JPH0222158B2 - - Google Patents

Info

Publication number
JPH0222158B2
JPH0222158B2 JP11934686A JP11934686A JPH0222158B2 JP H0222158 B2 JPH0222158 B2 JP H0222158B2 JP 11934686 A JP11934686 A JP 11934686A JP 11934686 A JP11934686 A JP 11934686A JP H0222158 B2 JPH0222158 B2 JP H0222158B2
Authority
JP
Japan
Prior art keywords
film
plating
plating film
nickel
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11934686A
Other languages
Japanese (ja)
Other versions
JPS62278292A (en
Inventor
Kyoshi Asakawa
Hiroshi Uotani
Tooru Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP11934686A priority Critical patent/JPS62278292A/en
Publication of JPS62278292A publication Critical patent/JPS62278292A/en
Publication of JPH0222158B2 publication Critical patent/JPH0222158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • H01H2011/046Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion by plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はリレー、スイツチ、コネクタ等の電気
接点部を有する電子部品の製造方法に関する。 従来の技術及び発明が解決しようとする問題点 従来、リレー、スイツチ、コネクタ等の電気接
点部を有する電子部品は、その電子部品素地の所
用面に直接又は必要により下地めつき膜を形成し
た上に電気ニツケルめつき膜を形成し、更に電子
部品の種類、用途等に応じ、必要によつてはこの
電気ニツケルめつき膜上に金、銀、錫等のめつき
膜を形成し、電気ニツケルめつき膜もしくはその
上に形成されためつき膜を電気接点部とすること
が行われていた。 しかしながら、従来はこの電気接点部の耐久性
或いは経時的な機能低下の問題が生じる場合があ
つたが、本発明者らはその原因として電気ニツケ
ルめつき膜の膜厚均一性が大きな問題であること
を知見した。 即ち、第1図に示したように、例えば平板状の
被処理物1に電気ニツケルめつきを施す場合、被
処理物1の周縁部2に対しては過大な電気が集中
してこの部分のめつき膜4の厚さが過大になる一
方、被処理物1の中央部3に対する電気量は周縁
部2に比較して非常に少ないので、めつき膜4の
厚さが薄くなる。このように被処理物に対して高
電流密度部と低電流密度部が生じるため、めつき
膜厚にバラつきが生じる。 この被処理物に生じる電流密度差によるめつき
膜厚のバラつきは電気めつきでは必然的に起るも
のであるが、特に従来の電気ニツケルめつきにお
いては通常ニツケルめつき浴としてワツト浴を使
用しており、ワツト浴は後述する実験の結果から
も明らかなように均一電着性が悪いので、高電流
密度部と低電流密度部とのめつき膜厚差がより顕
著なものになる。従つて、このように均一電着性
の悪いめつき浴を用いた場合、平均膜厚的には所
定のめつき膜厚にめつきされていても、実際上は
低電流密度部におけるめつき膜厚がかなり薄く、
このためこのニツケルめつき膜もしくはこのニツ
ケルめつき膜上に形成した接点用膜を電気接点部
とした場合、ニツケルめつき膜の膜厚の薄い低電
流密度部の耐久性が劣つたり、またこの部分の接
点用膜に対するバリヤー性が十分機能せず、電気
接点機能の経時的劣化、変動が生じるなどの問題
が起る。 この場合、ニツケルめつき膜の低電流密度部の
膜厚はめつき時間を延長することにより増大させ
ることができるが、この方法はめつき時間の延長
化に伴う生産性の低下が生じる上、高電流密度部
におけるめつき膜厚が過剰になり、寸法精度上の
問題を引き起す。 本発明は上記事情に鑑みなされたもので、接点
機能を長時間に亘り安定して発揮し、しかも寸法
精度の優れた電子部品の製造方法を提供すること
を目的とする。 問題点を解決するための手段及び作用 本発明者らは、電気接点機能が長時間に亘り安
定して発揮されず、経時的劣化が生じる原因が上
述したように低電流密度部の膜厚が薄いことにあ
り、またこの低電流密度部の膜厚を必要な膜厚以
上に確保すると、高電流密度部の膜厚が過剰にな
り、電子部品の寸法精度上の問題を生じさせるこ
とに鑑み、種々検討を行つた結果、上記目的を達
成するためには電気ニツケルめつきを施した場合
に低電流密度部と高電流密度部との膜厚差をでき
るだけ小さくすること、このためには均一電着性
が良好なめつき浴、具体的には均一電着性がハー
リングセルを用い、2枚の陰極と陽極との間の距
離比を5にして測定した場合に、25%以上のめつ
き浴を使用してめつきを行うことが有効であるこ
とを知見した。また、電気ニツケルめつきに限ら
れず、電気ニツケル合金めつき、電気鉄めつき、
電気コバルトめつきを施す場合も均一電着性が25
%以上のめつき浴を使用することが有効であるこ
とを知見し、かつ下記の電気めつき浴を使用する
ことによりかかる均一電着性が達成されることを
見い出し、本発明をなすに至つたものである。 従つて、本発明は、電子部品素地の所用面に直
接又は下地膜を介して電気ニツケルめつき膜、電
気コバルトめつき膜、電気鉄めつき膜又はこれら
の電気合金めつき膜が形成され、この電気めつき
膜もしくはこの膜上に形成された接点用膜を電気
接点部とする電子部品の製造方法において、ニツ
ケル、コバルト及び鉄から選ばれる金属の水溶性
塩の1種又は2種以上を10〜100g/、アルカ
リ金属、アルカリ土類金属及びアルミニウムから
選ばれる金属のハロゲン化物、硫酸塩及びスルフ
アミン酸塩の1種又は2種以上を200〜500g/
、緩衝剤として有機カルボン酸及びその塩、ホ
ウ酸、水酸化アンモニウム、アンモニウム塩並び
にアミン類から選ばれる水溶性化合物の1種又は
2種以上を含有する電気めつき浴を使用すること
により、ハーリングセルを使用し、2枚の陰極板
と陽極板との距離比を5にして測定した場合の均
一電着性が25%以上の上記電気めつき膜を形成し
たことを特徴とする電子部品の製造方法を提供す
るものであり、本発明によれば電気接点部の接点
機能が安定して長期間確実に発揮され、また接点
用膜に対する電気めつき膜のバリヤー効果が有効
に発揮される電子部品が得られる。 以下、本発明につき更に詳しく説明する。 本発明は電気接点部を有する電子部品、例えば
リレー、スイツチ、コネクタ等を製造するもので
あるが、本発明においてはその電気接点部を形成
するため、まずこれらの電子部品素地の所用面に
直接又は下地膜を介して電気ニツケルめつき膜、
電気コバルトめつき膜、電気鉄めつき膜又はこれ
らの電気合金めつき膜を形成するものである。 この場合、下地膜としては、電子部品の素材、
種類、用途等により適宜選定される。 また、電気ニツケルめつき膜、電気コバルトめ
つき膜、電気鉄めつき膜、又はこれらの電気合金
めつき膜は、本発明においてはこれらの電気めつ
き膜をハーリングセルによりその2枚の陰極板と
陽極板との距離比を5にした場合における均一電
着性が25%以上、より好ましくは35%以上のめつ
き浴を用いて形成する。なお、均一電着性は後述
する方法によつて測定した値である。 ここで、このような均一電着性が25%以上のめ
つき浴としては、ニツケル、コバルト及び鉄から
選ばれる金属の水溶性塩の1種又は2種以上を10
〜100g/、アルカリ金属、アルカリ土類金属
及びアルミニウムから選ばれる金属のハロゲン化
物、硫酸塩及びスルフアミン酸塩の1種又は2種
以上を200〜500g/、緩衝剤として有機カルボ
ン酸及びその塩、ホウ酸、水酸化アンモニウム、
アンモニウム塩並びにアミン類から選ばれる水溶
性化合物の1種又は2種以上を含有する電気めつ
き浴を使用する。 より詳細には、ニツケル、コバルト、鉄の硫酸
塩、スルフアミン酸塩、ハロゲン化物等、具体的
には硫酸ニツケル、硫酸第1鉄、硫酸コバルト、
塩化ニツケル、塩化第1鉄、塩化コバルト、スル
フアミン酸ニツケル、スルフアミン酸第1鉄、ス
ルフアミン酸コバルトなどが挙げられ、これらの
金属塩は10〜100g/の濃度で使用する。合金
めつき被膜を得る場合には、上記水溶性金属塩の
2種以上、あるいは上記水溶性金属塩を主成分と
し、これにタングステン酸及びその塩、モリブデ
ン酸及びその塩、硫酸亜鉛、塩化亜鉛などの亜鉛
塩、硫酸銅、塩化銅などの銅塩、硫酸錫、塩化錫
などの錫塩など、ニツケル、鉄、コバルトと合金
化すべき所望の金属の水溶性塩を選択して使用す
ることができる。また、これら合金化すべき金属
塩の濃度は合金組成において適宜選定されるが、
全金属塩濃度が100g/以下の範囲となるよう
に使用する。 導電性塩としてはアルカリ金属、アルカリ土類
金属、アルミニウムから選ばれる金属のハロゲン
化物、硫酸塩及びスルフアミン酸塩の1種又は2
種以上を使用することが好ましい。具体的には塩
化リチウム、塩化ナトリウム、塩化カリウム、塩
化アルミニウム、塩化アンモニウム、塩化マグネ
シウム、臭化ナトリウム、臭化カリウム、硫酸リ
チウム、硫酸ナトリウム、硫酸カリウム、硫酸ア
ルミニウム、スルフアミン酸ナトリウム、スルフ
アミン酸カリウムなどが例示される。 これらの導電性塩の使用量は200〜500g/で
あり、これら導電性塩を200g/以上の高濃度
で使用することにより高均一電着性が確実に達成
される。 本発明で用いるめつき浴には、上記成分に加え
て更に緩衝剤として有機カルボン酸及びその塩、
ホウ酸、水酸化アンモニウム、アンモニウム塩並
びにアミン類から選ばれる1種又は2種以上の水
溶性化合物を添加するもので、前記導電性塩にこ
れら緩衝剤を併用することにより、均一電着性を
更に向上させることができる。より具体的に例示
すると、緩衝剤としては、リンゴ酸、リンゴ酸ア
ンモニウム、コハク酸、コハク酸アンモニウム、
酢酸カリウム、酢酸ナトリウム、酒石酸アンモニ
ウム、アスコルビン酸、クエン酸、クエン酸アン
モニウム、乳酸、ピルビン酸、プロピオン酸、酪
酸、ギ酸、酢酸、グリコール酸、オキサル酢酸、
ホウ酸、アンモニア水、エチレンジアミン、トリ
エタノールアミン、エタノールアミン、塩化アン
モニウム、臭化アンモニウムなどが挙げられる。
これらの中では、カルボン酸及びその塩、特にク
エン酸及びその塩が好適であり、その塩としては
アンモニウム塩が好ましい。とりわけクエン酸三
アンモニウムがめつき外観、物性(低応力、柔軟
性)の点からも有効である。 上記緩衝剤の使用量は必ずしも制限されない
が、有機カルボン酸及びその塩を用いる場合は5
〜300g/、特に10〜200g/とすることが好
ましい。また、ホウ酸を用いる場合は20〜50g/
、特に30〜45g/、水酸化アンモニウム、カ
ルボン酸アンモニウム以外のアンモニウム塩、ア
ミン類を用いる場合は10〜100g/、特に10〜
50g/とすることが好ましい。この場合、上記
水溶性金属塩の金属イオンとこれら緩衝剤との比
率は重量比として1:1〜1:5とすることが均
一電着性をより高める点から好ましい。また、カ
ルボン酸アンモニウムを用いる場合は、水溶性金
属塩の金属イオンの濃度を5〜30g/程度の低
濃度にしてもこげなどのない良好なめつきが行な
われる上、均一電着性を更に向上させることがで
きるので、水溶性金属塩の金属イオン濃度は上記
低濃度とすることができる。 更に、本発明で用いるめつき浴には、塩酸又は
硫酸を添加することができ、これにより均一電着
性を更に改良することができる。その使用量は
0.1〜30g/、特に1〜3g/とすることが
好ましい。この場合、水溶性金属塩の濃度を30〜
100g/の低濃度とすることが高均一電着性の
めつき被膜を得ることから好ましい。 なお、めつき浴には、必要により次亜リン酸、
亜リン酸、及びこれらの塩やアミンボラン化合
物、ヒドラジン化合物を1〜100g/程度添加
することができ、これによりリン含有又はホウ素
含有めつき被膜を得ることができる。このような
リン又はホウ素含有めつき被膜は、マイクロビツ
カース硬度Hv500〜800の硬質被膜となり、化学
ニツケルめつき被膜と同様に加熱処理により更に
高硬度の被膜を得ることができる。また、ホウ素
含有合金めつき被膜は、優れた半田付け性、ボン
デイング性、耐熱性、耐摩耗性を発揮するように
なる。 なおまた、上記電気めつき浴には、光沢剤、レ
ベリング剤などの添加剤として通常用いられる添
加剤、例えばサツカリン、ナフタレンジスルホン
酸ナトリウム、ナフタレントリスルホン酸ナトリ
ウム、アリルスルホン酸ナトリウム、プロパギル
スルホン酸ナトリウム、ブチンジオール、プロパ
ギルアルコール、クマリン、ホルマリンなどを適
量添加することができる。 また、めつき浴のPHは1〜12、特に1〜10が好
適であり、酸性浴、中性浴、アルカリ性浴のいず
れであつてもよいが、とりわけ酸性めつきにおい
てその効果を有効に発揮する。 上述しためつき浴を用いてめつきする場合のめ
つき条件としては、特に制限されないが、めつき
温度は10〜70℃、陰極電流密度0.01〜50A/dm2
の条件が好適に採用され得る。また、必要に応
じ、空気撹拌、カソードロツキング、ポンプ等に
よる液循環、プロペラ撹拌などの方法で撹拌を行
なうことができる。アノードはそのめつき液の種
類に応じ選定され、例えば電気ニツケル、硫黄含
有ニツケル、カーボナイズドニツケル、鉄、コバ
ルト、合金アノード等の可溶性陽極が用いられ、
また場合によつては白金、カーボン等の不溶性陽
極を使用することもできる。 なお上述しためつき浴を用いてめつきする場
合、電流効率は60〜100%になるようにすること
が高均一電着性を達成し、低電流密度部分のめつ
き膜厚さを厚くし得る点から好ましい。 本発明においては、このようにして電気ニツケ
ルめつき膜、電気コバルトめつき膜、電気鉄めつ
き膜、又はこれらの電気合金めつき膜を形成する
が、この場合これら電気めつき膜の膜厚は電子部
品の種類、用途等によつて適宜選定され、通常1
〜10μm程度とすることができる。 本発明は必要によりこの電気めつき膜上に接点
用膜を形成する。接点用膜としては、電子部品の
種類、用途等に応じ金、銀、半田、錫等の適宜な
接点用膜が形成される。なお、これらの接点用膜
を形成する方法としては、公知の電気めつき法等
が採用し得る。 而して、本発明においては、上記の電気めつき
膜もしくは接点用膜を接点部とするものであり、
本発明により得られた電子部品はその種類等に応
じた公知の使用法に従つて用いられる。 発明の効果 本発明によれば、均一電着性が25%以上のめつ
き浴、即ち、ニツケル、コバルト及び鉄から選ば
れる金属の水溶性塩の1種又は2種以上を10〜
100g/、アルカリ金属、アルカリ土類金属及
びアルミニウムから選ばれる金属のハロゲン化
物、硫酸塩及びスルフアミン酸塩の1種又は2種
以上を200〜500g/、緩衝剤として有機カルボ
ン酸及びその塩、ホウ酸、水酸化アンモニウム、
アンモニウム塩並びにアミン類から選ばれる水溶
