部分からは相対的に少量
の固体微粉燃料が吹き込まれる。燃焼室内に吹込
まれた噴流の横断面における固体微粉燃料の分布
は不均一であつて、噴流の下半部分では固体微粉
燃料量と燃焼用空気量との比、すなわち固気比が
低く、噴流の上半部分では固気比が高くなつてい
る。 吹込み噴流は下半部分では、第一に固気比が低
いので固体微粉燃料の着火が速く、第二に燃焼が
始まつたことにより乱気流を生ずるので高温の二
次空気の取込みすなわち二次空気の拡散および固
体微粉燃料との混合が速く行われ、第三に拡散翼
13bにより混合体に与えられる旋回流も上半部
分のそれよりも強いこともあづかつて、結局固体
微粉燃料の早期着火が行われ燃焼速度が大となり
燃焼完結時間が短くなる。 吹込み噴流の下半部分での上記乱気流は噴流の
上半部分にも影響を及ぼし、上半部分にとつても
二次空気の取込みが早まり、ここでも燃焼が早期
に完結し、結局従来のバーナに比べて本発明のバ
ーナでは全固体微粉燃料の燃焼速度が速くなる。
その結果本発明のバーナでは短炎が得られる。 以上の説明ではバーナを第4図に示す姿勢にお
いて上半部分、下半部分と表現したが、バーナの
使用状態において天地を第4図と同一にして使用
する必要はなく、第4図を任意角度回転させた態
様でも効果は同じである。 第4図では固体微粉燃料の噴出口の配列が中心
角θで180゜の範囲に配設されているものを示して
いるが、上記噴出口の配列を中心角で160゜〜200゜
の範囲に配設しても同様の効果がある。また、上
記噴出口の配列を円周方向に多数分割したもので
もよい。 上記実施例は本発明方法を最も好適に容易に実
施することのできるバーナであるが、本発明方法
はこれと異なる燃焼装置でも実現できることはも
ちろんである。例えば混合体の通路13に仕切り
を入れて複数分割しこれに異なる量の固体微粉燃
料を供給して吹込み噴流の錐体内の固気比に差を
つくるようにする。拡散翼は前記のようにピツチ
を変化を与えてもよく同じピツチのものを配設し
てもよい。またこの分割された通路13の各通路
の搬送空気量は同量でも多少異なつてもよい。ま
たバーナに送入する前に固体微粉燃料の濃度の異
なる混合体をつくり、通路13の分割された各通
路または別形式のバーナ若しくは別体のバーナに
それぞれ供給し吹込み噴流中において固気比に差
がつくように供給する装置によつても本発明方法
を実施することができよう。 本発明方法は固体微粉燃料の吹込み噴流の横断
面における燃料密度分布に差を付して局部的に燃
焼速度を高め、その結果噴流全体の燃焼速度を高
めて一次空気を大幅に減少させるので、揮発分の
極めて少ない石炭またはコークス微粉などを燃焼
させる場合でも容易に早期に完全燃焼させ短炎を
得ることができ、安価な燃料を用いて完全燃焼が
可能となり経済的効果が大である。また一次空気
量の調整によつて火炎の長さを従来よりも広範囲
に調整でき、さらに、一次空気(冷風)を著しく
減少させることができるので、冷風の減少分を高
温の二次空気と置換することによつて熱効率を高
めることができる。 さらに従来の燃焼方法では短炎を得るためには
固体燃料を微粉砕することが必要であり、例えば
石炭燃焼の場合、88μm篩網上残分が10〜20%程
度まで微粉砕していたが、本発明方法では、同一
炭種で88μm篩網上残分を30〜40%まで上げるこ
とが可能となつた。このため粉砕動力節減の面で
も著しい効果がある。 また本発明の燃焼装置はバーナに僅かな変化を
施すことにより上記方法を容易に実施することが
でき燃焼効率の向上、燃料原価の低減、熱効率の
向上、燃料粉砕動力の節減などのすぐれた効果を
奏し、その工業上の価値は特に大きい。 本発明のバーナをセメント焼成に用いる場合に
は短炎が得られるので最近のようにセメント原料
が予熱機でほぼ100%近くまで仮焼(脱炭酸)さ
れてロータリーキルンに供給される場合はロータ
リーキルンの長さを従来より20%程度短くするこ
とができる。 実施例 第3図、第4図に示すバーナをセメント焼成用
ロータリーキルンに使用し、噴流中の微粉炭の不
均一度をバーナ上半部分と下半部分の微粉炭量の
比が2:1となるようにし、本発明方法による固
体微粉燃料の燃焼を行つた。その結果を従来のバ
ーナによる焼成(比較例)と比較すれば第1表の
通りである。すなわち (1) 固体微粉燃料の単位セメントクリンカー生産
量あたりの使用量、すなわち燃料原単位は従来
より約4%低下した。 (2) 微粉炭の燃焼効果が向上し未燃分はなくなつ
た。従来の燃焼方法ではキルン尻において1000
〜2000ppmのCOが検出されたが、本発明方法
ではCOは全く検出しない。 (3) 理論空気量に対する固体微粉燃料搬送用一次
空気は全空気量の3〜4%程度と少量でよく、
通路12,13,14を通る全一次空気量は従
来12〜15%であつたが8〜11%に減少した。減
少した冷空気はクリンカークーラーからの高温
(800〜900℃)の二次空気に置換されるからキ
ルン全系にとつて熱的に有利となる。 (4) 一次空気量が従来のバーナより少量となつて
もなお、燃焼室内で燃焼する噴流への高温二次
空気の拡散が速いから結局は短炎が得られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the combustion method of solid pulverized fuel such as pulverized coal and coke powder, and an apparatus therefor. As shown in Fig. 1, a conventional solid pulverized fuel burner burns a mixture 1 of solid pulverized fuel and primary air for transporting the solid pulverized fuel.
A solid pulverized fuel burner with a circular or square cross section 2
from the jet nozzle 3 to create a jet 4 of solid pulverized fuel in the shape of a cone or pyramid in the combustion chamber.Secondary air 5 is supplied from the outside of this jet 4, and the A common method is to diffuse air 5 and burn solid pulverized fuel. That is, a mixture 1 of solid pulverized fuel and primary air is injected into the furnace at high speed to form a blowing jet 4 of the mixture, and secondary air 5 is further diffused into this jet 4 to form solid pulverized fuel. The basic combustion method is to burn it. As a modification, as shown in Fig. 2, the burner 2
An air jet port 6 for spouting high-pressure primary air is provided in the center of the air jet 4, and a jet 4 having a central part as shown in the figure is formed in the mixture 1 of solid pulverized fuel and air. A combustion method using a solid pulverized fuel burner is also known, in which a solid pulverized fuel burner is provided with a jet nozzle 7 and a solid pulverized fuel burner is provided. A combustion method is also known in which swirling vanes are attached to each of the fuels to give a swirling flow to the fuel, thereby increasing contact and mixing between the solid pulverized fuel and the air. Hereinafter, a method for burning solid pulverized fuel in a rotary kiln for firing cement and an apparatus thereof will be described in detail by way of example. When burning solid pulverized fuel in a rotary kiln for cement firing, the solid pulverized fuel injected into the kiln must be completely combusted without leaving any unburned matter before it passes through the firing zone.
