JPH02221495A - Paper strength enhancer for z-axis and interlayer paper strength, method for enhancing, freeness improver and paper making - Google Patents

Paper strength enhancer for z-axis and interlayer paper strength, method for enhancing, freeness improver and paper making

Info

Publication number
JPH02221495A
JPH02221495A JP1042180A JP4218089A JPH02221495A JP H02221495 A JPH02221495 A JP H02221495A JP 1042180 A JP1042180 A JP 1042180A JP 4218089 A JP4218089 A JP 4218089A JP H02221495 A JPH02221495 A JP H02221495A
Authority
JP
Japan
Prior art keywords
paper strength
paper
acrylamide
reaction
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1042180A
Other languages
Japanese (ja)
Other versions
JP2665969B2 (en
Inventor
Toshihiko Takagi
斗志彦 高木
Kenji Tsuboi
賢次 坪井
Hiroshi Ito
博 伊藤
Atsuhiko Nitta
新田 敦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1042180A priority Critical patent/JP2665969B2/en
Priority to US07/454,526 priority patent/US5039757A/en
Priority to EP89313527A priority patent/EP0377313B1/en
Priority to DE68921598T priority patent/DE68921598T2/en
Priority to NO895265A priority patent/NO178197C/en
Priority to FI896275A priority patent/FI101711B/en
Priority to KR1019890019884A priority patent/KR930005028B1/en
Priority to CA002006768A priority patent/CA2006768C/en
Publication of JPH02221495A publication Critical patent/JPH02221495A/en
Priority to US07/725,611 priority patent/US5239014A/en
Priority to US08/082,773 priority patent/US5292821A/en
Application granted granted Critical
Publication of JP2665969B2 publication Critical patent/JP2665969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To obtain the subject enhancer, capable of improving Z-axis paper strength, interlayer paper strength and freeness, containing a cationic polyacrylamide produced by reacting a specific acrylamide-based copolymer with a hypohalite within an alkaline region as an active component. CONSTITUTION:The objective paper strength enhancer containing a cationic polyacrylamide produced by reacting an acrylamide-based copolymer containing (A) 97-60mol%, preferably 95-70mol% carbamoyl groups and (B) 3-40mol%, preferably 5-30mol% N,N-dimethyl(meth)acrylamide groups with a hypohalite (e.g. sodium hypochlorite) within an alkaline region as an active component.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は紙力増強剤、より詳しくはアクリルアミド系共
重合体をアルカリ性領域下で次亜ハロゲン融塩と反応さ
せて製造される、カチオン性ポリアクリルアミドを有効
成分とする、Z軸紙力強度及び居間紙力強度の紙力増強
剤及び増強方法、濾水向上剤並びに抄紙に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a paper strength agent, more specifically, a cationic paper strength agent produced by reacting an acrylamide copolymer with a hypohalite molten salt in an alkaline region. The present invention relates to a paper strength enhancer and method for increasing Z-axis paper strength and living room paper strength, a drainage improver, and paper making, which contain polyacrylamide as an active ingredient.

[従来技術とその問題点] 現在は紙の再生利用化が進み、製造用原料に占める古紙
の量は増加する傾向にある0日本の古紙の回収率は例え
ば1983年(昭和58年)ては49%に達しており、
世界最高の水準にある。古紙の中で最も回収率の高い品
種は、新聞1次いで段ボールとなつている。このような
状況下では原料に占める古紙の利用の増加に伴うamの
微細化の進行や、更には填料、サイズ剤等の混入などの
要因により紙力は低下する傾向にある。従って1紙力の
低下を抑えて紙の品質を保つためには紙力増強剤(紙力
剤)の使用に頼らざるを得ない、特に古紙の回収率の高
い段ボールや新聞紙は原料の問題が深刻であるが、それ
ばかりではなく、以下に述べる点からも優れた紙力剤、
特にZ軸紙力強度及び層間紙力強度に優れた紙力剤が望
まれている0例えば、段ボールの場合、その成形加工に
際しての接着方法は従来のホッチキス等の止具による方
法からホットメルト接着による方法へ転換しており、表
面のめくれ等のトラブルが生じ易くなつている。そのト
ラブルを防ぐためにはZ軸強度及び居間紙力強度を向上
させる優れた内添用の紙力剤が必須である。
[Prior art and its problems] Currently, the recycling of paper is progressing, and the amount of used paper as a raw material for manufacturing is on the rise. It has reached 49%,
It is at the highest level in the world. The type of used paper with the highest recovery rate is newspaper, followed by cardboard. Under such circumstances, paper strength tends to decrease due to factors such as the progress of finer AM due to the increase in the use of waste paper as a raw material, and furthermore, the incorporation of fillers, sizing agents, etc. Therefore, in order to suppress the decline in paper strength and maintain paper quality, it is necessary to rely on the use of paper strength enhancers (paper strength agents).Especially for cardboard and newspapers, which have a high recovery rate of used paper, raw materials are a problem. Although this is a serious issue, it is not only an excellent paper strength agent, but also from the following points.
In particular, a paper strength agent with excellent Z-axis paper strength and interlaminar paper strength is desired. For example, in the case of corrugated board, the bonding method used during the molding process has changed from the conventional method using staples or other fasteners to hot melt adhesive. However, problems such as surface peeling are becoming more likely to occur. In order to prevent this problem, an excellent internal paper strength agent that improves Z-axis strength and living room paper strength is essential.

一方、多層抄紙法などにおいては、特に抄紙機の高速化
に伴9て2輌強度および居間紙力強度は低下する傾向に
あり、居間での剥離などの問題も生じ易くなるため居間
紙力強度が要求される。
On the other hand, in the multi-layer paper making method, especially as the speed of the paper machine increases, the two-car strength and the living paper strength tend to decrease, and problems such as peeling in the living room tend to occur, so the living paper strength is required.

また、新聞紙においてもオフセット印刷に対応するため
にはZ軸紙力強度を上げる優れた紙力剤の開発が望まれ
ている。
Furthermore, in order to support offset printing in newspapers, it is desired to develop an excellent paper strength agent that increases Z-axis paper strength.

アクリルアミドまたはメタクリルアミド系重合体をアル
カリ性領域下で次亜ハロゲン酸塩と反応させる。いわゆ
るホフマン転移反応を行うと比較的安価でアクリルアミ
ド系重合体に一級アミノ基を導入することができる。こ
のアクリルアミド系重合体のホフマン転移反応物は紙力
増強剤として使用されるが、このものは他の1例えばポ
リアクリルアミドのマンニッヒ変性物等に比べてZ軸紙
力強度ならびに濾水性向上に秀でている特徴を持つため
、アクリルアミド系重合体のホフマン転移反応物を使用
することにより、Z軸紙力強度の改善された紙を抄造す
ることができる。しかしながら、ホフマン転移反応の欠
点の1つに反応の際に大量の無機塩類を生じることがあ
り、特に使用量の多い紙力増強剤として使用する場合、
白水中の無機塩類濃度が増加するという問題を生じる。
Acrylamide or methacrylamide based polymers are reacted with hypohalites under alkaline conditions. By carrying out the so-called Hofmann rearrangement reaction, primary amino groups can be introduced into an acrylamide polymer at a relatively low cost. This Hofmann rearrangement reaction product of acrylamide-based polymer is used as a paper strength enhancer, and this product is superior in improving Z-axis paper strength and freeness compared to other materials such as Mannich-modified polyacrylamide. Therefore, by using the Hofmann rearrangement reaction product of an acrylamide polymer, it is possible to make paper with improved Z-axis paper strength. However, one of the drawbacks of the Hofmann rearrangement reaction is that it generates a large amount of inorganic salts during the reaction, especially when used as a paper strength agent, which is used in large quantities.
A problem arises in that the concentration of inorganic salts in white water increases.

従って、現在のように白水のクローズド化が進行してい
る中で、ホフマン転移反応物の使用量はできる限り低減
する必要がある。つまり、アクリルアミド系重合体のホ
フマン転移反応物は優れたZ軸紙力強度を発現するもの
の、無機塩類を多く含む等の問題点があり、そめ使用量
を抑える意味でさらに高性能化する必要がある。しかし
ながら。
Therefore, as white water is becoming more and more closed, the amount of the Hofmann rearrangement reactant used needs to be reduced as much as possible. In other words, although Hofmann rearrangement reaction products of acrylamide-based polymers exhibit excellent Z-axis paper strength, they have problems such as containing a large amount of inorganic salts, and it is necessary to further improve the performance in order to reduce the amount used. be. however.