性化合物の1種又は2種以上を含有する電気めつ
き浴を用いて電気ニツケルめつき膜、電気コバル
トめつき膜、電気鉄めつき膜又はこれらの合金め
つき膜を形成したことにより、接点部の経時安定
性が良好であり、また接点用膜に対して上記めつ
き膜が良好なバリヤー効果を発揮し、しかも寸法
精度の優れた電子部品が得られる。 以下、実験例と実施例により本発明の効果を具
体的に示す。 実験例 1 NiSO4・6H2O 20g/ NiCl2・6H2O 20 〃 NaCl 300 〃 H3BO3 30 〃 濃硫酸 1.5ml/ PH 1 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、ワツト浴から得られるめつき
によく似た外観を有するニツケルめつき被膜が得
られた。 実験例 2 NiSO4・6H2O 20g/ NiCl2・6H2O 20 〃 KCl 300 〃 クエン酸ナトリウム 40 〃 PH 3 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、銀白色光沢状の柔軟性のある
ニツケルめつき被膜が得られた。 実験例 3 スルフアミン酸ニツケル 40g/ Na2SO4 250 〃 NaCl 30 〃 リンゴ酸 40 〃 アンモニア水 60ml/ PH 6 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、黒みのある無光沢の低応力で
柔軟性のあるニツケルめつき被膜が得られた。 実験例 4 NiCl2・6H2O 40g/ KCl 300 〃 NH4Cl 60 〃 H3BO3 10 〃 PH 3.5 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、無光沢で黒みを有する柔軟性
のあるニツケルめつき被膜が得られた。 実験例 5 NiCl2・6H2O 100g/ KCl 270 〃 H3BO3 30 〃 PH 4.2 〃 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、褐灰色で無光沢のニツケルめ
つき被膜が得られた。 実験例 6 NiSO4・6H2O 50g/ LiCl 300 〃 コハク酸 40 〃 アンモニア水 70ml/ ジエチルアミンボラン 1g/ PH 6 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、完全光沢のニツケル−ホウ素
合金めつき被膜が得られた。 実験例 7 NiSO4・6H2O 60g/ KCl 250 〃 コハク酸 40 〃 アンモニア水 70ml/ 亜リン酸 50g/ 濃硫酸 1.5ml/ PH 2 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、完全光沢のニツケル−リン合
金めつき被膜が得られた。 実験例 8 NiSO4・6H2O 20g/ NiCl2・6H2O 30 〃 Na2SO4 300 〃 H3BO3 40 〃 サツカリンナトリウム 2 〃 2−ブチン−1,4−ジオール 0.2 〃 PH 4.2 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、完全光沢のニツケルめつき被
膜が得られた。 実験例 9 NiCl2・6H2O 40g/ モリブデン酸ナトリウム 10 〃 KCl 250 〃 コハク酸 40 〃 アンモニア水 70ml/ PH 10 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、半光沢を有するニツケル−モ
リブデン合金めつき被膜が得られた。 実験例 10 CoSO4・7H2O 50g/ KBr 300 〃 クエン酸三アンモニウム 10 〃 PH 4.8 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、無光沢で柔軟性のあるコバル
トめつき被膜が得られた。 実験例 11 FeSO4・7H2O 40g/ NaBr 250 〃 酢酸アンモニウム 20 〃 PH 3.5 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行なつたところ、無光沢で柔軟性のある鉄めつ
き被膜が得られた。 比較実験例 1 NiSO4・6H2O 280g/ NiCl2・6H2O 45 〃 H3BO3 40 〃 PH 4.4 上記の電気めつき液(ワツト浴)を用いて、温
度55℃、陰極電流密度2A/dm2において空気撹
拌下でめつきを行ない、ニツケルめつき被膜を得
た。 比較実験例 2 スルフアミン酸ニツケル 300g/ NiCl2・6H2O 30 〃 H3BO3 40 〃 PH 4.4 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行ない、ニツケルめつき被膜を得た。 比較実験例 3 NiSO4・6H2O 280g/ NiCl2・6H2O 40 〃 CoSO4・7H2O 35 〃 ギ酸ナトリウム 25 〃 H3BO3 40 〃 PH 4.2 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行ない、ニツケル−コバルト合金めつき被膜を
得た。 比較実験例 4 NiCl2・6H2O 300g/ H3BO3 35 〃 PH 4.2 上記の電気めつき液を用いて、温度55℃、陰極
電流密度2A/dm2において空気撹拌下でめつき
を行ない、ニツケルめつき被膜を得た。 次に、上記実験例1〜11及び比較実験例1〜4
の電気めつき液につき、第2図に示すハーリング
セルを用いて均一電着性を調べた。 ここで、第2図において5はアクリル樹脂製の
ハーリングセルであり、その内寸法は長さ240mm、
幅63mm、深さ100mmで、その内部に1500mlのめつ
き液6が入れられる。また、7は61×100×1mm
の大きさの陽極板であり、図示していないが、支
持体に取り付けられ、ハーリングセル内の所用位
置に固定されるようになつている。さらに8,8
はハーリングセル5内の長さ方向両端部にそれぞ
れ配設された61×100×0.3mmの大きさの陰極板で
ある。 このハーリングセルを用いて均一電着性を測定
する場合は、陽極板をハーリングセル内の所用位
置に固定して2枚の陰極板と陽極板との間の距離
比(a/b)を所用の値に設定する(本発明にお
いては距離比5)。そして、所定時間めつきを行
つた後、2枚の陰極板に析出しためつき被膜の重
量を測定し、下記式から均一電着性を算出するも
のである。 本実験においては、陽極に電気ニツケル板、陰
極にそれぞれ裏面にテープコーテイングを施した
銅板2枚を用い、距離比5に設定して、電気めつ
き液を液温55℃に保ち、ゆるい空気撹拌を行ない
ながら総電流2Aにて30分間通電した。 T(%)=P−M/P+M−2×100 但し、 T:均一電着性 P:距離比a/b(本実験では5) M:陰極に析出しためつき被膜重量比 (M1/M2:M1は陽極に近い方の陰極重量、M2
は陽極に遠い方の陰極重量) 上記の式から明らかなように、均一電着性が0
%であるということは陰極に析出しためつき被膜
重量比が陽極と陰極との距離比に等しいというこ
とであり、このことは陰極に対する電流分布の相
違通りにめつき膜厚差が生じるということを意味
する。これに対し、均一電着性が100%であると
いうことは2枚の陰極に析出しためつき膜の重量
が陽極と陰極の距離比に依存することなく同じで
あり、陰極に対して電流分布が生じてもめつき膜
厚は均一であるということを意味する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing electronic components having electrical contact portions such as relays, switches, and connectors. Prior Art and Problems to be Solved by the Invention Conventionally, electronic components having electrical contact portions such as relays, switches, and connectors have been manufactured using electronic components such as those that are manufactured directly on the intended surface of the electronic component substrate or after forming a base plating film if necessary. An electrical nickel plating film is formed on the electrical nickel plating film, and if necessary, a plating film of gold, silver, tin, etc. is formed on the electrical nickel plating film, depending on the type of electronic component, its use, etc. A plating film or a plating film formed thereon has been used as an electrical contact portion. However, in the past, there have been cases where the durability of this electrical contact part or functional deterioration over time has occurred, but the present inventors believe that the major problem is the uniformity of the film thickness of the electrical nickel plating film. I found out that. That is, as shown in FIG. 1, when applying electric nickel plating to, for example, a flat workpiece 1, excessive electricity is concentrated on the peripheral edge 2 of the workpiece 1, causing damage to this area. While the thickness of the plating film 4 becomes excessive, the amount of electricity applied to the center portion 3 of the object 1 to be processed is much smaller than that to the peripheral portion 2, so the thickness of the plating film 4 becomes thin. In this way, high current density areas and low current density areas occur on the object to be processed, resulting in variations in the plating film thickness. This variation in the plating film thickness due to the difference in current density that occurs in the workpiece is inevitable in electroplating, but in particular, in conventional electric nickel plating, a Watt bath is usually used as the nickel plating bath. As is clear from the results of experiments described below, the Watt bath has poor uniform electrodeposition properties, so the difference in plating film thickness between the high current density area and the low current density area becomes more pronounced. Therefore, when using a plating bath with such poor uniformity of electrodeposition, even if the average film thickness is plated to a predetermined thickness, in reality, the plating in the low current density area is poor. The film thickness is quite thin,
