JPH02222694A - Enzymatic hydrolysis of cellulose-containing material - Google Patents

Enzymatic hydrolysis of cellulose-containing material

Info

Publication number
JPH02222694A
JPH02222694A JP4425389A JP4425389A JPH02222694A JP H02222694 A JPH02222694 A JP H02222694A JP 4425389 A JP4425389 A JP 4425389A JP 4425389 A JP4425389 A JP 4425389A JP H02222694 A JPH02222694 A JP H02222694A
Authority
JP
Japan
Prior art keywords
cellulose
containing material
reducing sugar
yield
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4425389A
Other languages
Japanese (ja)
Other versions
JP2689162B2 (en
Inventor
Masao Karube
征夫 軽部
Eiichi Tamiya
栄一 民谷
Koji Hayade
広司 早出
Kuniyoshi Hayashi
林 漢珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Research and Development Centre Ltd filed Critical Akebono Research and Development Centre Ltd
Priority to JP4425389A priority Critical patent/JP2689162B2/en
Publication of JPH02222694A publication Critical patent/JPH02222694A/en
Application granted granted Critical
Publication of JP2689162B2 publication Critical patent/JP2689162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain glucose or oligosaccharides thereof in a high yield by acting a cellulase on a cellulose-containing material in a specified method and hydrolyzing the subject material at a high speed without requirement of a complicated pretreatment such as a blasting process. CONSTITUTION:A cellulose-containing material is initially dispersed into a saturated hydrocarbon (preferably hexane) and a surfactant (preferably dodecyl sulfate, etc.) is added thereto at the same time. To the resultant dispersion of the cellulose-containing material in the saturated hydrocarbon, an aqueous cellulase (preferably Aspergillus niger-derived cellulase) solution is then added for emulsification, thus hydrolyzing the above-mentioned cellulose-containing material. In addition, 22-55 deg.C is recommended as the reaction temperature in the hydrolysis.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は界面活性別を含む飽和炭化水素の液中にセルロ
ース含有材料を分散させ、該液中に水およびセルロース
加水分解酵素を添加してセルロース含有材料および酵素
を核としてエマルジョン化させることからなる酵素加水
分解方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves dispersing a cellulose-containing material in a saturated hydrocarbon liquid containing a surfactant, and adding water and a cellulose hydrolase to the liquid. The present invention relates to an enzymatic hydrolysis method comprising emulsifying a cellulose-containing material and an enzyme as a core.

[従来の技術] セルロース含有材料をグルコースまたはそのオリゴ糖に
セルロース加水分解酵素を用いて加水分解しようとする
試みは、従来から多数提案されている。しかしセルロー
ス含有材料は難溶性基質であり、これをセルロース加水
分解酵素で加水分解させるためには、爆砕または蒸煮処
理等の複雑な前処理が必要であり、また加水分解速度が
遅く、還元糖の収率も低く酵素を用いた実用的な加水分
解方法はいまだに提案されていない。
[Prior Art] Many attempts have been made to hydrolyze cellulose-containing materials into glucose or its oligosaccharides using cellulose hydrolase. However, cellulose-containing materials are sparsely soluble substrates, and in order to hydrolyze them with cellulose hydrolases, complex pretreatments such as blasting or steaming are required, and the rate of hydrolysis is slow, resulting in the production of reducing sugars. The yield is low, and a practical hydrolysis method using enzymes has not yet been proposed.

[発明が解決しようとする課題] 本発明は、爆砕処理等の複雑な前処理を必要とせず、加
水分解速度が速く、かつグルコースまたはそのオリゴ糖
をセルロース含有材料から高収率で得られるセルロース
含有材料の酵素による加水分解方法を提供する。
[Problems to be Solved by the Invention] The present invention provides cellulose that does not require complicated pretreatment such as blasting treatment, has a high hydrolysis rate, and can obtain glucose or its oligosaccharides in high yield from a cellulose-containing material. A method for enzymatic hydrolysis of contained materials is provided.

さらに本発明は、還元糖を高濃度で、かつ高濃度であっ
ても雑菌等による汚染を生じないセルロース含有材料の
酵素による加水分解方法を提供する。
Furthermore, the present invention provides a method for hydrolyzing a cellulose-containing material using an enzyme, which contains reducing sugar at a high concentration and which does not cause contamination by bacteria even at a high concentration.