Z軸紙力強度あるいは層間紙力強度と紙力増強剤との相
関性は不明な点が多く、その改良を行うための指針は知
られていなかった。
There are many points that are unclear about the correlation between Z-axis paper strength or interlaminar paper strength and paper strength enhancers, and no guidelines for improving it have been known.

[課題を解決するための手段] 本発明者はこれらの課題を解決するために。[Means to solve the problem] The present inventor aimed to solve these problems.

N、N−ジメチル(メタ)アクリルアミドを共重合した
ポリアクリルアミドをホフマン転移反応したものを使用
することにより、Z軸紙力強度、居間紙力強度、及び濾
水性が著しく向上することを見出し1本発明を完成した
It was discovered that by using polyacrylamide copolymerized with N,N-dimethyl(meth)acrylamide and subjected to Hoffmann rearrangement reaction, Z-axis paper strength, living room paper strength, and drainage properties were significantly improved. Completed the invention.

すなわち、本発明は(a)カルバモイル基を含む基97
〜60モル%、(b)N、N−ジメチル(メタ)アクリ
ルアミド基を3〜40モル%含有するアクリルアミド系
共重合体を、アルカリ性領域下で次亜ノ10ゲン酸塩と
反応させた、カチ、オン性ポリアクリルアミド系共重合
体を有効成分とする、Z軸紙力強度及び層間紙力強度の
増強剤を提供するものである。
That is, the present invention provides (a) a group 97 containing a carbamoyl group.
60 mol%, (b) an acrylamide copolymer containing 3 to 40 mol% of N,N-dimethyl(meth)acrylamide groups was reacted with hypogenite in an alkaline region. , provides an enhancer for Z-axis paper strength and interlaminar paper strength, which contains an on-type polyacrylamide copolymer as an active ingredient.

本発明で使用されるアクリルアミド系共重合体とはN、
N−ジメチル(メタ)アクリルアミド基を3〜40モル
%、好ましくは5〜30モル%含有するアクリルアミド
系共重合体を、アルカリ性領域下で次亜ハロゲン酸塩と
反応させた、ホフマン転移反応生成物である。 N、N
−ジメチル(メタ)アクリルアミド基の量が3モル%未
満ではN、N−ジメチル(メタ)アクリルアミド共重合
による効果が不充分であり、即ちC,S、F値が充分大
きくならず、またZ軸紙力強度が全く不充分であり、一
方、40モル%を越えると水に対する溶解性に支障をき
たし、同様にC,S、F値およびZ軸紙力強度が更に悪
化する等の不都合がある。
The acrylamide copolymer used in the present invention is N,
A Hofmann rearrangement reaction product obtained by reacting an acrylamide copolymer containing 3 to 40 mol%, preferably 5 to 30 mol%, of N-dimethyl (meth)acrylamide groups with a hypohalite in an alkaline region. It is. N, N
- If the amount of dimethyl (meth)acrylamide groups is less than 3 mol%, the effect of N,N-dimethyl (meth)acrylamide copolymerization will be insufficient, that is, the C, S, and F values will not be sufficiently large, and the Z-axis The paper strength is completely insufficient, and on the other hand, if it exceeds 40 mol%, the solubility in water is impaired, and there are also disadvantages such as further deterioration of the C, S, F values and Z-axis paper strength. .

また、以下の七ツマ−を共重合することも可能である。It is also possible to copolymerize the following seven polymers.

共重合可能な単量体としては、親木性単量体、イオン性
単量体、!l!油性単量体などがあげられ、それらの一
種以上の単量体が適用できる。
Copolymerizable monomers include woody monomers, ionic monomers, and more! l! Examples include oily monomers, and one or more of these monomers can be applied.

具体的には親木性単量体として、例えばメタクリルアミ
ド、ジアセトンアクリルアミド、トエ′チルメタクリル
アミド、N−エチルアクリルアミド。
Specifically, examples of wood-philic monomers include methacrylamide, diacetone acrylamide, toethyl methacrylamide, and N-ethylacrylamide.

N、N=ニジエチルアクリルアミドN−プロピルアクリ
ルアミド、N−アクリロイルピロリジン、N−アクリロ
イルピペリジン、ドアクリロイルモルホリン。
N, N = Nidiethylacrylamide N-propylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, doacryloylmorpholine.

ヒドロキシエチルメタクリレート、ヒドロキシエチルア
クリレート、ヒドロキシプロピルメタクリレート、ヒド
ロキシプロピルアクリレート、各種のメトキシポリエチ
レングリコール(メタ)アクリレート、トビニル−2−
ピロリドン等をあげることができる。
Hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, various methoxypolyethylene glycol (meth)acrylates, tovinyl-2-
Examples include pyrrolidone.

イオン性単量体としては、例えばアクリル酸。Examples of ionic monomers include acrylic acid.

メタクリル酸、とニルスルホン酸、アリルスルホン酸、
メタクリルスルホン酸、スチレンスルホン酸、2−アク
リルアミド−2−フェニルプロパンスルホン酸、2−ア
クリルアミド−2−メチルプロパンスルホン酸等の酸及
びそれらの塩、 N、N−ジメチルアミノエチルメタク
リレ−)、 N、N−ジエチルアミノエチルメタクリレ
ート、N、トジメチルアミノエチルアクリレート、N、
N−ジメチルアミノプロピルアクリルアミド、N、N−
ジメチルアミノプロピルアクリルアミド等のアミン及び
それらの塩等をあげることができる。
methacrylic acid, and nyl sulfonic acid, allyl sulfonic acid,
Acids such as methacrylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-phenylpropanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid and their salts, N,N-dimethylaminoethyl methacrylate), N , N-diethylaminoethyl methacrylate, N, dimethylaminoethyl acrylate, N,
N-dimethylaminopropylacrylamide, N,N-
Examples include amines such as dimethylaminopropylacrylamide and their salts.

親油性単量体としては、例えばN、N−ジー1−プロピ
ルアクリルアミド、 N−n−ブチルアクリルアミド、
 N−n−ヘキシルアクリルアミド、N−n−ヘキシル
メタクリルアミド、N−n−オクチルアクリルアミド、
トn−オクチルメタクリルアミド、 N−tert−オ
クチルアクリルアミド、トドデシルアクリルアミド、 
N−n−ドデシルメタクリルアミド等のトアルキル(メ
タ)アクリルアミド誘導体、 N、N−ジグリシジルア
クリルアミド、N、トジグリシジルメタクリルアミト、
ト(4−グリシドキシブチル)アクリルアミド、 N−
(4−グリシドキシブチル)メタクリルアミド、 N−
(5−グリシドキシベンチル)アクリルアミド、ト(6
−ゲリシトキシヘキシル)アクリルアミド等のN−(ω
−グリシドキシアルキル)(メタ)アクリルアミド誘導
体、メチル(メタ)アクリレート、エチル(メタ)アク
リレート。
Examples of the lipophilic monomer include N,N-di-1-propylacrylamide, N-n-butylacrylamide,
N-n-hexyl acrylamide, N-hexyl methacrylamide, N-n-octylacrylamide,
N-tert-octyl methacrylamide, N-tert-octylacrylamide, tododecyl acrylamide,
Toalkyl (meth)acrylamide derivatives such as N-n-dodecylmethacrylamide, N,N-diglycidyl acrylamide, N,todiglycidyl methacrylamide,
(4-glycidoxybutyl)acrylamide, N-
(4-glycidoxybutyl)methacrylamide, N-
(5-glycidoxybentyl)acrylamide, t(6
-N-(ω
-glycidoxyalkyl) (meth)acrylamide derivatives, methyl (meth)acrylate, ethyl (meth)acrylate.

ブチル(メタ)アクリレート、ラウリル(メタ)アクリ
レート、2−エチルヘキシル(メタ)アクリレート、グ
リシジル(メタ)アクリレート等の(メタ)アクリレー
ト誘導体、メタクリレートリル、酢酸ビニル、塩化ビニ
ル、塩化ビニリデン。
(Meth)acrylate derivatives such as butyl (meth)acrylate, lauryl (meth)acrylate, 2-ethylhexyl (meth)acrylate, glycidyl (meth)acrylate, tolyl methacrylate, vinyl acetate, vinyl chloride, vinylidene chloride.