Therefore, when this nickel plating film or a contact film formed on this nickel plating film is used as an electrical contact, the durability of the low current density area where the nickel plating film is thin may be poor, or The barrier properties of this part to the contact film do not function sufficiently, causing problems such as deterioration and fluctuation of the electrical contact function over time. In this case, the film thickness of the low current density part of the nickel plated film can be increased by extending the plating time, but this method not only causes a decrease in productivity due to the prolongation of the plating time, but also The plating film thickness in the dense areas becomes excessive, causing problems in dimensional accuracy. The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an electronic component that stably exhibits a contact function over a long period of time and has excellent dimensional accuracy. Means and Effects for Solving the Problems The present inventors have discovered that the reason why the electrical contact function is not stably exhibited over a long period of time and deterioration occurs over time is that the film thickness at the low current density portion is insufficient as described above. In addition, if the film thickness in the low current density area is greater than the required film thickness, the film thickness in the high current density area will become excessive, causing problems with the dimensional accuracy of electronic components. As a result of various studies, we found that in order to achieve the above objective, it is necessary to minimize the difference in film thickness between the low current density area and the high current density area when electronickel plating is applied. A plating bath with good electrodeposition properties, specifically, a plating bath with uniform electrodeposition properties of 25% or more when measured using a Haring cell with a distance ratio of 5 between the two cathodes and anodes. It has been found that plating using a bath is effective. In addition to electric nickel plating, electric nickel alloy plating, electric iron plating,
Even when applying electric cobalt plating, uniform electrodeposition is 25%.
The present inventors have found that it is effective to use a plating bath of % or more, and that such uniform electrodeposition can be achieved by using the following electroplating bath, and have thus come up with the present invention. It is ivy. Therefore, in the present invention, an electric nickel plating film, an electric cobalt plating film, an electric iron plating film, or an electric alloy plating film thereof is formed on the required surface of an electronic component base directly or through a base film, In a method for manufacturing an electronic component using this electroplated film or a contact film formed on this film as an electrical contact part, one or more water-soluble salts of metals selected from nickel, cobalt, and iron are added. 10 to 100 g/200 to 500 g/of one or more of metal halides, sulfates, and sulfamates selected from alkali metals, alkaline earth metals, and aluminum.
, by using an electroplating bath containing one or more water-soluble compounds selected from organic carboxylic acids and their salts, boric acid, ammonium hydroxide, ammonium salts, and amines as a buffer. An electronic component characterized in that the electroplated film has a uniform electrodeposition of 25% or more when measured using a cell with a distance ratio of 5 between two cathode plates and an anode plate. The present invention provides an electronic manufacturing method in which the contact function of the electrical contact portion is stable and reliably exhibited for a long period of time, and the barrier effect of the electroplated film against the contact film is effectively exhibited. Parts can be obtained. The present invention will be explained in more detail below. The present invention is for manufacturing electronic components having electrical contact portions, such as relays, switches, connectors, etc. In the present invention, in order to form the electrical contact portions, first, the required surfaces of these electronic component substrates are directly coated. Or an electric nickel plating film via a base film,
An electric cobalt plating film, an electric iron plating film, or an electric alloy plating film thereof is formed. In this case, the base film may be the material of the electronic component,
It is selected as appropriate depending on the type, purpose, etc. In addition, in the present invention, an electrolytic nickel plating film, an electrolytic cobalt plating film, an electrolytic iron plating film, or an electrolytic alloy plating film thereof is used in the present invention. It is formed using a plating bath having a uniform electrodeposition property of 25% or more, more preferably 35% or more when the distance ratio between the electrode plate and the anode plate is set to 5. Note that the uniform electrodeposition property is a value measured by the method described below. Here, such a plating bath having a uniform electrodeposition of 25% or more is one containing one or more water-soluble salts of metals selected from nickel, cobalt, and iron.
~100g/, 200~500g/of one or more of metal halides, sulfates, and sulfamates selected from alkali metals, alkaline earth metals, and aluminum, organic carboxylic acids and their salts as buffers, boric acid, ammonium hydroxide,
An electroplating bath containing one or more water-soluble compounds selected from ammonium salts and amines is used. More specifically, nickel, cobalt, iron sulfates, sulfamates, halides, etc., specifically nickel sulfate, ferrous sulfate, cobalt sulfate,
Examples include nickel chloride, ferrous chloride, cobalt chloride, nickel sulfamate, ferrous sulfamate, and cobalt sulfamate, and these metal salts are used at a concentration of 10 to 100 g/g. When obtaining an alloy plating film, two or more of the above water-soluble metal salts or the above water-soluble metal salts are used as the main component, and tungstic acid and its salts, molybdic acid and its salts, zinc sulfate, zinc chloride, etc. Water-soluble salts of the desired metals to be alloyed with nickel, iron, and cobalt can be selected and used, such as zinc salts, copper salts such as copper sulfate, copper chloride, tin salts such as tin sulfate, tin chloride, etc. can. In addition, the concentration of these metal salts to be alloyed is selected depending on the alloy composition, but
Use so that the total metal salt concentration is within the range of 100g/or less. The conductive salt is one or two of metal halides, sulfates, and sulfamates selected from alkali metals, alkaline earth metals, and aluminum.
It is preferable to use more than one species. Specifically, lithium chloride, sodium chloride, potassium chloride, aluminum chloride, ammonium chloride, magnesium chloride, sodium bromide, potassium bromide, lithium sulfate, sodium sulfate, potassium sulfate, aluminum sulfate, sodium sulfamate, potassium sulfamate, etc. is exemplified. The amount of these conductive salts used is 200 to 500 g/, and by using these conductive salts at a high concentration of 200 g/or more, high uniformity of electrodeposition can be achieved reliably. In addition to the above components, the plating bath used in the present invention further contains organic carboxylic acids and their salts as buffering agents.
One or more water-soluble compounds selected from boric acid, ammonium hydroxide, ammonium salts, and amines are added, and by using these buffers in combination with the conductive salt, uniform electrodeposition can be achieved. It can be further improved. More specifically, examples of the buffer include malic acid, ammonium malate, succinic acid, ammonium succinate,