Ct!JARを解決するための手段] 本発明は、セルロース含有材料を分散させた界面活性剤
を含む飽和炭化水素の液中に、水に溶解させたセルロー
ス加水分解酵素を添加し、ついでエマルジョン化させる
ことからなるセルロース含有材料の酵素加水分解方法を
提供する。
CT! Means for solving JAR] The present invention involves adding a cellulose hydrolase dissolved in water to a saturated hydrocarbon solution containing a surfactant in which a cellulose-containing material is dispersed, and then emulsifying the solution. Provided is a method for enzymatic hydrolysis of cellulose-containing materials comprising:

本発明で用いるセルロース含有材料としては、各種植物
、例えば木材、草本類、藻類等、これらに由来する各種
バルブ、例えば砕木パルプ、亜硫酸バルブ、硫酸塩バル
ブ、および紙、例えば新聞紙、中質紙、上質紙、P紙等
各種の材料を例示できる。これらの材料を適宜の寸法、
例えば20〜40メツシュ程度に、あるいはさらに細か
い寸法に粉砕して使用することが、加水分解速度および
還元糖収率を向上せしめうる点で好ましい。
Cellulose-containing materials used in the present invention include various valves derived from various plants such as wood, herbs, algae, etc., such as ground wood pulp, sulfite valves, sulfate valves, and paper such as newspaper, medium-weight paper, Examples include various materials such as high-quality paper and P paper. These materials have appropriate dimensions,
For example, it is preferable to use it by pulverizing it to about 20 to 40 meshes or even finer sizes, since this can improve the hydrolysis rate and reducing sugar yield.

本発明で用いる界面活性剤としては、陰イオン性界面活
性剤、陽イオン性界面活性剤、非イオン性界面活性剤、
両性界面活性剤のいずれをも適用可能である。好ましい
界面活性剤の例としてそのいくつかを例示すれば次のと
おりである。
The surfactants used in the present invention include anionic surfactants, cationic surfactants, nonionic surfactants,
Any amphoteric surfactant can be applied. Some examples of preferred surfactants are as follows.

アルキルアミン塩、アミド結合アミン塩、エステル結合
アミン塩等のアミン塩、アルキルアンモニウム塩、アミ
ド結合アンモニウム塩、エステル結合アンモニウム塩、
エーテル結合アンモニウム塩等の第4級アンモニウム塩
、アルキルピリジニウム塩、アミド結合ピリジニウム塩
、エーテル結合ピリジニウム塩、エステル結合ピリジニ
ウム塩等のピリジニウム塩等の陽イオン性界面活性剤を
例示することができ、さらに具体的にはn−デシルトリ
メチルアンモニウムブロマイド、ドデシルトリメチルア
ンモニウムブロマイド、テトラデシルトリメチルアンモ
ニウムブロマイド、n−ヘキサデシルトリメチルアンモ
ニウムブロマイド、テトラデシルジメチルベンジルアン
モニウムクロライド、セチルジメチルエチルアンモニウ
ムブロマイド、ビス(2−エチルヘキシル)ソジウムス
ルフオコハク酸塩等の陽イオン性界面活性剤を例示でき
る。陰イオン性界面活性剤としては、Vi酸化油、アル
キル硫酸塩、アルキルスルホン酸塩、アルキルナフタレ
ンスルホン酸塩等を例示でき、さらに具体的にはドデシ
ル硫酸、1−トリデカン硫酸、テトラデカン硫酸、1−
ペンタデカン硫酸、n−ヘキサデシル硫酸、1−オクタ
デカン硫酸等のナトリウム塩等を例示できる。非イオン
性界面活性剤としては、アルキルアリルエーテル型、ア
ルキルエーテル型、アルキルアミン型等の酸化エチレン
系、脂肪酸グリセリンエステル型、アンヒドロンルビト
ール脂肪酸エステル型等の多価アルコール脂肪酸エステ
ル系、ポリエチレンイミン系、脂肪酸アルキロールアミ
ド系等を例示できる1例えばソルビタンモノバルミチン
酸塩である1両性界面活性剤としては陰イオン部分にカ
ルボキシル基、スルホン酸基、硫酸エステル基、陽イオ
ン部分にアミン基を有するものを例示できる。
Amine salts such as alkyl amine salts, amide bonded amine salts, ester bonded amine salts, alkylammonium salts, amide bonded ammonium salts, ester bonded ammonium salts,
Examples include cationic surfactants such as quaternary ammonium salts such as ether-bonded ammonium salts, pyridinium salts such as alkylpyridinium salts, amide-bonded pyridinium salts, ether-bonded pyridinium salts, and ester-bonded pyridinium salts; Specifically, n-decyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, n-hexadecyltrimethylammonium bromide, tetradecyldimethylbenzylammonium chloride, cetyldimethylethylammonium bromide, bis(2-ethylhexyl) Examples include cationic surfactants such as dium sulfosuccinate. Examples of anionic surfactants include Vi oxidized oil, alkyl sulfates, alkyl sulfonates, alkylnaphthalene sulfonates, and more specifically dodecyl sulfate, 1-tridecane sulfate, tetradecane sulfate, 1-
Examples include sodium salts such as pentadecane sulfate, n-hexadecyl sulfate, and 1-octadecane sulfate. Nonionic surfactants include ethylene oxide type such as alkyl allyl ether type, alkyl ether type, and alkyl amine type, polyhydric alcohol fatty acid ester type such as fatty acid glycerin ester type, anhydrone rubitol fatty acid ester type, and polyethylene. Examples include imine type, fatty acid alkylolamide type, etc. 1 For example, sorbitan monobalmitate 1 Ampholytic surfactants include carboxyl group, sulfonic acid group, sulfate ester group in the anionic part, and amine group in the cationic part. Examples include those having the following.