エチレン、プロピレン、ブテン等のオレフィン類、スチ
レン、ジビニルベンゼン、α−メチルスチレン、ブタジ
ェン、イソプレン等をあげることができる。共重合に供
せられる不飽和単量体の使用量は、不飽和単量体の種類
、及びそれらの組合せにより異なり一概には言えないが
、概ね0〜J。
Examples include olefins such as ethylene, propylene, and butene, styrene, divinylbenzene, α-methylstyrene, butadiene, and isoprene. The amount of the unsaturated monomer used in the copolymerization varies depending on the type of unsaturated monomers and the combination thereof, and cannot be determined unconditionally, but is generally 0 to J.

11M%の範囲にある。It is in the range of 11M%.

次に上記した単量体を重合して、ポリアクリルアミドを
製造するのであるが、重合法としてはラジカル重合が好
ましく5重合溶媒としては水、アルコール、ジメチルホ
ルムアミド等の極性溶媒が適用可能であるが、ホフマン
分解反応を水溶液中で行うので、水溶液重合が好ましい
、その時の単量体濃度は2〜30重量%、好ましくは5
〜30重量%である。fE重合開始剤しては水溶性のも
のであれば特に制限はなく、通常単量体水溶液に溶解し
て使用される。具体的には過酸化物系では、たとえば過
硫酸アンモニウム、過硫酸カリ、過癩化水素、tert
−ブチルパーオキサイド等があげられる。この場合、単
独でも使用できるが、還元剤と組合せてレドックス系重
合剤としても使える。還元剤としては1例えば亜硫酸塩
、亜硫酸水素塩、鉄、m、コバルトなどの低次のイオン
化の塩。
Next, the above-mentioned monomers are polymerized to produce polyacrylamide. Radical polymerization is preferable as the polymerization method, and polar solvents such as water, alcohol, and dimethylformamide can be used as the pentapolymerization solvent. , since the Hofmann decomposition reaction is carried out in an aqueous solution, aqueous solution polymerization is preferred, at which time the monomer concentration is 2 to 30% by weight, preferably 5
~30% by weight. The fE polymerization initiator is not particularly limited as long as it is water-soluble, and it is usually used after being dissolved in an aqueous monomer solution. Specifically, peroxides include, for example, ammonium persulfate, potassium persulfate, hydrogen peroxide, tert
-butyl peroxide, etc. In this case, it can be used alone, but it can also be used as a redox polymerization agent in combination with a reducing agent. Examples of reducing agents include salts of low ionization such as sulfites, hydrogen sulfites, iron, m, and cobalt.

N、N、N’ 、N’−テトラメチルエチレンジアミン
等の有機アミン、更にはアルドース、ケトース等の還元
糖などをあげることができる。
Examples include organic amines such as N, N, N', N'-tetramethylethylenediamine, and reducing sugars such as aldose and ketose.

また、アゾ化合物としては、 2.2’−アゾビス−2
−アミジノプロパン塩酸塩、 2.2’−アゾビス−°
2,4−ジメチルバレロニトリル、 4.4’−アゾビ
ス−4−シアツバレイン酸及びその塩等を使用すること
ができる。更に、上記した重合開始剤を2種以上併用す
ることも可能である。開始剤の添加量は。
In addition, as an azo compound, 2.2'-azobis-2
-amidinopropane hydrochloride, 2.2'-azobis-°
2,4-dimethylvaleronitrile, 4,4'-azobis-4-cyatubaleic acid and its salts, etc. can be used. Furthermore, it is also possible to use two or more of the above-mentioned polymerization initiators in combination. What is the amount of initiator added?

単量体に対して0.1〜lO重量%、好ましくは0.2
〜8重量%である。また、レドックス系の場合には、開
始剤に対して還元剤の添加量はモル基準で0.1〜10
.0%、好ましくは0.2〜8.0%である。
0.1 to 10% by weight based on monomer, preferably 0.2
~8% by weight. In addition, in the case of a redox system, the amount of reducing agent added to the initiator is 0.1 to 10 on a molar basis.
.. 0%, preferably 0.2-8.0%.

本発明で使用するレドックス開始剤としては、ラジカル
重合を開始する能力を有するものであれば制限はなく、
例えば無機過酸化物、有機過酸化物、それらの過酸化物
と還元剤との組合せ、硝酸セリウム(IV)アンモニウ
ム、およびアゾ化合物等がある。具体的には過硫酸アン
モニウム、過硫酸カリウム、過酸化水素、 tert−
ブチルバーオキシド、ベンゾイルバーオキシト、クメン
ヒドロキシバーオキシト* Lerj−ブチルパーオキ
シ−2−エチルヘキサノエート、過安息香酸ブチル等が
あり、それらと組み合わせる還元剤としては亜硫酸塩、
亜硫酸水素塩、鉄、銅、コバルト等の低次のイオン価の
塩アニリン等の有機アミン、更にはアルドース、ケトー
ス等の還元糖等をあげることができる。アゾ化合物とし
ては、アゾビスイソブチロニトリル、2.2“−アゾビ
ス−2−アミジノプロパン塩酸塩、2.2°−アゾビス
−2,4−ジメチルバレロニトリル、4,4°−アゾビ
ス−4−シアツバレイン酸等を使用することができる。
The redox initiator used in the present invention is not limited as long as it has the ability to initiate radical polymerization.
Examples include inorganic peroxides, organic peroxides, combinations of these peroxides and reducing agents, cerium (IV) ammonium nitrate, and azo compounds. Specifically, ammonium persulfate, potassium persulfate, hydrogen peroxide, tert-
Butyl peroxide, benzoyl peroxide, cumene hydroxy peroxide* Lerj-butyl peroxy-2-ethylhexanoate, butyl perbenzoate, etc., and reducing agents used in combination with these include sulfite,
Examples include salts with low ionic valences such as bisulfite, iron, copper, and cobalt, organic amines such as aniline, and reducing sugars such as aldose and ketose. Examples of azo compounds include azobisisobutyronitrile, 2.2"-azobis-2-amidinopropane hydrochloride, 2.2°-azobis-2,4-dimethylvaleronitrile, 4,4°-azobis-4- Ciatsuvaleic acid and the like can be used.

また、上記した重合開始剤の2種以上を併用することも
可能である。
It is also possible to use two or more of the above polymerization initiators in combination.

開始剤濁度が使用される範囲は1通常は前記単量体混合
物に対して0.1〜5.0重量%の範囲で使用する。
The range in which the initiator turbidity is used is usually 0.1 to 5.0% by weight based on the monomer mixture.

重合温度は単一重合開始剤の場合には、より低く概ね3
0〜90℃であり、レドックス系重合開始剤の場合には
より低く概ね5〜5Q”Cである。また、重合中同−温
度に保つ必要はなく1重合の進行に伴い適宜変えてよく
、一般に重合の進行に伴い発生する重合熱により昇温す
る。その時の重合器内の雰囲気は特に限定はないが、重
合を速やかに行わせるには窒素ガスのような不活性ガス
で置換したほうがよい0重合時間は特に限定はないが、
概ね1〜20時間である。
In the case of a single polymerization initiator, the polymerization temperature is lower, approximately 3
The temperature is 0 to 90°C, and in the case of a redox polymerization initiator, it is lower, approximately 5 to 5Q"C. Also, it is not necessary to maintain the same temperature during polymerization, and it may be changed as appropriate as the polymerization progresses. Generally, the temperature rises due to the polymerization heat generated as the polymerization progresses.The atmosphere inside the polymerization vessel at this time is not particularly limited, but in order to speed up the polymerization, it is better to replace the atmosphere with an inert gas such as nitrogen gas. 0 There is no particular limitation on the polymerization time, but
It takes approximately 1 to 20 hours.

このようにして得られるアクリルアミド系共重合体はア
クリルアミド基を97〜60モル%、 N、N−ジメチ
ル(メタ)アクリルアミド基を3〜40モル%含有する
水溶性の重合体である。この共重合体の10%水溶液の
20℃におけるブルックフィールドは100 ヘ100
,000cpsであるが通常は100〜80.000c
psの範囲にあることが好ましい、即ち 100 cp
s以上であることが充分な性能を得る点で好ましく、一
方、操作性の低下やゲル化を生じ易くなるのを防止する
点でも80,000cps以下が好ましい。
The acrylamide copolymer thus obtained is a water-soluble polymer containing 97 to 60 mol% of acrylamide groups and 3 to 40 mol% of N,N-dimethyl(meth)acrylamide groups. The Brookfield value of a 10% aqueous solution of this copolymer at 20°C is 100 to 100
,000cps, but usually 100~80.000c
preferably in the range of ps, i.e. 100 cp
s or more is preferable from the point of view of obtaining sufficient performance, while 80,000 cps or less is preferable from the point of view of preventing deterioration in operability and easy occurrence of gelation.