Potassium acetate, sodium acetate, ammonium tartrate, ascorbic acid, citric acid, ammonium citrate, lactic acid, pyruvic acid, propionic acid, butyric acid, formic acid, acetic acid, glycolic acid, oxalacetic acid,
Examples include boric acid, aqueous ammonia, ethylenediamine, triethanolamine, ethanolamine, ammonium chloride, and ammonium bromide.
Among these, carboxylic acids and salts thereof, particularly citric acid and salts thereof are preferred, and ammonium salts are preferred as the salts. Triammonium citrate is particularly effective in terms of plating appearance and physical properties (low stress, flexibility). The amount of the above buffer used is not necessarily limited, but when using organic carboxylic acids and their salts,
It is preferable to set the amount to 300 g/, particularly 10 to 200 g/. In addition, when using boric acid, 20 to 50g/
, especially 30 to 45 g/, when using ammonium salts other than ammonium hydroxide and ammonium carboxylate, and amines, 10 to 100 g/, especially 10 to
It is preferable to set it as 50g/. In this case, it is preferable that the ratio of the metal ions of the water-soluble metal salt to these buffering agents be 1:1 to 1:5 in terms of weight ratio from the viewpoint of further improving uniform electrodeposition. In addition, when ammonium carboxylate is used, good plating without scorching can be achieved even when the metal ion concentration of the water-soluble metal salt is as low as 5 to 30 g/m, and uniform electrodeposition is further improved. Therefore, the metal ion concentration of the water-soluble metal salt can be set to the above-mentioned low concentration. Furthermore, hydrochloric acid or sulfuric acid can be added to the plating bath used in the present invention, thereby further improving uniform electrodeposition. Its usage is
The amount is preferably 0.1 to 30 g/, particularly 1 to 3 g/. In this case, the concentration of water-soluble metal salt should be adjusted to 30~
It is preferable to use a low concentration of 100 g/l because a plated film with high uniformity of electrodeposition can be obtained. In addition, if necessary, hypophosphorous acid,
Approximately 1 to 100 g of phosphorous acid, salts thereof, amine borane compounds, and hydrazine compounds can be added, thereby making it possible to obtain a phosphorus-containing or boron-containing plating film. Such a phosphorus- or boron-containing plating film becomes a hard film with a micro-Vickers hardness of Hv500 to 800, and a film with even higher hardness can be obtained by heat treatment in the same way as a chemical nickel plating film. In addition, the boron-containing alloy plating film exhibits excellent solderability, bonding properties, heat resistance, and wear resistance. Additionally, the electroplating bath may contain additives commonly used as brighteners, leveling agents, etc., such as saccharin, sodium naphthalene disulfonate, sodium naphthalene trisulfonate, sodium allylsulfonate, and propagyl sulfonate. Appropriate amounts of sodium, butynediol, propargyl alcohol, coumarin, formalin, etc. can be added. In addition, the pH of the plating bath is preferably 1 to 12, particularly 1 to 10, and may be any of acidic, neutral, and alkaline baths, but its effects are particularly effective in acidic plating. do. The plating conditions when plating using the above-mentioned plating bath are not particularly limited, but the plating temperature is 10 to 70°C, and the cathode current density is 0.01 to 50 A/ dm2.
The following conditions may be suitably employed. Further, if necessary, stirring can be performed by methods such as air stirring, cathode locking, liquid circulation using a pump, etc., and propeller stirring. The anode is selected according to the type of plating solution, and soluble anodes such as electric nickel, sulfur-containing nickel, carbonized nickel, iron, cobalt, and alloy anodes are used.
In some cases, an insoluble anode such as platinum or carbon may also be used. In addition, when plating using the above-mentioned plating bath, the current efficiency should be set to 60 to 100% to achieve high uniformity of electrodeposition and increase the thickness of the plating film in the low current density area. It is preferable from the viewpoint of obtaining. In the present invention, an electrolytic nickel plating film, an electrolytic cobalt plating film, an electrolytic iron plating film, or an electrolytic alloy plating film thereof is formed in this way, but in this case, the film thickness of these electroplating films is is selected depending on the type of electronic component, usage, etc., and is usually 1.
The thickness can be approximately 10 μm. In the present invention, a contact film is formed on this electroplated film if necessary. As the contact film, a suitable contact film of gold, silver, solder, tin, etc. is formed depending on the type of electronic component, its use, etc. Note that a known electroplating method or the like may be employed as a method for forming these contact films. Therefore, in the present invention, the above electroplated film or contact film is used as a contact part,
The electronic component obtained according to the present invention is used according to a known method depending on its type. Effects of the Invention According to the present invention, a plating bath having a uniform electrodeposition property of 25% or more, that is, 10 to 10% of one or more water-soluble salts of metals selected from nickel, cobalt, and iron, is used.
100 g/200 to 500 g/of one or more of metal halides, sulfates, and sulfamates selected from alkali metals, alkaline earth metals, and aluminum, organic carboxylic acids and their salts, and boron as buffering agents. acid, ammonium hydroxide,