界面活性剤は酵素の失活を防止するとともに、酵素およ
びセルロース含有材料を核とするエマルジョン化を助長
する。界面活性剤の添加量は、飽和炭化水素に対し0.
1〜20重Ji/容量%、好ましくは1〜15重量/容
1%、さらに好ましくは1〜8重量/容量%の量が好ん
で用いられる。
The surfactant prevents enzyme deactivation and promotes emulsification of the enzyme and cellulose-containing material as a core. The amount of surfactant added is 0.
Amounts of 1 to 20 weight Ji/volume %, preferably 1 to 15 weight/volume 1%, more preferably 1 to 8 weight/volume % are preferably used.

界面活性剤のHLBは、界面活性剤の種類により適宜選
択することが好ましく、例えば非イオン性界面活性剤で
あるソルビタンモノバルミチン酸塩においては、最適の
HLBは約7前後である。
The HLB of the surfactant is preferably selected appropriately depending on the type of surfactant. For example, for sorbitan monobalmitate, which is a nonionic surfactant, the optimal HLB is around 7.

本発明で用いる飽和炭化水素としては、炭素数5〜20
、さらに好ましくは5〜13のものが好ましく、ヘキサ
ン、へ1タン、オクタン、イソオクタン、ドデカン、ト
リデカン等各種のものを例示できる。炭素数が多い飽和
炭化水素はヘキサン、ヘプタンに比して還元糖収率が低
下する傾向があるため、ヘキサンを最も好ましい飽和炭
化水素として例示できる。しかし本発明の方法は、処理
温度による影響が著しく、10℃〜58℃、好ましくは
20℃〜55℃、最も好ましくは25℃〜55℃におい
て、水系における酵素加水分解方法に比して優れた還元
糖収率を示す点をその特徴の1つとするものである。従
って、比較的高温度で酵素加水分解を実施する場合には
、飽和炭化水素の沸点を考慮し、ドデカン、トリデカン
等の比較的炭素数の多い飽和炭化水素を使用することが
好ましい、これに比し水系における還元糖収率は温度に
よる相違が比較的少なく、またその還元糖収率は本発明
の方法に比して著しく劣っている。
The saturated hydrocarbon used in the present invention has 5 to 20 carbon atoms.
, more preferably 5 to 13, and various examples include hexane, heptane, octane, isooctane, dodecane, and tridecane. Since saturated hydrocarbons with a large number of carbon atoms tend to have lower reducing sugar yields than hexane and heptane, hexane can be exemplified as the most preferred saturated hydrocarbon. However, the method of the present invention is significantly affected by the treatment temperature, and is superior to enzymatic hydrolysis methods in aqueous systems at temperatures between 10°C and 58°C, preferably between 20°C and 55°C, and most preferably between 25°C and 55°C. One of its characteristics is that it exhibits reducing sugar yield. Therefore, when performing enzymatic hydrolysis at relatively high temperatures, it is preferable to use saturated hydrocarbons with a relatively large number of carbon atoms, such as dodecane and tridecane, taking into consideration the boiling point of saturated hydrocarbons. The reducing sugar yield in the permeate water system has relatively little difference depending on temperature, and the reducing sugar yield is significantly inferior to that of the method of the present invention.

本発明で用いる酵素はセルロース加水分解酵素(以下セ
ルラーゼという)であり、Asperビillusni
ger、Pen1cillus+ funiculos
us+、Trichodermaviride等各種産
生国に由来するセルラーゼを使用することができる。と
くにAspergillus nigerに由来するセ
ルラーゼは、安価であり、入手し易くかつ加水分解能力
も高いため好ましく用いられる。
The enzyme used in the present invention is cellulose hydrolase (hereinafter referred to as cellulase),
ger, Pencillus + funiculos
Cellulases derived from various producing countries can be used, such as us+ and Trichodermaviride. In particular, cellulase derived from Aspergillus niger is preferably used because it is inexpensive, easily available, and has a high hydrolytic ability.

セルラーゼは、水に溶解させた後セルロース含有材料を
含む飽和炭化水素の液中に添加する。
The cellulase is dissolved in water and then added to the saturated hydrocarbon solution containing the cellulose-containing material.