In a long kiln, the burner flame must be kept to a certain length or less to form a so-called firing zone to complete the final stage of the clinker production reaction. When feedstock with high decarboxylation, for example close to 100%, is fed to the kiln, it is required to burn it with a shorter flame than when the feedstock entering the kiln does not have a high degree of calcination. Furthermore, it is also necessary to adjust the length of the burner flame in order to move the position of the firing zone back and forth somewhat within the kiln, that is, to move the position of the so-called burning point back and forth within the kiln. As described above, in a rotary kiln for firing cement, it is required to complete the combustion of solid pulverized fuel at a high speed to form and maintain a stable combustion state in order to generate clinker minerals. In the first place, the above request is met by turning solid pulverized fuel into pulverized fuel and injecting it into the burner.The mixture of solid pulverized fuel and primary air is blown into the furnace at high speed from the solid pulverized fuel jet. Methods and means such as giving a swirling flow to the clinker cooler and supplying it with high-temperature air from a clinker cooler are based on this requirement. However, conventional combustion methods for solid pulverized fuel are still far from being sufficient to meet the above requirements, and the present inventors have focused on this point and have completed the present invention as a result of various studies. The purpose of the present invention is to further accelerate the combustion speed of solid pulverized fuel and shorten the burner flame, while reducing the primary air (cold air) and replacing it with secondary air at a high temperature of 800 to 900°C. The present invention provides a combustion method with improved combustion efficiency and thermal efficiency. In the present invention, the air used for conveying the solid pulverized fuel and which passes through the burner is referred to as primary air, and the combustion air that does not pass through the burner is referred to as secondary air. The combustion method of the present invention can be applied not only to coal but also to the combustion of solid pulverized fuels such as coke powder, and has a remarkable effect. Furthermore, this technical idea can also be applied to gas fuels and liquid fuels and exhibits its effects. It is. The gist of the method of the present invention is that a mixture of solid pulverized fuel and primary air is blown into a combustion chamber, and the mixture and high-temperature secondary air are mutually diffused and mixed to burn the solid pulverized fuel. By creating a difference in flow resistance at the blowing end face of the burner and making the density distribution of the solid pulverized fuel uneven, the fuel density distribution in the cross section of the injection jet of the solid pulverized fuel is made uneven and the combustion rate is increased. A method of burning a solid pulverized fuel is characterized by forming a short flame. The method of the present invention basically involves blowing a mixture of solid pulverized fuel and primary air into a combustion chamber at high speed to form a cone-shaped jet, and then diffusing and mixing high-temperature secondary air into this jet to fuel the solid pulverized fuel. It burns. In the method of the present invention, if we focus on a part of the blown jet formed by the mixture, the ratio of solid pulverized fuel to combustion air (total of primary and secondary air), that is, the solid-air ratio, is low, and the blown jet Looking at other parts of the tank, it is a method of injecting solid pulverized fuel to increase the solid-air ratio here, and if you do this,