An electroplating bath containing one or more water-soluble compounds selected from ammonium salts and amines is used to produce electroplated nickel, cobalt, iron, or alloys of these. By forming the plated film, the contact part has good stability over time, and the plated film has a good barrier effect against the contact film, and an electronic component with excellent dimensional accuracy can be obtained. . Hereinafter, the effects of the present invention will be specifically illustrated by experimental examples and examples. Experimental example 1 NiSO 4・6H 2 O 20g / NiCl 2・6H 2 O 20 〃 NaCl 300 〃 H 3 BO 3 30 〃 Concentrated sulfuric acid 1.5ml / PH 1 Using the above electroplating solution, temperature 55℃, cathode When plating was carried out under air agitation at a current density of 2 A/dm 2 , a nickel plating film was obtained which had an appearance very similar to the plating obtained from a Watt bath. Experimental example 2 NiSO 4・6H 2 O 20g/ NiCl 2・6H 2 O 20 〃 KCl 300 〃 Sodium citrate 40 〃 PH 3 Using the above electroplating solution, the temperature was 55℃ and the cathode current density was 2A/dm 2 When plating was carried out under air agitation, a flexible nickel plating film with a silvery white luster was obtained. Experimental example 3 Nickel sulfamate 40g / Na 2 SO 4 250 〃 NaCl 30 〃 Malic acid 40 〃 Ammonia water 60ml / PH 6 Using the above electroplating solution, air was applied at a temperature of 55℃ and a cathode current density of 2A/dm 2 When plating was carried out under stirring, a dark, matte, low stress and flexible nickel plating film was obtained. Experimental example 4 NiCl 2・6H 2 O 40g/ KCl 300 〃 NH 4 Cl 60 〃 H 3 BO 3 10 〃 PH 3.5 Using the above electroplating solution, air was applied at a temperature of 55℃ and a cathode current density of 2A/dm 2 When plating was carried out under stirring, a flexible nickel plating film with a matte black color was obtained. Experimental Example 5 NiCl 2・6H 2 O 100g / KCl 270 〃 H 3 BO 3 30 〃 PH 4.2 〃 Using the above electroplating solution, plating was carried out under air stirring at a temperature of 55℃ and a cathode current density of 2A/dm 2. As a result of polishing, a brownish-gray, matte nickel plating film was obtained. Experimental example 6 NiSO 4 6H 2 O 50g / LiCl 300 〃 Succinic acid 40 〃 Ammonia water 70ml / Diethylamine borane 1g / PH 6 Using the above electroplating solution, at a temperature of 55℃ and a cathode current density of 2A/dm 2 When plating was carried out under air agitation, a completely glossy nickel-boron alloy plated film was obtained. Experimental example 7 NiSO 4・6H 2 O 60g / KCl 250 〃 Succinic acid 40 〃 Ammonia water 70ml / Phosphorous acid 50g / Concentrated sulfuric acid 1.5ml / PH 2 Using the above electroplating solution, temperature 55℃, cathode current When plating was carried out under air agitation at a density of 2 A/dm 2 , a completely glossy nickel-phosphorus alloy plated film was obtained. Experimental example 8 NiSO 4・6H 2 O 20g/ NiCl 2・6H 2 O 30 〃 Na 2 SO 4 300 〃 H 3 BO 3 40 〃 Satucharin sodium 2 〃 2-Butyne-1,4-diol 0.2 〃 PH 4.2 Above When plating was carried out using the electroplating solution at a temperature of 55° C. and a cathode current density of 2 A/dm 2 with air stirring, a completely glossy nickel plating film was obtained. Experimental example 9 NiCl 2・6H 2 O 40g / Sodium molybdate 10 〃 KCl 250 〃 Succinic acid 40 〃 Ammonia water 70ml / PH 10 Using the above electroplating solution, temperature 55℃, cathode current density 2A / dm 2 When plating was carried out under air agitation, a semi-glossy nickel-molybdenum alloy plating film was obtained. Experimental example 10 CoSO 4・7H 2 O 50g/ KBr 300 〃 Triammonium citrate 10 〃 PH 4.8 Using the above electroplating solution, plating was carried out at a temperature of 55℃ and a cathode current density of 2A/dm 2 under air stirring. As a result, a matte and flexible cobalt plating film was obtained. Experimental example 11 FeSO 4・7H 2 O 40g/ NaBr 250 〃 Ammonium acetate 20 〃 PH 3.5 Using the above electroplating solution, plating was performed at a temperature of 55℃ and a cathode current density of 2A/dm 2 under air stirring. After aging, a matte and flexible iron-plated film was obtained. Comparative experiment example 1 NiSO 4・6H 2 O 280g / NiCl 2・6H 2 O 45 〃 H 3 BO 3 40 〃 PH 4.4 Using the above electroplating solution (Watt bath), the temperature was 55°C and the cathode current density was 2A. Plating was carried out under air agitation at /dm 2 to obtain a nickel plated film. Comparative experiment example 2 Nickel sulfamate 300g / NiCl 2.6H 2 O 30 〃 H 3 BO 3 40 〃 PH 4.4 Using the above electroplating solution, at a temperature of 55°C and a cathode current density of 2A/dm 2 under air stirring A nickel plating film was obtained. Comparative experiment example 3 NiSO 4・6H 2 O 280g/ NiCl 2・6H 2 O 40 〃 CoSO 4・7H 2 O 35 〃 Sodium formate 25 〃 H 3 BO 3 40 〃 PH 4.2 Using the above electroplating solution, Plating was carried out under air stirring at a temperature of 55° C. and a cathode current density of 2 A/dm 2 to obtain a nickel-cobalt alloy plating film. Comparative Experiment Example 4 NiCl 2・6H 2 O 300g/H 3 BO 3 35 〃 PH 4.2 Using the above electroplating solution, plating was performed at a temperature of 55°C and a cathode current density of 2A/dm 2 with air stirring. , a nickel plating film was obtained. Next, the above Experimental Examples 1 to 11 and Comparative Experimental Examples 1 to 4
The uniform electrodeposition properties of the electroplating solution were examined using a Harling cell shown in FIG. Here, in Fig. 2, 5 is a Harling cell made of acrylic resin, and its internal dimensions are 240 mm in length,
It has a width of 63 mm and a depth of 100 mm, and 1500 ml of plating liquid 6 can be put inside it. Also, 7 is 61×100×1mm
The anode plate is attached to a support (not shown) and is adapted to be fixed in position within the Harling cell. 8,8 more
are cathode plates each having a size of 61 x 100 x 0.3 mm, which are disposed at both longitudinal ends of the Haring cell 5. When measuring uniform electrodeposition using this Haring cell, fix the anode plate at the required position in the Haring cell and measure the distance ratio (a/b) between the two cathode plates and the anode plate. (distance ratio 5 in the present invention). After plating for a predetermined period of time, the weight of the plating film deposited on the two cathode plates is measured, and uniform electrodeposition is calculated from the following formula. In this experiment, an electric nickel plate was used as the anode, and two copper plates with tape coating on the back were used as the cathode.The distance ratio was set to 5, the electroplating solution was kept at a temperature of 55℃, and the electroplating solution was gently stirred with air. While doing so, electricity was applied for 30 minutes at a total current of 2A. T (%) = P−M/P+M−2×100 However, T: Uniform electrodeposition P: Distance ratio a/b (5 in this experiment) M: Weight ratio of the film deposited on the cathode (M 1 / M2 : M1 is the weight of the cathode closer to the anode, M2
is the weight of the cathode farthest from the anode) As is clear from the above equation, uniform electrodeposition is 0.
% means that the weight ratio of the plating film deposited on the cathode is equal to the distance ratio between the anode and the cathode, and this means that the difference in plating film thickness occurs according to the difference in current distribution to the cathode. means. On the other hand, 100% uniform electrodeposition means that the weight of the deposited film deposited on the two cathodes is the same regardless of the distance ratio between the anode and the cathode, and the current distribution with respect to the cathode is 100%. This means that even if this occurs, the plating film thickness is uniform.