飽和炭化水素液中における水分量は、16容量%以下、
好ましくは10容量%以下、最も好ましくは6容量%以
下である。水分量が増加するほど還元糖収率が低下し、
16容量%を超えると水系の還元糖収率に比して顕著な
還元糖収率の増加は認められない。
The water content in the saturated hydrocarbon liquid is 16% by volume or less,
Preferably it is 10% by volume or less, most preferably 6% by volume or less. As the water content increases, the reducing sugar yield decreases,
When the amount exceeds 16% by volume, no significant increase in reducing sugar yield is observed compared to the aqueous reducing sugar yield.

セルラーゼを溶解する水として、緩衝液を使用してもよ
い、緩衝液としては、トリス(ヒドロキシメチル)アミ
ノメタン等の弱塩基性溶液に強酸を加えたもの、コハク
酸、クエン酸−カリウム、ホウ酸、リン酸の弱酸性溶液
に強アルカリ希薄溶液を加えたもの、酢酸−酢酸ナトリ
ウム系等、あるいは上記緩衝液を混合したもの等各種の
緩衝液を例示できる。上記緩衝液により各種界面活性剤
および水分量との組合わせにより定まる最適なpt−i
に調整することにより、還元糖の収率を高めることがで
きる。 緩衝液のイオン強度は、1M付近が好ましいが
ごく低い値でもよく、この値に限定されるものではない
A buffer solution may be used as the water for dissolving the cellulase. Examples of the buffer solution include a weakly basic solution such as tris(hydroxymethyl)aminomethane to which a strong acid is added, succinic acid, potassium citrate, and boron. Examples include various buffer solutions such as acid, a weakly acidic solution of phosphoric acid to which a strong alkaline dilute solution is added, an acetic acid-sodium acetate system, and a mixture of the above-mentioned buffers. The optimal pt-i determined by the above buffer solution in combination with various surfactants and water content.
By adjusting the amount, the yield of reducing sugar can be increased. The ionic strength of the buffer solution is preferably around 1M, but may be a very low value, and is not limited to this value.

水(含む緩衝液)系、ヘキサン−水(含むM’S液)系
およびヘキサン−水(含む緩衝液)−界面活性剤系にお
ける還元糖収率、最適pH,最適含水量および残酵素の
活性を例示すれば次のとおりである。なお、下記データ
は処理時間を200時間とした場合である。
Reducing sugar yield, optimal pH, optimal water content, and residual enzyme activity in water (containing buffer) system, hexane-water (containing M'S solution) system, and hexane-water (containing buffer)-surfactant system An example is as follows. The data below is based on a processing time of 200 hours.

花亘盪二濃 籠丈浸 水系       −10% ヘキザン系        27% 界面活性剤系 5pan10  32%^OT    
38% テトラメチルアンモニウム クロライド   30% アンヒトール 86B      32% 旅」1と旦 4.0 5.0 5.0 5.0 6.8 6.8 水系 ヘキサン系 界面活性剤系 5pan−40 ^OT 残酵素 篠i工X上 10%以下 88.4 3%   97.6 3%   100 X −會水1− テトラメチルアンモニウム クロライド アンヒトール 6B 3% 5% 92.3 92.8 注: 5pan−40;商品名、ソルビタンモノパルミ
チン酸ナトリウム塩(I−ILB6.7)、東京化成工
業社製、非イオン性界面活性剤、 ^OT、商品名、ビス(2−エチルヘキシル)ナトリウ
ムスルホコハク酸塩、和光純薬工業社製、カチオン性界
面活性剤、 アン上トール86B;商品名、 CH。
Hana Wataru Nino Basket length submersion system -10% Hexane system 27% Surfactant system 5pan10 32%^OT
38% Tetramethylammonium chloride 30% Amhitol 86B 32% Tabi' 1 and Dan 4.0 5.0 5.0 5.0 6.8 6.8 Water-based hexane surfactant system 5pan-40 ^OT Remaining Enzyme Shino Less than 10% on I-KX 88.4 3% 97.6 3% 100 , sorbitan monopalmitate sodium salt (I-ILB6.7), manufactured by Tokyo Kasei Kogyo Co., Ltd., nonionic surfactant, ^OT, trade name, bis(2-ethylhexyl) sodium sulfosuccinate, Wako Pure Chemical Industries, Ltd. cationic surfactant, Anjotoll 86B; trade name, CH.

C,H2□+   N ’  CH2C0O−SCH。C, H2□+ N’ CH2C0O-SCH.

(式中n=14が約3重量%、n−16が約17重量%
、n=18が約80重1%)の式を有する化合物、花王
株式会社製、両イオン性界面活性剤、 残酵素活性の測定:アナログ基質であるバラニトロフェ
ニルグルコシドを用いて分光光度計により420nmに
おける波長の変化を測定した。
(In the formula, n=14 is about 3% by weight, n-16 is about 17% by weight
, n = 18 is approximately 80% by weight), manufactured by Kao Corporation, amphoteric surfactant, measurement of residual enzyme activity: by spectrophotometer using varanitrophenyl glucoside, an analog substrate. The change in wavelength at 420 nm was measured.