ホフマン分解反応はポリアクリルアミドのアミド基に次
亜ハロゲン酸塩をアルカリ性物質の共存下に作用させて
行うものであり、次亜ハロゲン酸としては次亜塩素酸、
次亜臭素酸1次亜ヨウ素酸があげられる0次亜塩素酸塩
としては1次亜塩素酸の金属またはアルカリ土類金属塩
があげられ、具体的には次亜塩素酸ナトリウム、次亜塩
素酸カリウム、次亜塩素酸リチウム、次亜塩素酸カルシ
ウム、次亜塩素酸マグネシウム、次亜塩素酸バリウム等
があ葛−同様に次亜臭素酸塩及び次亜ヨウ素濫塩でも次
亜臭素酸塩及び次亜ヨウ素酸塩のアルカリ金属またはア
ルカリ土類金属塩があげられる。また、アルカリ溶液中
にハロゲンガスな吹き込んで次亜ハロゲン酸塩を生成さ
せることも可能である。一方、アルカリ性物質としては
アルカリ金属水酸化物、アルカリ土類金属水酸化物、ア
ルカリ金属炭酸塩等があげられ、それらの中でもアルカ
リ金属水酸化物が好ましく、水酸化ナトリウム、水酸化
カリウム、水酸化リチウム等があげられる。上記した物
質のポリアクリルアミドに対する添加量は次亜ハロゲン
酸では、アミド基に対して0.05〜2.0モル、好ま
しくは0.1〜1.5モルであり、アルカリ性物質では
アミド基に対して0.05〜4.0−fニル、好ましく
は0.1〜:1.OT=ルテある。その時のpHは概ね
11〜14の範囲にある。その時のポリアクリルアミド
の濁度は概ね0.1〜17.5重量%であるが1反応濃
度が高くなると攪拌が困難になることやゲル化を起し易
くなる点から、通常は0.1〜lO重量%の範囲である
ことが好ましい、また1反応濃度が1%未満の場合反応
速度が遅くなる等の問題があるため、 1〜10重量%
であることがさらに好ましい。
The Hofmann decomposition reaction is carried out by allowing hypohalite to act on the amide group of polyacrylamide in the coexistence of an alkaline substance.
Examples of hypochlorites include metal or alkaline earth metal salts of primary hypochlorous acid, including sodium hypochlorite and hypochlorite. Potassium hypochlorite, lithium hypochlorite, calcium hypochlorite, magnesium hypochlorite, barium hypochlorite, etc. Similarly, hypobromite and hypoiodide salt also contain hypobromite. and alkali metal or alkaline earth metal salts of hypoiodites. It is also possible to generate hypohalite by blowing halogen gas into an alkaline solution. On the other hand, examples of alkaline substances include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, etc. Among them, alkali metal hydroxides are preferred, and sodium hydroxide, potassium hydroxide, hydroxide Examples include lithium. The amount of the above-mentioned substance added to polyacrylamide is 0.05 to 2.0 mol, preferably 0.1 to 1.5 mol, based on the amide group for hypohalous acid, and 0.1 to 1.5 mol for the amide group for the alkaline substance. from 0.05 to 4.0-f, preferably from 0.1 to 1. There is OT = Lute. The pH at that time is generally in the range of 11-14. The turbidity of the polyacrylamide at this time is approximately 0.1 to 17.5% by weight, but as the reaction concentration increases, stirring becomes difficult and gelation tends to occur, so it is usually 0.1 to 17.5% by weight. It is preferably in the range of 10% by weight, and if the concentration of one reaction is less than 1%, there are problems such as slow reaction rate, so 1 to 10% by weight.
It is more preferable that

一方反応温度は0〜110℃の範囲上あり、この温度範
囲内でホフマン分解反応を行う0反応時間は反応温度、
及び反応溶液中のポリマー濃度に依存するため一概には
言えないが6例えばポリマー濃度が1重量%の場合、 
0℃では30〜40時間以内、20℃では3〜4時間以
内、50℃では数十分以内、65℃では数分以内、ao
’cでは数十秒以内で十分である。更にポリマー濃度が
高くなれば反応時間はより短くて済む、さらに1反応温
度な50℃〜110°Cとして1反応を単時間で終了さ
せた場合には、低温反応で製造されるホフマン分解ポリ
アクリルアミドと同等以上の性質を有するカチオン性ポ
リアクリルアミドを製造できる点、さらには反応時間短
縮によるオンサイト化が可能になり、ホフマン分解ポリ
アクリルアミドの経時劣化問題を回避できるようになる
などの点から、50℃〜110℃の温度範囲で反応を行
う方が好ましい、その場合、反応時間と反応温度との関
係は概略下記2つの関係式に挾まれる範囲内にあればよ
く、その範囲内で反応を行えば好適な結果が得られる。
On the other hand, the reaction temperature is in the range of 0 to 110°C, and the 0 reaction time to carry out the Hofmann decomposition reaction within this temperature range is the reaction temperature,
It depends on the polymer concentration in the reaction solution, so it cannot be generalized, but6 For example, when the polymer concentration is 1% by weight,
Within 30 to 40 hours at 0℃, within 3 to 4 hours at 20℃, within several tens of minutes at 50℃, within a few minutes at 65℃, ao
'c is sufficient within several tens of seconds. Furthermore, the higher the polymer concentration, the shorter the reaction time.Furthermore, if one reaction temperature is set at 50°C to 110°C and one reaction is completed in a single time, Hofmann-decomposed polyacrylamide produced by a low-temperature reaction can be produced. It is possible to produce cationic polyacrylamide with properties equivalent to or better than that of 50% polyacrylamide, and it also enables on-site production by shortening the reaction time, avoiding the problem of deterioration over time of Hoffmann-decomposed polyacrylamide. It is preferable to carry out the reaction in a temperature range of ℃ to 110℃. In that case, the relationship between reaction time and reaction temperature should be approximately within the range between the following two relational expressions, and the reaction can be carried out within that range. If you do this, you will get good results.

T:反応温度(”C) 50≦T≦110 上記した条件で製造されるカチオン性ポリアクリルアミ
ドはpH2でのコロイド滴定より測定されるカチオン当
量が概ね0〜10.0■eq/gの範囲にあり、次亜ハ
ロゲン酸塩の添加量により該カチオン当量を制御するこ
とができる。また1反応をアルカリ性領域で行うのでア
ミド基が加水分解されてカルボキシル基が副生ずる。そ
の副生量はpH10でのコロイド滴定により測定される
アニオン当量で示され、概ね0〜10.0■eq/gの
範囲にある。その副生量は添加するアルカリ性物質の量
により制御可能となる。
T: Reaction temperature ("C) 50≦T≦110 The cationic polyacrylamide produced under the above conditions has a cation equivalent measured by colloid titration at pH 2 in the range of approximately 0 to 10.0 eq/g. The cation equivalent can be controlled by the amount of hypohalite added.Also, since one reaction is carried out in an alkaline region, the amide group is hydrolyzed and a carboxyl group is produced as a by-product.The amount of the by-product is at pH 10. It is expressed as an anion equivalent measured by colloid titration, and is approximately in the range of 0 to 10.0 ■eq/g.The amount of the by-product can be controlled by the amount of the alkaline substance added.

次に上記した条件で反応を行ワた後、副反応の進行を抑
制するために反応を停止することが好ましい、ただし、
反応後直ちに使用する場合には反応停止を行わなくとも
よい場合がある。
Next, after carrying out the reaction under the above conditions, it is preferable to stop the reaction in order to suppress the progress of side reactions, however,
When used immediately after the reaction, it may not be necessary to stop the reaction.