【表】 実施例 銅製のコネクター用素材に、実験例2のめつき
液を用いて実験例2と同様の条件にて5分間ニツ
ケルめつきを行つた。次いでこのニツケルめつき
膜上に常法に従つて平均膜厚2μmの金めつき膜
を形成した。 次にその接点部の経時的変化を接触抵抗測定に
より調べたところ、接触抵抗の上昇は認められな
かつた。 比較のため、比較実験例1のめつき液を使用
し、上記と同様の実験を行つた結果、その原因は
明確ではないが、接触抵抗の上昇が認められた。 なお、実験例2及び比較実験例1のめつきを用
いてめつきした場合の平均膜厚は1.9μmで、互に
同じである。
[Table] Example A copper connector material was plated with nickel for 5 minutes using the plating solution of Experimental Example 2 under the same conditions as Experimental Example 2. Next, a gold plating film having an average thickness of 2 μm was formed on this nickel plating film according to a conventional method. Next, when the change in the contact portion over time was investigated by contact resistance measurement, no increase in contact resistance was observed. For comparison, an experiment similar to the above was conducted using the plating solution of Comparative Experiment Example 1, and as a result, an increase in contact resistance was observed, although the cause was not clear. Note that the average film thickness when plating was performed using the plating methods of Experimental Example 2 and Comparative Experimental Example 1 was 1.9 μm, which was the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気ニツケルめつき法でめつきした場
合における従来の被めつき物に対するめつき膜の
形成状態を示す断面図、第2図はハーリングセル
の概略断面図である。 5……ハーリングセル、6……陽極板、7……
陰極板。
FIG. 1 is a cross-sectional view showing the state of formation of a plating film on a conventional plated object when plated by the electric nickel plating method, and FIG. 2 is a schematic cross-sectional view of a Harling cell. 5...Harling cell, 6...Anode plate, 7...
Cathode plate.