The fact that the combustion of the entire solid pulverized fuel is completed quickly compared to the conventional combustion method in which the distribution of the solid pulverized fuel injected from the blowing end face of the burner with a uniform density distribution is uniform in the cross section of the injection jet. This is based on the findings of the present inventors. In a portion of the jet formed by the mixture of solid pulverized fuel and secondary air, the portion with a low solid-air ratio burns quickly after ignition. This part with a low solid-air ratio takes in high-temperature secondary air supplied from the surroundings of the jet and forms part of the flame, but turbulence is generated during combustion, which causes other parts of the jet, i.e. To advance the timing of intake of secondary air to a portion with a high air ratio and to increase the intake speed. Therefore, the overall combustion rate of the all-solid pulverized fuel is faster than with previous methods. Combustion occurs quickly in a part of the jet formed by the mixture of solid pulverized fuel and primary air in the combustion chamber, and as a result, high-temperature secondary air from around the jet starts to diffuse into the jet at an early stage, and In the combustion method of the present invention in which the diffusion rate is high, the overall combustion is completed quickly as described above, but the amount of air that forms the mixture, in other words, the amount of other primary air for conveying the solid pulverized fuel, is can be reduced compared to conventional methods. If the method of the present invention is carried out with the same amount of primary air as before, the length of the flame will be shorter than before, and even if the primary air is reduced, it is still possible to form a flame of the same length as before. can. As described above, according to the method of the present invention, solid pulverized fuel can be burned efficiently and quickly, and combustion efficiency and thermal efficiency can be improved. Next, a combustion apparatus that can easily implement the method of the present invention will be described with reference to the drawings. 3 and 4 show an embodiment of a solid pulverized fuel burner 10 suitable for carrying out the method of the present invention, FIG. 3 is a longitudinal cross-sectional view, and FIG. 4 is an A-A in FIG.
It is an arrow view. The burner 10 of the embodiment includes a heavy oil burner insertion passage 11 for igniting solid pulverized fuel in the center, a primary air passage 12 located outside of the insertion passage 11 through which only air passes, and a primary air passage 12 provided outside of the insertion passage 11 for igniting solid pulverized fuel and conveying the solid pulverized fuel. It consists of a passage 13 through which a mixture with air passes, and a primary air passage 14 surrounding the outside and through which only air passes. The insertion path 11 and the passages 12, 13, 14 have fuel and air supply ports 11a, 12a, 13a, respectively.
14a are provided in communication with each other. The heavy oil burner gun insertion passage 11 in the center of the burner is used to insert the heavy oil burner gun only when igniting the solid powder fuel, and after ignition, the gun should be pulled out and closed, or the supply port 11a
It can also be used as a passage for sending primary air from. There is a primary air passage 12 outside the heavy oil burner gun insertion passage 11, and a taper 12c is provided at the tip of the primary air passage 12 to narrow the passage.
b is installed. From the passage 12, primary air is given a swirling motion and blown into the combustion chamber. A passage for a mixture of solid pulverized fuel and conveying air, that is, a fuel wheel feed passage 13 is located outside the primary air passage 12.