反応停止の方法としては、(1)還元剤を添加する、(
2)冷却する、(3)溶液のpHな酸添加により低下さ
せる1等の方法を単独あるいは組合せて用いることがで
きる。(1)は残存する次亜ハロゲン酸塩などを還元剤
との反応により失活させる方法である。使用する還元剤
としては、亜硫酸ナトリウム、チオ硫酸ナトリウム、マ
ロン酸エチル、チオグリセロール、トリエチルアミンな
どが挙げられる。還元剤の使用量は通常反応に使用され
た次亜ハロゲン酸に対してo、oos〜0.15倍モル
、好ましくは0.01〜0.10倍モルである。一般に
ホフマン分解反応の反応終了時には未反応の次亜ハロゲ
ン酷塩等の活性塩素を有する化合物が残存している。か
かる反応溶液を紙力剤として用いると抄紙機の錆を引き
起す要因ともなるため、通常は還元剤を用いて活性塩素
を失活させる。しかしながら1次亜ハロゲン酸塩はポリ
マーのアクリルアミド単位モル数に対して当モル以下で
反応を行い。
Methods for stopping the reaction include (1) adding a reducing agent, (
Methods such as 2) cooling, and (3) lowering the pH of the solution by adding acid can be used alone or in combination. (1) is a method in which remaining hypohalite and the like are deactivated by reaction with a reducing agent. Examples of the reducing agent used include sodium sulfite, sodium thiosulfate, ethyl malonate, thioglycerol, and triethylamine. The amount of the reducing agent used is usually o, oos to 0.15 times the mole, preferably 0.01 to 0.10 times the amount of hypohalous acid used in the reaction. Generally, when the Hofmann decomposition reaction is completed, unreacted compounds containing active chlorine such as hypohalogen salts remain. If such a reaction solution is used as a paper strength agent, it may cause rust in the paper machine, so a reducing agent is usually used to deactivate the active chlorine. However, the primary halite reacts in a molar amount equal to or less than the number of moles of acrylamide units in the polymer.

かつ高温度で反応を行うと反応終了時には未反応の次亜
ハロゲン酸塩はほとんど残存していない。
In addition, when the reaction is carried out at a high temperature, almost no unreacted hypohalite remains at the end of the reaction.

従って、還元剤を用いて活性塩素を失活させることなく
紙力剤として使用することも可能である。
Therefore, it is also possible to use active chlorine as a paper strength agent without deactivating it using a reducing agent.

(2)は冷却により反応進行を抑える方法であり、その
方法としては、熱交換器を用いて冷却する。
(2) is a method of suppressing the reaction progress by cooling, which involves cooling using a heat exchanger.

冷水で希釈する当の方法がある。その時の温度は通常5
0℃以下、好ましくは45℃以下、更に好ましくは40
℃以下である。(3)で、通常pH12〜13のアルカ
リ性を示す反応終了時の溶液を、酸を用いてpHを下げ
ることによりホフマン分解反応を停止させ、同時に加水
分解反応の進行を抑制する。その時のpHは中性以下で
あればよく、好ましくはpH4〜6の範囲である。 p
H調整で使用する酸としては、塩厳、硫酸、りん酸、硝
酸等の鉱酸、あるいはぎ酸、酢酸、くえん酸などの有機
酸が挙げられる0反応停止法は(1)〜(3)の中から
反応の条件により適宜選ぶことができ、またそれらの方
法を組み合わせてもよい。
There is a way to dilute it with cold water. The temperature at that time is usually 5
0°C or lower, preferably 45°C or lower, more preferably 40°C or lower
below ℃. In (3), the pH of the solution at the end of the reaction, which usually has an alkaline pH of 12 to 13, is lowered using an acid to stop the Hofmann decomposition reaction and at the same time suppress the progress of the hydrolysis reaction. The pH at that time should just be neutral or lower, preferably in the range of pH 4 to 6. p
Acids used for H adjustment include mineral acids such as sulfuric acid, sulfuric acid, phosphoric acid, and nitric acid, and organic acids such as formic acid, acetic acid, and citric acid.Reaction termination methods include (1) to (3). The method can be selected as appropriate depending on the reaction conditions, and these methods may be combined.

次に上記した方法て停止した反応液はそのままカチオン
性ポリアクリルアミドの水溶液として使用できるし、該
水溶液をメタノール等のカチオン性ポリアクリルアミド
を溶解しない溶媒中に投入して、ポリマーを析出させて
その後乾燥して粉末状にすることもできる。また、該カ
チオン性ポリアクリルアミド水溶液をタンク中に保存し
ておき、必要に応じ使用することもできる。その時保存
しておく温度は水溶液の凍結しない程度の低温であれば
よく、好ましくは10〜15°Cである。しかし比較的
短期間のうちに使用する場合には常温でも保存でき、1
力月程度の保存は可能である。
Next, the reaction solution stopped by the above method can be used as it is as an aqueous solution of cationic polyacrylamide, or the aqueous solution is poured into a solvent that does not dissolve cationic polyacrylamide, such as methanol, to precipitate the polymer and then dry it. It can also be made into a powder. Moreover, the cationic polyacrylamide aqueous solution can be stored in a tank and used as needed. The temperature at which the aqueous solution is stored may be as low as not freezing, preferably 10 to 15°C. However, if it is to be used within a relatively short period of time, it can be stored at room temperature.
It is possible to store it for about a month.

本発明では、このアクリルアミド系重合体のホフマン転
移反応物を2軸紙力強度の紙力増強剤。
In the present invention, the Hofmann rearrangement reaction product of this acrylamide polymer is used as a paper strength enhancer for biaxial paper strength.

あるいは濾水性向上剤として使用する。アクリルアミド
系重合体のホフマン転移反応物を上記目的で使用する方
法は、従来公知の方法に従つて行えばよく、必要に応じ
て硫酸バンド、アニオン性樹脂等と併用して抄造を行う
、添加場所は湿潤シートが形成される以前であればどこ
でもよく、添加順序も任意の順序、あるいは同時に添加
することができる。また、カチオン性ポリアクリルアミ
ドとアニオン性樹脂とを9119以上で混合した後に添
加することもできる。カチオン性ポリアクリルアミドと
アニオン性樹脂の添加比率は任意に選ぶことができ、好
ましくは固形分重量の比で100 :0〜10:90の
範囲にある。その添加量はパルプの乾燥固形分重量に対
してそれぞれ0.01〜5重量%、好ましくは0.05
〜2重量%である二添加場所は湿潤シートが形成される
以前に添加する。ただし、湿潤シートが形成された後で
も、特に抄き合わせ紙を製造する場合には、スプレー塗
布やロールコータ−塗布により添加することも可能であ
る。また1本発明ではポリアクリルアミドを高温、w時
間でホフマン分解反応を行ってカチオン性ポリアクリル
アミドを製造する場合には、同様の反応を低温、長時間
で行って得られるカチオン性ポリアクリルアミドよりも
優れた紙力能を示す、この理由は必ずしも明らかとはな
つていないが1反応停止操作を行うことなく、パルプス
ラリーなどに添加した場合に効果が顕著であった点など
から1反応中間体であるN−クロロ基や、その他の、高
温度ゆえに生じる官能基が直接、あるいは間接的に紙力
発現に寄与しているものと考えられる。従って、反応停
止操作を行うことなく添加することが更に望ましいが、
反応停止を行わないと経時的に劣化を生じるため、反応
後直ちに添加する必要がある。ここで言う直ちにとは反
応後の水溶液を配管内より取り出し、外部に移液するこ
となく同一配管内を輸送してパルプスラリーに添加する
ことを称す、より具体的には反応後の水溶液を配管内を
通して直接パルプスラリーに添加しても良いし、その間
にストックタンクを設けてそこで一時滞留させた後、添
加量を調節して添加してもよい、配管内での反応液の滞
留時間は1反応後の水溶液が劣化しない範囲であればよ
い、しかし、余り長くすると液を滞留しておく装置が大
きくなってしまい1本発明の特徴が生かされない。
Or use it as a drainage improver. The Hofmann rearrangement reaction product of an acrylamide polymer can be used for the above purpose according to a conventionally known method, and if necessary, it can be used in combination with sulfuric acid, anionic resin, etc. for paper making, and the place where it is added can be used. They may be added at any point before the wet sheet is formed, and they may be added in any order or at the same time. Alternatively, it can be added after mixing the cationic polyacrylamide and the anionic resin at a concentration of 9119 or higher. The addition ratio of cationic polyacrylamide and anionic resin can be arbitrarily selected, and is preferably in the range of 100:0 to 10:90 in terms of solid content weight ratio. The amount added is 0.01 to 5% by weight, preferably 0.05% by weight, based on the dry solid weight of the pulp.
The second addition site, ˜2% by weight, is added before the wet sheet is formed. However, even after the wet sheet has been formed, it is also possible to add it by spray coating or roll coating, especially when producing laminated paper. In addition, in the present invention, when cationic polyacrylamide is produced by subjecting polyacrylamide to a Hofmann decomposition reaction at high temperature for a long time, it is superior to cationic polyacrylamide obtained by carrying out the same reaction at low temperature for a long time. Although the reason for this is not necessarily clear, it is considered to be a 1-reaction intermediate, as the effect was remarkable when added to pulp slurry, etc., without performing a reaction-stopping operation. It is thought that N-chloro groups and other functional groups generated due to high temperatures directly or indirectly contribute to the development of paper strength. Therefore, it is more desirable to add without performing a reaction termination operation, but
If the reaction is not stopped, it will deteriorate over time, so it must be added immediately after the reaction. Immediately here refers to taking out the aqueous solution after the reaction from inside the pipe, transporting it within the same pipe without transferring it to the outside, and adding it to the pulp slurry.More specifically, the aqueous solution after the reaction is taken out from the pipe. It may be added directly to the pulp slurry through the pipe, or it may be added by adjusting the amount after temporarily retaining it in a stock tank in between.The residence time of the reaction liquid in the pipe is 1. It is acceptable as long as the aqueous solution after the reaction does not deteriorate; however, if it is too long, the device for retaining the liquid will become large and the features of the present invention will not be utilized.