Claims (1)

【特許請求の範囲】[Claims] 1 電子部品素地の所用面に直接又は下地膜を介
して電気ニツケルめつき膜、電気コバルトめつき
膜、電気鉄めつき膜又はこれらの電気合金めつき
膜が形成され、この電気めつき膜もしくはこの膜
上に形成された接点用膜を電気接点部とする電子
部品の製造方法において、ニツケル、コバルト及
び鉄から選ばれる金属の水溶性塩の1種又は2種
以上を10〜100g/、アルカリ金属、アルカリ
土類金属及びアルミニウムから選ばれる金属のハ
ロゲン化物、硫酸塩及びスルフアミン酸塩の1種
又は2種以上を200〜500g/、緩衝剤として有
機カルボン酸及びその塩、ホウ酸、水酸化アンモ
ニウム、アンモニウム塩並びにアミン類から選ば
れる水溶性化合物の1種又は2種以上を含有する
電気めつき浴を使用することにより、ハーリング
セルを使用し、2枚の陰極板と陽極板との距離比
を5にして測定した場合の均一電着性が25%以上
の上記電気めつき膜を形成したことを特徴とする
電子部品の製造方法。
1. An electric nickel plating film, an electric cobalt plating film, an electric iron plating film, or an electric alloy plating film thereof is formed on the required surface of an electronic component substrate directly or through a base film, and this electroplating film or In a method of manufacturing an electronic component using a contact film formed on this film as an electrical contact part, 10 to 100 g of one or more water-soluble salts of metals selected from nickel, cobalt, and iron are mixed with an alkali. 200 to 500 g of one or more of metal halides, sulfates, and sulfamates selected from metals, alkaline earth metals, and aluminum, organic carboxylic acids and their salts, boric acid, and hydroxide as buffering agents. By using an electroplating bath containing one or more water-soluble compounds selected from ammonium, ammonium salts, and amines, a Haring cell is used, and the distance between two cathode plates and an anode plate is A method for manufacturing an electronic component, characterized in that the electroplated film described above is formed with a uniform electrodeposition of 25% or more when measured at a ratio of 5.
JP11934686A 1986-05-26 1986-05-26 Production of electronic parts Granted JPS62278292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11934686A JPS62278292A (en) 1986-05-26 1986-05-26 Production of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11934686A JPS62278292A (en) 1986-05-26 1986-05-26 Production of electronic parts