[実施例] 本実施例中における還元糖生成量は、S o+wogy
Nelson法または、高速液体クロマトグラフイー(
カラム: SI+odex Sugar St”101
0、カラム温度=70℃)により測定した。
[Example] The amount of reducing sugar produced in this example is So+wogy
Nelson method or high performance liquid chromatography (
Column: SI+odex Sugar St”101
0, column temperature = 70°C).

実施例1 イオン強度IM、pH5,0の酢酸−酢酸ナトリウム!
!衝液1mlにAspgrgillus niger由
来のセルラーゼ(シグマ社製)を0.13gの割合で加
え、撹拌溶解して酵素水溶液を作製した。
Example 1 Acetic acid-sodium acetate at ionic strength IM, pH 5.0!
! Cellulase derived from Aspgillus niger (manufactured by Sigma) was added at a rate of 0.13 g to 1 ml of the buffer solution, and dissolved with stirring to prepare an enzyme aqueous solution.

容量500m1の三角フラスコに入れたベキサ7285
m1にアビセル(結晶性セルロース、シグマ社製)Ig
および界面活性剤AOT (商品名)17.6gを加え
て分散した後、上記酵素水溶液15m1を添加し、40
℃、600rpmの条件で所定時間撹拌処理した。各所
定時間撹拌処理拌を中止し、水系から試料溶液0.1m
lを採取し、分析に供した。
Bexa 7285 in an Erlenmeyer flask with a capacity of 500ml
Avicel (crystalline cellulose, manufactured by Sigma) Ig in m1
After adding and dispersing 17.6 g of surfactant AOT (trade name), 15 ml of the above enzyme aqueous solution was added,
The mixture was stirred at 600 rpm for a predetermined time. Stirring treatment for each predetermined time Stop stirring and remove 0.1 m of sample solution from the aqueous system.
1 was collected and subjected to analysis.

各処理時間後の還元糖収率等を第1図に示す。Fig. 1 shows the reducing sugar yield after each treatment time.

比較例1 実施例1で使用したのと同じ酵素水溶液15m1を実施
例1で使用したのと同じ[W液285m1に加えて分散
した他は実施例1と同様にして、各所定時間撹拌後の試
料を採取し、分析に供した。
Comparative Example 1 15 ml of the same enzyme aqueous solution used in Example 1 was added to 285 ml of the W solution and dispersed in the same manner as in Example 1. A sample was taken and submitted for analysis.

各処理時間後の還元糖収率等を第1図に示す。Fig. 1 shows the reducing sugar yield after each treatment time.

比較例2 実施例1で使用したのと同じ酵素水溶液15m1と実施
例1で使用したのと同じ緩衝液15m1をヘキサン27
0m1に加えて分散させた他は実施例1と同様にして、
各所定時間撹拌後の試料を採取し、分析に供した。
Comparative Example 2 15 ml of the same enzyme aqueous solution used in Example 1 and 15 ml of the same buffer solution used in Example 1 were mixed with 27 ml of hexane.
In the same manner as in Example 1 except that 0ml was added and dispersed,
Samples were taken after each predetermined period of stirring and subjected to analysis.

各処理時間後の還元糖収率等を第1図に示す。Fig. 1 shows the reducing sugar yield after each treatment time.

第1図中標準化還元糖濃度は、水中におけるアビセルお
よびセルラーゼの濃度を同一水準として比較するため次
のようにして算出した。
The standardized reducing sugar concentration in FIG. 1 was calculated as follows in order to compare the concentrations of Avicel and cellulase in water at the same level.

界面活性剤を添加した実施例1は水分5容量%であり、
この測定値をそのまま図中に表示した。
Example 1 in which a surfactant was added had a water content of 5% by volume,
These measured values are shown as they are in the figure.

緩衝液のみからなる比較例1は水分100容量%である
から、アビセル等の濃度を同一水準とするため測定値を
20倍した値で表示した。
Since Comparative Example 1, which consists of only a buffer solution, has a water content of 100% by volume, the measured value is expressed as a value multiplied by 20 in order to keep the concentration of Avicel etc. at the same level.

ヘキサン−M?II液系からなる比較例2は水分容量1
0%であるから、測定値を2倍した値で表示した。
Hexane-M? Comparative Example 2 consisting of II liquid system has a water capacity of 1
Since it was 0%, the measured value was doubled and displayed.

ヘキサン−界面活性剤−緩衝液中における還元糖の収率
は、ヘキサン−緩衝液系およびM衝液系のそれよりも優
れている。また還元糖の濃度も本発明の方法によれば極
めて高い。
The yield of reducing sugars in hexane-surfactant-buffer is superior to that in hexane-buffer and M buffer systems. The concentration of reducing sugars is also extremely high according to the method of the present invention.