従って本発明を好適に実施するには、反応vk5時間以
内に添加することが好ましく、より好ましくは1時間以
内であり、更により好ましくは10分以内である。また
、その際反応後のカチオン性ポリアクリルアミドの濃度
に応じて水で希釈して添加してもよい、パルプの種類、
抄紙のスピード等により変化し、−概には述べられない
が、添加するときのカチオン性ポリアクリルアミドの濃
度は概ね0.1−10重量%であり、好ましくは0.5
〜5重量%であり、より好ましくは0.8〜2重量%で
ある。
Therefore, in order to suitably carry out the present invention, it is preferable to add the reaction vk within 5 hours, more preferably within 1 hour, and even more preferably within 10 minutes. In addition, depending on the concentration of cationic polyacrylamide after the reaction, the type of pulp, which may be diluted with water and added,
The concentration of cationic polyacrylamide when added is approximately 0.1-10% by weight, preferably 0.5% by weight, although it varies depending on the speed of papermaking and other factors.
-5% by weight, more preferably 0.8-2% by weight.

上記のような方法で製造した紙は1紙力強度。Paper manufactured using the method described above has a paper strength of 1.

具体的には破裂強度、Z軸強度、圧縮強度等に優れてい
る。従ワて、本発明の方法を適用すれば、段ボールや新
聞紙等のような原料に古紙の占める割合の高いものに使
用すると非常に効果が大きく1紙力強度の高い紙の製造
が可能になる。また、段ボール紙や新聞紙に限らず1強
度が求められる紙に本発明を適用することにより、fI
Iれた紙力強度をもつ紙を製造することが可能になる。
Specifically, it is excellent in burst strength, Z-axis strength, compressive strength, etc. Therefore, if the method of the present invention is applied to materials such as cardboard and newspapers, which have a high proportion of waste paper as a raw material, it will be very effective, and it will be possible to manufacture paper with high paper strength. . Furthermore, by applying the present invention not only to corrugated paper and newspapers but also to papers that require 1 strength, fI
It becomes possible to produce paper with superior paper strength.

[実施例] 以下に実施例で本発明を説明する。なお以下において%
は特に断わらない限り重量%を意味するものとする。
[Example] The present invention will be described below with reference to Examples. In addition, in the following, %
means weight % unless otherwise specified.

実施例1〜2 10IIOfL%のN、N−ジメチルアクリルアミド基
を含有するアクリルアミド−N、N−ジメチルアクリル
アミド共重合体(20℃における10%水溶液のブルッ
クフィールド粘度; 7800cps )の5%水溶液
100重量部に、 12.5%次亜塩素酸ナトリウム水
溶液21.24重量部と30%水酸化ナトリウム水溶液
3.83重量部(次亜塩素酸ナトリウムの2倍モルに相
当する)の混合物を20℃に保ちながら20分間で滴下
した後、同温度で3時間反応を行った。この時点でのカ
チオン化度を指示薬としてトルイジンブルーを用い、l
/40ON−ポリビニルスルホン酸カリウム水溶液によ
るコロイド滴定法で測定したところ、2.62seq、
/gであった。また、アニオン化度は1/20ON−メ
チルグリコールキトサンを所定量加え、pHlOにおい
て指示薬としてトルイジンブルーを用いた1−40ON
−ポリビニルスルホン酸カリウム水溶液による逆滴定法
で測定したところ1.14■eq。
Examples 1-2 100 parts by weight of a 5% aqueous solution of acrylamide-N,N-dimethylacrylamide copolymer containing 10 IIOfL% of N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C: 7800 cps) A mixture of 21.24 parts by weight of a 12.5% aqueous sodium hypochlorite solution and 3.83 parts by weight of a 30% aqueous sodium hydroxide solution (equivalent to twice the mole of sodium hypochlorite) was kept at 20°C. The mixture was added dropwise over 20 minutes, and then the reaction was carried out at the same temperature for 3 hours. Using toluidine blue as an indicator to measure the degree of cationization at this point, l
/40ON-As measured by colloid titration method using potassium polyvinylsulfonate aqueous solution, 2.62 seq,
/g. In addition, the degree of anionization was determined by adding a predetermined amount of 1/20ON-methyl glycol chitosan and using toluidine blue as an indicator at pHlO.
- 1.14 eq as measured by back titration using an aqueous solution of potassium polyvinylsulfonate.

/gであった。亜硫酸ナトリウム0.141i量部を少
量の水に溶かしたものを加えて未反応の次亜塩素酸ナト
リウムを失活させた後、濃塩酸を用いてpHを4.5に
調整した。この溶液を約十倍容量のメタノール中に注い
で再沈澱処理を行い、濾別、乾燥後保存した。このもの
は20℃における1%水溶液粘度が4.7cpsであっ
た。同じ組成を持ち、粘度の異なるlO鳳0文%のN、
N−ジメチルアクリルアミド基を含有するN、N−ジメ
チルアクリルアミド−アクリルアミド共重合体について
も同様に反応を行って白色粉末状のホフマン転移反応物
を得た。これらのものを実施例1〜2とし、結果を表1
に掲げた。
/g. After adding 0.141 i part of sodium sulfite dissolved in a small amount of water to deactivate unreacted sodium hypochlorite, the pH was adjusted to 4.5 using concentrated hydrochloric acid. This solution was poured into about 10 times the volume of methanol for reprecipitation treatment, filtered, dried, and stored. This product had a 1% aqueous solution viscosity of 4.7 cps at 20°C. 1% N with the same composition but different viscosity,
A similar reaction was carried out on an N,N-dimethylacrylamide-acrylamide copolymer containing an N-dimethylacrylamide group to obtain a white powdery Hofmann rearrangement reaction product. These are referred to as Examples 1 and 2, and the results are shown in Table 1.
It was listed on.

実施例3 5層o1%のN、N−ジメチルアクリルアミド基を含有
するアクリルアミド−N、N−ジメチルアクリルアミド
共重合体(20°Cにおける10%水溶液のブルックフ
ィールド粘度; 19,0OOcps)を使用した以外
は実施例1と同様に行い、白色粉末のホフマン転移反応
物を得た。
Example 3 A 5-layer o1% acrylamide-N,N-dimethylacrylamide copolymer containing N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C; 19,0OO cps) was used. was carried out in the same manner as in Example 1 to obtain a white powder of a Hofmann rearrangement reaction product.

実施例4 20sojL%のN、N−ジメチルアクリルアミド基を
含有するアクリルアミド−N、N−ジメチルアクリルア
ミド共重合体(20°Cにおける10%水溶液のブルッ
クフィールド粘度; 9,000cps)を使用した以
外は実施例1と同様に行い、白色粉末のホフマン転移反
応物を得た。
Example 4 Performed except that an acrylamide-N,N-dimethylacrylamide copolymer containing 20 sojL% N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C; 9,000 cps) was used. The procedure was carried out in the same manner as in Example 1 to obtain a Hofmann rearrangement reaction product as a white powder.