The outside of the fuel wheel feed path 13 is surrounded by a straight air path 14. The fuel wheel feed path 13 has a taper 13c in the passage near the tip. Furthermore, a diffusion blade 13b is provided at a portion near the tip of the fuel wheel feed path 13. The diffusion blade 13b functions to diffuse and mix the mixture of solid pulverized fuel and primary air with secondary air. The diffusion blade 13b has a spiral shape, and the pitch of the spiral is not the same in the upper half and the lower half in FIG. is small, and the fuel wheel feed passage 13 has a wide opening area in the upper half portion and a narrow opening area in the lower half portion at the tip of the burner. That is, the device of the present invention is a burner injected with solid pulverized fuel, which is characterized in that jet ports are disposed at the tips of the fuel wheel passages and are divided into two and have different opening areas. Fuel wheel feed path 13 divided by diffusion blades 13b
At the tip of the burner, each dividing path has an opening area that is large in the upper half of FIG.
The upper and lower halves of the burner have different resistances to the flow of the mixture because their pitches are non-identical. Note that even if the pitch is the same, substantially the same effect can be obtained by changing the opening area in the cross section. When a mixture of solid pulverized fuel and conveying air is supplied to the burner 10, as mentioned above, since there is a difference in flow resistance in the fuel wheel passage, a large amount of the mixture, and thus A large amount of solid pulverized fuel is blown into the combustion chamber, and a relatively small amount of solid pulverized fuel is blown from the lower half. The distribution of solid pulverized fuel in the cross section of the jet blown into the combustion chamber is non-uniform; in the lower half of the jet, the ratio between the amount of solid pulverized fuel and the amount of combustion air, that is, the solid-air ratio, is low, and the jet The solid-air ratio is high in the upper half. In the lower half of the injection jet, firstly, the solid-air ratio is low, so the solid pulverized fuel ignites quickly, and secondly, as combustion begins, turbulence is generated, so high-temperature secondary air is taken in, that is, the secondary The air is diffused and mixed with the solid pulverized fuel quickly, and thirdly, the swirling flow given to the mixture by the diffusion vanes 13b is also stronger than that in the upper half, resulting in early ignition of the solid pulverized fuel. This increases the combustion speed and shortens the combustion completion time. The above-mentioned turbulence in the lower half of the blowing jet also affects the upper half of the jet, and the intake of secondary air is accelerated in the upper half as well, and combustion is completed early here as well. Compared to the burner, the burner of the present invention burns the all-solid pulverized fuel faster.
As a result, a short flame is obtained in the burner of the invention. In the above explanation, the burner is expressed as an upper half and a lower half in the posture shown in Fig. 4, but it is not necessary to use the burner with the top and bottom in the same position as in Fig. 4, and Fig. 4 is optional. The effect is the same even when the angle is rotated. Figure 4 shows the arrangement of solid pulverized fuel jet ports arranged within a range of 180° at the central angle θ, but the arrangement of the jet ports is arranged within a range of 160° to 200° at the central angle. The same effect can be obtained even if it is placed in Alternatively, the arrangement of the jet ports may be divided into many parts in the circumferential direction. Although the above-mentioned embodiment is a burner in which the method of the present invention can be carried out most suitably and easily, it goes without saying that the method of the present invention can also be realized with a different combustion apparatus. For example, the mixture passage 13 is partitioned into a plurality of partitions, and different amounts of solid pulverized fuel are supplied to the mixture passage 13 to create a difference in the solid-air ratio within the cone of the blown jet. The pitch of the diffusion vanes may be varied as described above, or the diffusion vanes may have the same pitch. Further, the amount of conveyed air in each of the divided passages 13 may be the same or may be slightly different. In addition, before feeding into the burner, a mixture of solid pulverized fuel with different concentrations is made and supplied to each divided passage of the passage 13 or to a different type of burner or a separate burner. It would also be possible to carry out the method according to the invention with a device that supplies differentially. The method of the present invention differentiates the fuel density distribution in the cross section of the injection jet of solid pulverized fuel to locally increase the combustion rate, thereby increasing the combustion rate of the entire jet and significantly reducing the primary air. Even when burning coal or coke fine powder with extremely low volatile content, it