実施例2 実施例1において、界面活性剤AOTを界面活性剤5p
an40に変えた他は実施例1と同様にして還元糖収率
を調べた。
Example 2 In Example 1, surfactant AOT was replaced with surfactant 5p.
The reducing sugar yield was examined in the same manner as in Example 1 except that an40 was used.

各処理時間後の還元糖収率等を第2図に示す。Fig. 2 shows the reducing sugar yield after each treatment time.

第2図中の標準化濃度は次のようにして算出した。ヘキ
サン−Mm液系(水分10容量%)の測定値(比較例1
の測定値)を基準値とし、実施例2(水分5容量%)で
得られた還元糖濃度を1/2倍し、緩衝液系(水分10
0%)の測定値(比較例2の測定値)を10@してそれ
ぞれ表示した。
The standardized concentrations in FIG. 2 were calculated as follows. Measured values of hexane-Mm liquid system (moisture 10% by volume) (Comparative Example 1
Measured value of
0%) (measured value of Comparative Example 2) was expressed as 10@.

本発明の方法によれば、還元糖収率、還元N濃度いずれ
も、ヘキサン−緩衝液系およびM?R液系よりも優れて
いる。
According to the method of the present invention, both the reducing sugar yield and the reducing N concentration are lower than those of the hexane-buffer system and M? Superior to R liquid system.

実施例3 実施例1において、界面活性剤AOTをテトラメチルア
ンモニウムクロライドに変えた他は実施例1と同様にし
て還元糖収率を調べた。
Example 3 The reducing sugar yield was investigated in the same manner as in Example 1 except that the surfactant AOT was changed to tetramethylammonium chloride.

各処理時間後の還元糖収率等を第3図に示す。Fig. 3 shows the reducing sugar yield after each treatment time.

実施例4〜6 容量20m1の三角フラスコに入れなヘキサン15.8
mlに、P紙を粉砕して20メツシユの篩を通過し、5
0メツシユの篩に残ったV紙粉末0.05gおよび界面
活性剤AOTを加えて分散した後、実施例1で使用した
のと同じ酵素水溶液0.8mlを添加し、20℃、60
0rpmの条件で166時間撹拌処理した。処理後分析
に供し、還元糖の収率を調べた。
Examples 4-6 Hexane 15.8 in a Erlenmeyer flask with a capacity of 20 m1
ml, crush P paper and pass through a 20 mesh sieve,
After adding and dispersing 0.05 g of the V paper powder remaining on the 0 mesh sieve and the surfactant AOT, 0.8 ml of the same enzyme aqueous solution used in Example 1 was added, and the mixture was heated at 20°C and 60°C.
The mixture was stirred at 0 rpm for 166 hours. After the treatment, it was subjected to analysis to examine the yield of reducing sugar.

ティッシュ紙(実施例5)および新聞紙(実施例6)を
上記と同様にして処理し、同じく還元糖収率および標準
化還元糖濃度を調べた。
Tissue paper (Example 5) and newspaper (Example 6) were treated in the same manner as above, and the reducing sugar yield and standardized reducing sugar concentration were also examined.

結果を第1表および第2表に示す。The results are shown in Tables 1 and 2.

比較例3〜5 容量20m1の三角フラスコに入れた実施例1で使用し
たのとおなし[r液15.8mlに、実施例4〜6と同
様に粉砕したP紙(比較例3)、ティッシュ紙(比較例
4)および新聞紙(比較例5)をそれぞれ添加して分散
した後、実施例1で使用したのと同じ酵素水溶液0.8
mlを添加し、20℃、600rpmの条件で166時
間撹拌処理した。処理後分析に供し、還元糖の収率およ
び還元糖の標準化濃度を調べた。
Comparative Examples 3-5 The same as that used in Example 1 [R liquid 15.8 ml was placed in an Erlenmeyer flask with a capacity of 20 ml, P paper (Comparative Example 3) crushed in the same manner as in Examples 4-6, and tissue paper were added. (Comparative Example 4) and newspaper (Comparative Example 5) were added and dispersed, and then 0.8 g of the same enzyme aqueous solution used in Example 1 was added.
ml and stirred at 20° C. and 600 rpm for 166 hours. After treatment, it was subjected to analysis to examine the yield of reducing sugar and the standardized concentration of reducing sugar.

結果を第1表および第2表に示す。The results are shown in Tables 1 and 2.

比較例6〜8 容量20m1の三角フラスコに入れたヘキサン15.0
mlに、実施例4〜6と同様に粉砕したr紙(比較例6
)、ティッシュ紙(比較例7)および新聞紙(比較例8
)をそれぞれ添加して分散した後、実施例1で使用した
のと同じ酵素水溶液0.8mlおよび実施例1で使用し
たのと同じ緩衝液0.8mlを添加し、20℃、600
rpmの条件で166時間撹拌処理した。処理後分析に
供し、還元糖の収率および標準化還元糖濃度を調べた。
Comparative Examples 6-8 Hexane 15.0 in an Erlenmeyer flask with a capacity of 20 m1
ml of R paper crushed in the same manner as Examples 4 to 6 (Comparative Example 6
), tissue paper (Comparative Example 7) and newspaper (Comparative Example 8)
) were added and dispersed, then 0.8 ml of the same enzyme aqueous solution used in Example 1 and 0.8 ml of the same buffer solution used in Example 1 were added, and the mixture was heated at 20°C and 600 ml.
The mixture was stirred for 166 hours under the condition of rpm. After the treatment, it was subjected to analysis to examine the reducing sugar yield and standardized reducing sugar concentration.