実施例5 10履on%のN、N−ジメチルアクリルアミド基を含
有するアクリルアミド−N、N−ジメチルアクリルアミ
ド共重合体(20°Cにおける10%水溶液のブルック
フィールド粘度;  7,800cps)の5%水溶液
100重量部を80°Cに保ちながら、12.5%次亜
塩素酸ナトリウム水溶液21.24重量部と30%水酸
化ナトリウム水溶液3.83重量部(次亜塩素酸ナトリ
ウムの2倍モルに相当する)の混合液を一度に添加した
。80°Cで10秒反応した後、所定量の冷水を加えて
ポリマー固形分濃度を1%とした。このときのカチオン
化度及びアニオン化度を実施例1〜3と同様にして求め
たところ、それぞれ2.56seq、/g、1.34s
eq、/gであった。このものは製造後5分以内に抄紙
実験に使用した。
Example 5 A 5% aqueous solution of acrylamide-N,N-dimethylacrylamide copolymer containing 10 on% N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C; 7,800 cps) While keeping 100 parts by weight at 80°C, add 21.24 parts by weight of 12.5% aqueous sodium hypochlorite solution and 3.83 parts by weight of 30% aqueous sodium hydroxide solution (equivalent to twice the mole of sodium hypochlorite). ) was added all at once. After reacting at 80°C for 10 seconds, a predetermined amount of cold water was added to adjust the polymer solids concentration to 1%. The degree of cationization and degree of anionization at this time were determined in the same manner as in Examples 1 to 3, and were 2.56 seq, /g, and 1.34 s, respectively.
eq,/g. This product was used for papermaking experiments within 5 minutes after production.

実施例6 10層on%のN、N−ジメチルメタクリルアミド含有
するアクリルアミド−N,N−ジメチルメタクリルアミ
ド共重合体(20℃における10%水溶液のブルックフ
ィールド粘度; 7,800cps)を使用した以外は
実施例1と同様に行い,白色粉末のホフマン、転移反応
物を得た。
Example 6 Acrylamide-N,N-dimethylmethacrylamide copolymer containing 10 layers on% N,N-dimethylmethacrylamide (Brookfield viscosity of a 10% aqueous solution at 20°C; 7,800 cps) was used. The procedure was carried out in the same manner as in Example 1 to obtain a white powder of a Hofmann rearrangement reaction product.

比較例1 50−〇!L%のN,N−ジメチルアクリルアミド基を
含有するアクリルアミド−N,N−ジメチルアクリルア
ミド共重合体(20°Cにおける10%水溶液のブルッ
クフィールド粘度; 3,800cps)を使用した以
外は実施例1と同様に行い,白色粉末のホフマン転移反
応物を得た。
Comparative example 1 50-〇! Example 1, except that an acrylamide-N,N-dimethylacrylamide copolymer containing L% N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C; 3,800 cps) was used. In the same manner, a white powder of the Hofmann rearrangement reaction product was obtained.

比較例2 65■on%のN,N−ジメチルアクリルアミド基を含
有するアクリルアミド−N,N−ジメチルアクリルアミ
ド共重合体(20°Cにおける10%水溶液のブルック
フィールド粘度; 3,500cps)を使用した以外
は実施例1と同様に行い,白色粉末のホフマン転移反応
物を得た。
Comparative Example 2 Except for using an acrylamide-N,N-dimethylacrylamide copolymer containing 65 on% N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C; 3,500 cps) was carried out in the same manner as in Example 1 to obtain a white powder of a Hofmann rearrangement reaction product.

比較例3 80moJL%のN,N−ジメチルアクリルアミド基を
含有するアクリルアミド−N,N−ジメチルアクリルア
ミド共重合体(20°Cにおける10%水溶液のブルッ
クフィールド粘度; 2,100cps)を使用した以
外は実施例1と同様に行い、白色粉末のホフマン転移反
応物を得た。
Comparative Example 3 Performed except that an acrylamide-N,N-dimethylacrylamide copolymer containing 80 moJL% of N,N-dimethylacrylamide groups (Brookfield viscosity of a 10% aqueous solution at 20°C; 2,100 cps) was used. The procedure was carried out in the same manner as in Example 1 to obtain a Hofmann rearrangement reaction product as a white powder.

比較例4〜7 20℃におけるlG%水溶液粘度が各々355.2,0
00.3.400.51.800cpsのアクリルアミ
ドのホモポリマーを使用した以外は実施例1と同様に行
い、白色粉末のホフマン転移反応物を得た0以上の製造
結果はまとめて表1に示した。
Comparative Examples 4 to 7 The 1G% aqueous solution viscosity at 20°C is 355.2 and 0, respectively.
00.3.400.51.The same procedure as in Example 1 was carried out except that an 800 cps acrylamide homopolymer was used, and a white powder of the Hofmann rearrangement product was obtained.The production results of 0 or more are summarized in Table 1. .

実施例7〜12 叩解度450m1csfの段ボール古紙パルプ1%スラ
リーに、硫酸バンドを対パルプで0.5%(乾燥重量基
準)添加して1分間攪拌し、次いで市販のアニオン系ポ
リアクリルアミド(15%品、ホーブロン’11508
、三井東圧化学社製)1.0%水溶液を対パルプで0.
24%(乾燥重量基準)添加して更に1分間攪拌を続け
た0次いて、実施例1〜5のホフマン転移反応物の1%
水溶液を対パルプで0.16%(乾燥重量基準)を添加
した後さらに1分間攪拌し、一部はJIS P8121
に準じ、C,S、F、を測定し。
Examples 7 to 12 To a 1% slurry of corrugated waste paper pulp with a freeness of 450 ml csf, 0.5% (based on dry weight) of sulfuric acid was added to the pulp and stirred for 1 minute, and then commercially available anionic polyacrylamide (15% Product, Hobron'11508
(manufactured by Mitsui Toatsu Chemical Co., Ltd.) 1.0% aqueous solution to pulp.
24% (on a dry weight basis) was added and stirring was continued for an additional minute. Then 1% of the Hofmann rearrangement reactants of Examples 1 to 5 were added.
After adding 0.16% (dry weight basis) of the aqueous solution to the pulp, it was further stirred for 1 minute, and a portion of the solution was added according to JIS P8121.
Measure C, S, and F according to .

残りはTAPPI角型シートマシンで抄紙した0次いで
110℃の送風型乾燥機で2時間乾燥し1坪量が125
±3g/m″の手抄き紙を得たす手抄き紙の評価に関し
ては、  JIS P8112に準じて[比破裂強さ]
を、[2軸強度]は熊谷理機製インターナルボンドテス
ターにて測定を行9た。
The remaining paper was made using a TAPPI square sheet machine and then dried for 2 hours in a blow dryer at 110°C until the weight per tsubo was 125.
Regarding the evaluation of handmade paper obtained with ±3 g/m'', [specific bursting strength] according to JIS P8112.
The [biaxial strength] was measured using an internal bond tester manufactured by Kumagai Riki.

比較例8〜14 比較例1〜7のホフマン転移反応物を使用した他は実囃
例7〜12と同様にして、秤量が125±3g/rrf
の手抄き紙を得た。[比彼裂強さ]、[Z軸強度]の測
定は実施例7〜12と同様の方法で行つた0以上の結果
をまとめて表2に示す。
Comparative Examples 8 to 14 The same procedure as in Actual Examples 7 to 12 was carried out except that the Hofmann rearrangement reaction products of Comparative Examples 1 to 7 were used, and the basis weight was 125 ± 3 g/rrf.
I obtained handmade paper. [Specific splitting strength] and [Z-axis strength] were measured in the same manner as in Examples 7 to 12, and the results of 0 or more are summarized in Table 2.

表 実施例13 実施例1のホフマン転移反応物を使用し、実施例7〜1
2と同様の方法で乾燥前の湿潤紙を製造した。湿潤状態
のまま2枚の手抄き紙を重ね、ステンレス製のロールを
数回かけた後、3.5kg/cm″で2分間プレスを行
った0次いで110℃の送風型乾燥機で2時間乾燥し1
坪量が250±6g/m″の手抄き紙を得た0手抄き紙
の評価に関しては、[居間紙力強度]は熊谷理機製イン
ターナルボンドテスターにて測定を行った。
Table Example 13 Using the Hoffmann rearrangement reaction product of Example 1, Examples 7 to 1
A wet paper before drying was produced in the same manner as in Example 2. Two sheets of handmade paper were stacked together in a wet state, rolled over several times with stainless steel rolls, and then pressed for 2 minutes at 3.5 kg/cm''. Dry 1
Regarding the evaluation of the 0 handmade paper obtained with a basis weight of 250±6 g/m'', the [living room paper strength] was measured using an internal bond tester manufactured by Kumagai Riki.