is possible to easily achieve complete combustion quickly and obtain a short flame, and it is possible to achieve complete combustion using inexpensive fuel, which has great economic effects. In addition, by adjusting the amount of primary air, the length of the flame can be adjusted over a wider range than before, and the amount of primary air (cold air) can be significantly reduced, replacing the decreased amount of cold air with high-temperature secondary air. By doing so, thermal efficiency can be increased. Furthermore, in conventional combustion methods, it is necessary to pulverize the solid fuel in order to obtain a short flame. For example, in the case of coal combustion, the solid fuel is pulverized until the residue on the 88 μm sieve screen is about 10 to 20%. With the method of the present invention, it has become possible to increase the residue on the 88 μm sieve to 30 to 40% with the same type of coal. Therefore, there is a significant effect in terms of reducing the crushing power. Furthermore, the combustion device of the present invention can easily implement the above method by making slight changes to the burner, and has excellent effects such as improved combustion efficiency, reduced fuel cost, improved thermal efficiency, and reduced fuel crushing power. Its industrial value is particularly great. When the burner of the present invention is used for cement firing, a short flame can be obtained, so if the cement raw material is calcined (decarboxylated) to almost 100% in a preheater and then supplied to the rotary kiln, as is the case recently, the rotary kiln The length can be about 20% shorter than before. Example The burner shown in Fig. 3 and Fig. 4 is used in a rotary kiln for firing cement, and the non-uniformity of the pulverized coal in the jet stream is determined by setting the ratio of the amount of pulverized coal in the upper half of the burner to the lower half of the burner to be 2:1. Solid pulverized fuel was burned according to the method of the present invention. The results are shown in Table 1 when compared with firing using a conventional burner (comparative example). Namely: (1) The amount of solid pulverized fuel used per unit of cement clinker production, that is, the fuel consumption rate has decreased by approximately 4% compared to the conventional method. (2) The combustion effect of pulverized coal has improved and there is no unburned coal. 1000 at the bottom of the kiln using conventional combustion methods.
~2000 ppm of CO was detected, but the method of the invention does not detect any CO. (3) The primary air for transporting solid pulverized fuel can be as small as 3 to 4% of the total air amount relative to the theoretical air amount;
The total amount of primary air passing through the passages 12, 13, and 14 was previously 12-15%, but has been reduced to 8-11%. The reduced cold air is replaced by high temperature (800-900°C) secondary air from the clinker cooler, which is thermally advantageous for the entire kiln system. (4) Even though the amount of primary air was smaller than that of conventional burners, a short flame was ultimately obtained because the high-temperature secondary air diffused quickly into the jet of combustion inside the combustion chamber. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図第2図は従来のバーナの縦断面図、第3
図は本発明の実施例のバーナの縦断面図、第4図
は第3図のA−A矢視図である。 1……固体微粉燃料と空気との混合体、2……
バーナ、3……噴出口、4……噴流、5……二次
空気、6,7……一次空気噴出口、10……バー
ナ、11……挿入路、12,14……一次空気通
路、13……混合体通路、11a,12a,13
a,14a……供給口、12b……旋回翼、13
b……拡散翼。
Figure 1 Figure 2 is a longitudinal sectional view of a conventional burner, Figure 3
The figure is a longitudinal sectional view of a burner according to an embodiment of the present invention, and FIG. 4 is a view taken along the line A--A in FIG. 3. 1...Mixture of solid pulverized fuel and air, 2...
Burner, 3... Jet nozzle, 4... Jet stream, 5... Secondary air, 6, 7... Primary air outlet, 10... Burner, 11... Insertion path, 12, 14... Primary air passage, 13...Mixture passage, 11a, 12a, 13
a, 14a...supply port, 12b...swivel blade, 13
b...Diffusion wing.

Claims (1)

【特許請求の範囲】 1 固体微粉燃料と一次空気との混合体をバーナ
から燃焼室内に吹込み、該混合体と高温二次空気
とを相互に拡散混合させて固体微粉燃料を燃焼さ
せる方法において、該バーナの吹込端面における
流動抵抗に差を設けて固体微粉燃料の密度分布を
不均一化することにより、固体微粉燃料の吹込み
噴流の横断面における燃料密度分布を不均一化
し、燃焼速度を高めて短炎を形成させることを特
徴とする固体微粉燃料の燃焼方法。 2 固体微粉燃料吹込みバーナにおいて、燃料輸
送路の先端部に相互に分割されかつ開口面積に差
を設けた噴出口を配設したことを特徴とするバー
ナ。
[Claims] 1. A method for combusting solid pulverized fuel by blowing a mixture of solid pulverized fuel and primary air into a combustion chamber from a burner, and making the mixture and high-temperature secondary air diffuse and mix with each other. By creating a difference in flow resistance at the blowing end face of the burner and making the density distribution of the solid pulverized fuel non-uniform, the fuel density distribution in the cross section of the injection jet of the solid pulverized fuel is made non-uniform, and the combustion rate is increased. A method of combustion of solid pulverized fuel, characterized by forming a short flame. 2. A burner injected with solid pulverized fuel, characterized in that jet ports are disposed at the tip of a fuel transport path and are mutually divided and have different opening areas.