結果を第1表および第2表に示す。The results are shown in Tables 1 and 2.

標準化還元糖濃度は、ヘキサン(水分10容量%)中に
おける還元糖濃度を基準値とし、緩衝液(水分100容
量%)中における還元糖濃度を10倍、界面活性剤系(
水分5容量%)中における還元糖濃度を1/2倍してそ
れぞれ表示した。
The standardized reducing sugar concentration is based on the reducing sugar concentration in hexane (water content 10% by volume), the reducing sugar concentration in the buffer solution (water content 100% by volume) is increased by 10 times, and the surfactant system (
The reducing sugar concentration in water (5% by volume) was multiplied by 1/2 and displayed, respectively.

第1表(標準化還元糖濃度mg/di)−を亙 立土工
之ユ互 4回置 実施例 4〜6 比較例 3〜5 6〜8 77.8 第2表(還元糖収率、重量%) −り誂 iエヱ之旦」 五血麗 実施例 4〜6 比較例 3〜5 N8 24.5 2.6 19.1 39.8 7.4 28.4 28.8 3.9 18.0 [発明の効果] 本発明によれば、爆砕処理、蒸煮処理等の前処理を不要
とするセルロース含有材料の加水分解方法が提供される
Table 1 (Standardized reducing sugar concentration mg/di) Table 2 (Reducing sugar yield, weight %) ) - Riedi I Enotan" Gokerei Examples 4-6 Comparative Examples 3-5 N8 24.5 2.6 19.1 39.8 7.4 28.4 28.8 3.9 18.0 [Effects of the Invention] According to the present invention, a method for hydrolyzing a cellulose-containing material that does not require pretreatment such as blasting treatment or steaming treatment is provided.

さらに本発明によれば、ヘキサン−uj液系およびMf
R液系における還元糖収率に比して極めて優れた還元糖
収率が得られるセルロース含有材料の加水分解方法が提
供される。
Furthermore, according to the present invention, hexane-uj liquid system and Mf
A method for hydrolyzing a cellulose-containing material is provided that provides a reducing sugar yield that is extremely superior to that in an R liquid system.

本発明によれば、セルロース含有材料から高い還元率で
、かつ高濃度で還元糖を得ることができるセルロース含
有材料の酵素加水分解方法が提供される。
According to the present invention, there is provided a method for enzymatic hydrolysis of a cellulose-containing material, which allows reducing sugars to be obtained from the cellulose-containing material at a high reduction rate and at a high concentration.

本発明によれば、飽和炭化水素液中でエマルジョン化し
た緩衝液系でセルロース含有材料を酵素加水分解するこ
とにより、雑菌等により汚染されることなくセルロース
含有材料を糖化できるセルロース含有材料の酵素加水分
解方法が提供される。
According to the present invention, enzymatic hydrolysis of a cellulose-containing material allows the cellulose-containing material to be saccharified without being contaminated by bacteria by enzymatically hydrolyzing the cellulose-containing material in a buffer system emulsified in a saturated hydrocarbon solution. A decomposition method is provided.

本発明によれば、広い温度範囲で還元糖を高収率で得る
ことができるセルロース含有材料の酵素加水分解方法が
提供される。
According to the present invention, a method for enzymatic hydrolysis of cellulose-containing materials is provided, which allows reducing sugars to be obtained in high yield over a wide temperature range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1および比較例1および2で得られた
還元糖の収率および標準化濃度を示す。 第2図は、実施例2および比較例1および2で得られた
還元糖の収率および標準化濃度を示す、第3図は、実施
例3で得られた還元糖の収率および標準化濃度を示す。 1:実施例1により得られた還元糖の収率および標準化
濃度 2:比較例1により得られた還元糖の収率および標準化
濃度 3:比較例2により得られた還元糖の収率および標準化
濃度 4:実施例2により得られた還元糖の収率および標準化
濃度
FIG. 1 shows the yield and standardized concentration of reducing sugars obtained in Example 1 and Comparative Examples 1 and 2. Figure 2 shows the yield and standardized concentration of reducing sugar obtained in Example 2 and Comparative Examples 1 and 2. Figure 3 shows the yield and standardized concentration of reducing sugar obtained in Example 3. show. 1: Yield and standardized concentration of reducing sugar obtained in Example 1 2: Yield and standardized concentration of reducing sugar obtained in Comparative Example 1 3: Yield and standardized concentration of reducing sugar obtained in Comparative Example 2 Concentration 4: Yield and standardized concentration of reducing sugar obtained in Example 2