比較例15 比較例6のホフマン転移反応物を使用した以外は実施例
13と同様の方法により坪量が250±6g/rn’の
手抄き紙を得た0手抄き紙の評価に関しても実施例13
と同様の方法により測定を行った。
Comparative Example 15 Regarding the evaluation of 0 handmade paper obtained by the same method as in Example 13 except that the Hoffman rearrangement reaction product of Comparative Example 6 was used, the paper with a basis weight of 250 ± 6 g/rn' was obtained. Example 13
Measurements were carried out in the same manner as above.

比較例16 紙力剤を使用しない点を除くと実施例13と同様の方法
により1坪量が250± 6g/rn’の手抄き紙を得
た1手抄き紙の評価に関しても実施例13と同様の方法
により測定を行った0以上の結果をまとめて表3に示す
Comparative Example 16 A handmade paper with a basis weight of 250±6 g/rn' was obtained by the same method as in Example 13 except that no paper strength agent was used. Table 3 summarizes the results of 0 or more measured by the same method as No. 13.

表  3 [発明の効果] 本発明によれば従来技術ではできなかつたZ軸紙力強度
及び居間紙力強度、さらには濾水性の大幅な向上が達成
できた。その理由は必ずしも明らかではないが、N、N
−ジメチル(メタ)アクリルアミド基の存在によりこの
ような効果がもたらされることは従来知られておらず、
優れたZ軸紙力強度並びに層間紙力強度を有する紙の製
造が可能になった。
Table 3 [Effects of the Invention] According to the present invention, significant improvements in Z-axis paper strength, living room paper strength, and freeness, which could not be achieved with the prior art, were achieved. The reason is not necessarily clear, but N, N
- It was not previously known that the presence of dimethyl (meth)acrylamide group produced such an effect.
It has become possible to produce paper with excellent Z-axis paper strength and interlaminar paper strength.

特許出願人  三井東圧化学株式会社 代 理 人 弁理士 坂口信昭Patent applicant: Mitsui Toatsu Chemical Co., Ltd. Representative Patent Attorney Nobuaki Sakaguchi

Claims (1)

【特許請求の範囲】 1、(a)カルバモイル基を含む基97〜60モル%、
(b)N,N−ジメチル(メタ)アクリルアミド基を3
〜40モル%含有するアクリルアミド系共重合体を、ア
ルカリ性領域下で次亜ハロゲン酸塩と反応させて製造さ
れる、カチオン性ポリアクリルアミドを有効成分とする
、Z軸紙力及び層間紙力用紙力増強剤。 2、請求項1記載のカチオン性ポリアクリルアミドを主
成分とする濾水向上剤。 3、請求項1記載のアクリルアミド系共重合体を、アル
カリ性領域下で次亜ハロゲン酸塩と50℃〜110℃の
温度範囲で短時間に反応を行った後、直ちにパルプスラ
リーに添加することを特徴とする紙力増強方法。 4、請求項1記載のカチオン性ポリアクリルアミドを使
用して抄造される紙。
[Claims] 1. (a) 97 to 60 mol% of groups containing a carbamoyl group;
(b) N,N-dimethyl(meth)acrylamide group 3
Z-axis paper strength and interlaminar paper strength with cationic polyacrylamide as an active ingredient produced by reacting an acrylamide-based copolymer containing ~40 mol% with hypohalite in an alkaline region Enhancer. 2. A drainage improver comprising the cationic polyacrylamide according to claim 1 as a main component. 3. The acrylamide copolymer according to claim 1 is reacted with a hypohalite salt in an alkaline region at a temperature of 50°C to 110°C for a short time, and then immediately added to the pulp slurry. Characteristic paper strength enhancement method. 4. Paper made using the cationic polyacrylamide according to claim 1.
JP1042180A 1988-12-28 1989-02-21 Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking Expired - Lifetime JP2665969B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP1042180A JP2665969B2 (en) 1989-02-21 1989-02-21 Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking
US07/454,526 US5039757A (en) 1988-12-28 1989-12-21 Method of manufacturing cationic acrylamide polymers, cationic acrylamide polymers, and the applications of these polymers
EP89313527A EP0377313B1 (en) 1988-12-28 1989-12-22 Cationic acrylamide polymers, a process for manufacturing them, and their uses
DE68921598T DE68921598T2 (en) 1988-12-28 1989-12-22 Cationic acrylamide polymers, process for their production and use.
FI896275A FI101711B (en) 1988-12-28 1989-12-27 Process for Preparation of Cationic Acrylamide Polymers, Cationic Acrylamide Polymers, and Application of the Same
NO895265A NO178197C (en) 1988-12-28 1989-12-27 Process for the preparation of cationic acrylamide polymers and their use
KR1019890019884A KR930005028B1 (en) 1988-12-28 1989-12-28 Cationic acrylamide polymers, a process for manufacturing them and their uses
CA002006768A CA2006768C (en) 1988-12-28 1989-12-28 Method of manufacturing cationic acrylamide polymers, cationic acrylamide polymers, and the applications of these polymers
US07/725,611 US5239014A (en) 1988-12-28 1991-07-03 Cationic acrylamide polymers and the applications of these polymers
US08/082,773 US5292821A (en) 1988-12-28 1993-06-28 Catonic acrylamide polymers and the applications of these polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042180A JP2665969B2 (en) 1989-02-21 1989-02-21 Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8872297A Division JP2794414B2 (en) 1997-03-24 1997-03-24 Cationic polyacrylamide, Z-axis paper strength and interlayer paper strength Paper strength enhancer and drainage improver

Publications (2)

Publication Number Publication Date
JPH02221495A true JPH02221495A (en) 1990-09-04
JP2665969B2 JP2665969B2 (en) 1997-10-22

Family

ID=12628792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042180A Expired - Lifetime JP2665969B2 (en) 1988-12-28 1989-02-21 Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking

Country Status (1)

Country Link
JP (1) JP2665969B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229796A (en) * 1975-09-01 1977-03-05 Matsushita Electric Works Ltd Smoke detector
JPS55152896A (en) * 1979-05-11 1980-11-28 Rei Tech Inc Increasing of dry paper strength
JPS564606A (en) * 1979-06-26 1981-01-19 Kyoritsu Yuki Kogyo Kenkyusho:Kk Water-soluble polymer containing tertiary amine and quaternary ammonium salt in molecule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229796A (en) * 1975-09-01 1977-03-05 Matsushita Electric Works Ltd Smoke detector
JPS55152896A (en) * 1979-05-11 1980-11-28 Rei Tech Inc Increasing of dry paper strength
JPS564606A (en) * 1979-06-26 1981-01-19 Kyoritsu Yuki Kogyo Kenkyusho:Kk Water-soluble polymer containing tertiary amine and quaternary ammonium salt in molecule

Also Published As

Publication number Publication date
JP2665969B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CA2006768C (en) Method of manufacturing cationic acrylamide polymers, cationic acrylamide polymers, and the applications of these polymers
WO2011117177A1 (en) Composition for improving dry strength
JP2794414B2 (en) Cationic polyacrylamide, Z-axis paper strength and interlayer paper strength Paper strength enhancer and drainage improver
JP2986855B2 (en) Cationic polyacrylamide
JPH0867715A (en) Acrylamide polymer and its use
JP2863275B2 (en) Papermaking additive and papermaking method
JP2665968B2 (en) Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking
JP2794413B2 (en) Cationic polyacrylamide, Z-axis paper strength and interlayer paper strength Paper strength enhancer and drainage improver
JPH02221495A (en) Paper strength enhancer for z-axis and interlayer paper strength, method for enhancing, freeness improver and paper making
JPH08269891A (en) Additive for producing paper
KR950009738B1 (en) Papermaking process and papermaking additive
JPH06192993A (en) Additive for papermaking
JP3075589B2 (en) Papermaking method and papermaking additive
JP2860554B2 (en) Method for producing cationic acrylamide polymer and use thereof
JP3043111B2 (en) Papermaking method and papermaking additive
JPH0457991A (en) Additive for paper-making process
JP2683521B2 (en) Paper made using a cationic acrylamide polymer
JP3462523B2 (en) Papermaking additive, method for producing the same, and method for papermaking
JPH07188351A (en) Amphoteric copolymer
JP2938150B2 (en) Paper manufacturing method
JP2005336646A (en) Additive for papermaking and paper obtained therefrom
JPH07188332A (en) Hoffman-modified acrylamide polymer
JP2955330B2 (en) Paper making method
JP2928785B2 (en) Papermaking additives
JPS60215899A (en) Internal size agent for paper

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12