JP22827182A 1982-12-28 1982-12-28 Method and device for burning solid pulverized fuel Granted JPS59122805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22827182A JPS59122805A (en) 1982-12-28 1982-12-28 Method and device for burning solid pulverized fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22827182A JPS59122805A (en) 1982-12-28 1982-12-28 Method and device for burning solid pulverized fuel

Publications (2)

Publication Number Publication Date
JPS59122805A JPS59122805A (en) 1984-07-16
JPH0222289B2 true JPH0222289B2 (en) 1990-05-18

Family

ID=16873853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22827182A Granted JPS59122805A (en) 1982-12-28 1982-12-28 Method and device for burning solid pulverized fuel

Country Status (1)

Country Link
JP (1) JPS59122805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156274A2 (en) * 1996-12-27 2001-11-21 Sumitomo Osaka Cement Co., Ltd. Device and method for combustion of fuel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014065A1 (en) * 2012-07-19 2014-01-23 住友大阪セメント株式会社 Fuel combustion device
JP6037452B2 (en) * 2013-07-24 2016-12-07 株式会社日向製錬所 Rotary kiln, rotary kiln burner, and rotary kiln operating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653307A (en) * 1979-10-02 1981-05-12 Ube Ind Ltd Combustion method for upright firing furnace and burner to execute the same
JPS627443A (en) * 1985-07-03 1987-01-14 Agency Of Ind Science & Technol Gas selective separation material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653307A (en) * 1979-10-02 1981-05-12 Ube Ind Ltd Combustion method for upright firing furnace and burner to execute the same
JPS627443A (en) * 1985-07-03 1987-01-14 Agency Of Ind Science & Technol Gas selective separation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156274A2 (en) * 1996-12-27 2001-11-21 Sumitomo Osaka Cement Co., Ltd. Device and method for combustion of fuel
EP1156274B1 (en) * 1996-12-27 2004-03-17 Sumitomo Osaka Cement Co., Ltd. Device and method for combustion of fuel

Also Published As

Publication number Publication date
JPS59122805A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
US3302596A (en) Combustion device
KR100330538B1 (en) Device and method for combustion of fuel
CN100381755C (en) Staged combustion system with ignition-assisted fuel lances
US2800093A (en) Apparatus for burning pulverized fuel
JP7244526B2 (en) Burner and how to use it
CN102597629A (en) Method of combusting particulate solid fuel with a burner
US5113771A (en) Pulverized coal fuel injector
US3989443A (en) Multiple fuel burner and usage in rotary kilns
JPH0252765B2 (en)
JPH0222289B2 (en)
WO2021069703A1 (en) Burner for producing a flame in a combustion chamber of an annular vertical shaft kiln, combustion chamber for an annular vertical shaft kiln and process of combustion in such a combustion chamber
US2857148A (en) Method of firing rotary kilns and gas burner therefor
EP4086512A1 (en) Combustor for fuel combustion and combustion method therefor
JPH0333961B2 (en)
US4337030A (en) Solid fuel fired kiln
RU2298140C1 (en) Shaft type gas furnace for firing lumpy material
JPH0138203B2 (en)
US2991062A (en) Cement manufacture
CN108700287A (en) Method and its injector for spraying fluid forces type particulate-solid fuel and oxidant
JPH0663628B2 (en) Efficient combustion method of pitch water slurry
US4135876A (en) Method for simultaneously calcining first kind of pulverized materials containing combustible compounds and second kind of pulverized materials
JPH0512578Y2 (en)
SU908872A1 (en) Method for igniting agglomeration batch
KR101457301B1 (en) Burner in reserve for pellet burner
EP4348113A1 (en) Burner, apparatus and method for the firing of ceramic articles