Claims (1)

【特許請求の範囲】[Claims] セルロース含有材料を分散させた界面活性剤を含む飽和
炭化水素の液中に、水に溶解させたセルロース加水分解
酵素を添加し、エマルジョン化させることからなるセル
ロース含有材料の酵素加水分解方法。
A method for enzymatic hydrolysis of a cellulose-containing material, which comprises adding a cellulose hydrolase dissolved in water to a saturated hydrocarbon solution containing a surfactant in which the cellulose-containing material is dispersed to form an emulsion.
JP4425389A 1989-02-23 1989-02-23 Method for enzymatic hydrolysis of cellulose-containing material Expired - Lifetime JP2689162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4425389A JP2689162B2 (en) 1989-02-23 1989-02-23 Method for enzymatic hydrolysis of cellulose-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4425389A JP2689162B2 (en) 1989-02-23 1989-02-23 Method for enzymatic hydrolysis of cellulose-containing material

Publications (2)

Publication Number Publication Date
JPH02222694A true JPH02222694A (en) 1990-09-05
JP2689162B2 JP2689162B2 (en) 1997-12-10

Family

ID=12686366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4425389A Expired - Lifetime JP2689162B2 (en) 1989-02-23 1989-02-23 Method for enzymatic hydrolysis of cellulose-containing material

Country Status (1)

Country Link
JP (1) JP2689162B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519606A (en) * 2003-03-07 2006-08-31 アセニクス コーポレイション Method for promoting the activity of lignocellulolytic enzymes
JP2011205933A (en) * 2010-03-29 2011-10-20 Aichi Prefecture Method for producing high-concentration saccharified liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519606A (en) * 2003-03-07 2006-08-31 アセニクス コーポレイション Method for promoting the activity of lignocellulolytic enzymes
JP2011205933A (en) * 2010-03-29 2011-10-20 Aichi Prefecture Method for producing high-concentration saccharified liquid

Also Published As

Publication number Publication date
JP2689162B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
DE2265121C3 (en) Enzyme preparation for the determination of cholesterol and process for its production
DE60119941T2 (en) PROCESS FOR THE PREPARATION OF GLUCOSE WITH AN ERMODIFIED CELLULASE
DE69631471T3 (en) METHOD FOR LIQUEFYING STRENGTH
DE69024812T2 (en) METHOD FOR THE HYDROLYSIS OF HEMICELLULOSE BY IMMOBILIZED ENZYMS AND A PRODUCT CONSTRUCTING AN IMMOBILIZED HEMIZELLULYTIC ENZYME
Halliwell et al. The formation of short fibres from native cellulose by components of Trichoderma koningii cellulase
Cao et al. Cellulose hydrolysis using zinc chloride as a solvent and catalyst
KR19990087220A (en) Preparation method of N-acetyl-D-glucosamine
JPH10237107A (en) Polysaccharide excellent in emulsification power originating from rice plant cell wall, emulsifier and emulsification using the same
DE4429018C2 (en) A process for producing an enzyme immobilizing carrier, regenerated porous chitosan carrier in particulate form and use of the carrier
Gaathon et al. Propyl gallate: enzymatic synthesis in a reverse micelle system
WO2011069106A1 (en) Improved methods of treating a biomass for enzymatic hydrolysis
WO1991016424A1 (en) Process for specific alteration of the properties of enzymes by chemical modification and chemically modified enzymes
Singh et al. A study to evaluate the effect of phyto-silver nanoparticles synthesized using Oxalis stricta plant leaf extract on extracellular fungal amylase and cellulase
JPH02222694A (en) Enzymatic hydrolysis of cellulose-containing material
US10696957B2 (en) Saccharification enzyme composition, saccharification reaction solution, and sugar production method
DE2512606A1 (en) PROCESS FOR PRODUCING A CHOLESTEROL OXIDASE ENZYME
CA2421832C (en) Enhancement of enzyme activity by selective purification
DE2745205A1 (en) NOVEL MALTASE ENZYME PRODUCED BY A NEW YEAST STEM
US3047471A (en) Method of refining amyloglucosidase
EP3372697B1 (en) Saccharification reaction liquid, saccharification enzyme composition, production method for sugar, and production method for ethanol
JP2002078495A (en) Enzymatic treatment method
CN111481479A (en) Method for extracting antioxidant component from cannabis sativa leaves and application of antioxidant component
JP7001053B2 (en) Glycation reaction solution, saccharifying enzyme composition, sugar production method and ethanol production method
CN105408491B (en) Grape method for preparing sweets and the glucose manufactured by this method
JPH02222693A (en) Enzymatic hydrolysis of cellulose-containing material