Publications (2)

Publication Number Publication Date
JPS62278292A JPS62278292A (en) 1987-12-03
JPH0222158B2 true JPH0222158B2 (en) 1990-05-17

Family

ID=14759212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11934686A Granted JPS62278292A (en) 1986-05-26 1986-05-26 Production of electronic parts

Country Status (1)

Country Link
JP (1) JPS62278292A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737790B2 (en) * 1999-10-01 2011-08-03 株式会社シミズ Nickel plating bath without boric acid
JP4636790B2 (en) * 2003-11-27 2011-02-23 柿原工業株式会社 High rigidity / hardness plating method for resin casing
US11035048B2 (en) * 2017-07-05 2021-06-15 Macdermid Enthone Inc. Cobalt filling of interconnects

Also Published As

Publication number Publication date
JPS62278292A (en) 1987-12-03

Similar Documents

Publication Publication Date Title
US5024733A (en) Palladium alloy electroplating process
JP3354767B2 (en) Alkaline zinc and zinc alloy electroplating baths and processes
CN101165220B (en) A hard gold alloy plating bath
KR19990045291A (en) Palladium alloy electroplating composition and electroplating method using the same
JPH0319308B2 (en)
JPH05271980A (en) Palladium-nickel alloy plating liquid
US4554219A (en) Synergistic brightener combination for amorphous nickel phosphorus electroplatings
KR100312840B1 (en) Nickel or nickel alloy electroplating bath and plating process using the same
JPH0222160B2 (en)
US4310392A (en) Electrolytic plating
NL8000586A (en) ELECTROLYTIC COATING BATH AND METHOD FOR PRODUCING GLOSSY, HIGHLY SOLID ELECTROLYTIC NICKEL IRON DEPOSITS.
US4328286A (en) Electrodeposited palladium, method of preparation and electrical contact made thereby
US4411965A (en) Process for high speed nickel and gold electroplate system and article having improved corrosion resistance
US3500537A (en) Method of making palladium coated electrical contacts
US3684666A (en) Copper electroplating in a citric acid bath
JPS6141999B2 (en)
JPH0222158B2 (en)
GB2086428A (en) Hardened gold plating process
US4297179A (en) Palladium electroplating bath and process
JP2005068445A (en) Metallic member covered with metal
US3475290A (en) Bright gold plating solution and process
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
JPS63114997A (en) Electroplating method
US4379738A (en) Electroplating zinc
JPS6029483A (en) Pure gold plating liquid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees