JPH02221337A - Method for pulverizing ti-nb alloy - Google Patents

Method for pulverizing ti-nb alloy

Info

Publication number
JPH02221337A
JPH02221337A JP1040617A JP4061789A JPH02221337A JP H02221337 A JPH02221337 A JP H02221337A JP 1040617 A JP1040617 A JP 1040617A JP 4061789 A JP4061789 A JP 4061789A JP H02221337 A JPH02221337 A JP H02221337A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
ingot
pulverizing
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040617A
Other languages
Japanese (ja)
Inventor
Kouji Sasai
笹井 興士
Noboru Hayamizu
速水 昇
Yutaka Matsubara
豊 松原
Hiroshi Kobayashi
浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP1040617A priority Critical patent/JPH02221337A/en
Publication of JPH02221337A publication Critical patent/JPH02221337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To easily pulverize the alloy and to improve the recovery rate of Ti and Nb by heating a Ti-Nb alloy ingot in vacuum, occluding hydrogen into the ingot and pulverizing it. CONSTITUTION:The ingot or scrap of Ti-Nb alloy is charged into a vacuum vessel; while pressure is reduced, the vessel is heated to about 200 to 500 deg.C and is held. A hydrogen gas is introduced thereto to occlude hydrogen the Ti-Nb alloy. The Ti-Nb hydride is pulverized by a mortar or the like. Since cracks have been generated on the inside of the alloy by the hydrogen occlusion, it can easily be pulverized. The pulverized alloy is subjected to dehydrating treatment. The alloy is subjected to chlorinating treatment into chloride, which is distilled and separated into TiCl4 and NbCl5. They are reduced by Na and Mg, by which Ti and Nb can be recovered at high yield.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はTl−Nb合金の粉砕方法であって、超伝導用
に使用するTi−Nb棒加工のスクラップを粉砕し、T
i、 Nbの回収を容易ならしめることを目的とするも
のである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method for pulverizing Tl-Nb alloy, which involves pulverizing scraps from processed Ti-Nb bars used for superconductivity, and pulverizing Tl-Nb alloy.
The purpose is to facilitate the recovery of Nb.

[発明の背景] 現在Ti−Nb合金(Ti  約46胃19g)は、超
伝導用合金として最も広く使用されているが、合金組成
および元素の均一性が線材の臨界電流に大きく影響する
と言われている。
[Background of the Invention] Ti-Nb alloy (approximately 46 grams of Ti and 19 grams of Ti) is currently the most widely used superconducting alloy, but it is said that the alloy composition and uniformity of elements greatly affect the critical current of the wire. ing.

一般に超伝導用に使用するTi−Nb合金は、該合金イ
ンゴットを真空中でアーク溶解またはエレクトロンビー
ム溶解等で溶解してTi−Nb棒加工または複合加工さ
れて銅等のマトリックス中にTi−Nb細線として埋め
込まれて使用されている。
Generally, Ti-Nb alloys used for superconducting are melted by arc melting or electron beam melting in vacuum, and processed into Ti-Nb rods or composite processed to form Ti-Nb in a matrix of copper or the like. It is embedded and used as a thin line.

前述Ti−Nbインゴットを棒加工または複合加工する
際約20%のスクラップが発生するが、TiもNbも高
価な金属であるため回収する必要があり、該スクラップ
を一部再溶解して回収するかまたは高級鋼の添加用とし
て使用されているに過ぎない。
Approximately 20% of the scrap is generated when the aforementioned Ti-Nb ingot is processed into bars or composite processed, but since both Ti and Nb are expensive metals, it is necessary to recover them, and some of the scrap is remelted and recovered. Or it is only used as an additive to high-grade steel.

[従来の技術] 従来、前記のごときTi−NbスクラップからTI。[Conventional technology] Conventionally, TI was produced from Ti-Nb scrap as described above.

Nbを分離して回収することが考えられており、その手
段として塩素化による分離が提案されているが、今のと
ころ工業的に実施されるに至っていない。
It has been considered to separate and recover Nb, and separation by chlorination has been proposed as a means for this, but so far it has not been implemented industrially.

すなわち、前記塩素化によるTI、 Nbの分離、回収
の方法はTi−Nb合金を塩素化してTlC14および
NM:lsとした後、蒸留してTiCl4およびNbC
11に分離した後、NaまたはMg等で還元してTIま
たはNbを分離、回収するものである。
That is, the method for separating and recovering TI and Nb by chlorination is to chlorinate a Ti-Nb alloy to obtain TlC14 and NM:ls, and then distill it to obtain TiCl4 and NbC.
After separating into 11, TI or Nb is separated and recovered by reduction with Na or Mg or the like.

c本発明が解決しようとする課題] しかし、Ti−Nbインゴットまたは棒加ニスクラップ
のものの塩素化は反応性が悪く、そのためには粉末状と
する必要がある。そのため、Tl−Nbインゴット等を
旋盤で削りた切り粉等とする方法が考えられるが、塩素
化にはさらに微粉末とする必要があり、微粉末処理が困
難であるばかりか製造効率が悪い。
c) Problems to be Solved by the Present Invention] However, chlorination of Ti-Nb ingots or bar scraps has poor reactivity, and for this purpose it is necessary to form them into powder. Therefore, a method can be considered in which Tl--Nb ingots are ground into chips using a lathe, but chlorination requires further pulverization, which not only makes pulverization difficult but also reduces manufacturing efficiency.

本発明は超伝導用に使用するTi−Nb合金スクラップ
から塩素化によってTi、 Nbを回収するに当たり、
Tl−Nb合金を簡単に微粉砕できる方法を提供するこ
とにある。
The present invention recovers Ti and Nb from Ti-Nb alloy scrap used for superconducting by chlorination.
The object of the present invention is to provide a method for easily pulverizing Tl-Nb alloy.

[!!!題を解決するための手段] 本発明はTl−Nb合金インゴットを真空下で加熱して
水素を吸蔵せしめた後粉砕するTl−Nb合金の粉砕方
法である。
[! ! ! Means for Solving the Problem] The present invention is a method for pulverizing a Tl-Nb alloy, in which a Tl-Nb alloy ingot is heated under vacuum to absorb hydrogen and then pulverized.

Tl−Nb合金に水素を吸蔵させるには真空容器内にT
i−Nbインゴットないしは棒加工Tl−Nbのスクラ
ップを挿入し、10−1〜1G−’ Torrに減圧し
つつ容器を200〜500℃に加熱し保持する。
To make the Tl-Nb alloy absorb hydrogen, add T in the vacuum container.
An i-Nb ingot or a scrap of bar-processed Tl-Nb is inserted, and the container is heated to and held at 200 to 500°C while reducing the pressure to 10-1 to 1 G-' Torr.

次いで前記真空容器を100〜300℃に加熱し、水素
ガスを1〜30 atmで導入し、保持することによっ
てTi−Nb合金に水素を吸蔵せしめる。
Next, the vacuum container is heated to 100 to 300°C, hydrogen gas is introduced at 1 to 30 atm, and is maintained to cause the Ti-Nb alloy to absorb hydrogen.

水素吸蔵が終了した後、真空容器を室温まで冷却すると
ともに、該真空容器内の水素ガスを除去し、空気を導入
した後Tl−Nb水素化物を取り出す。
After hydrogen storage is completed, the vacuum vessel is cooled to room temperature, hydrogen gas in the vacuum vessel is removed, air is introduced, and the Tl-Nb hydride is taken out.

水素吸蔵処理されたTi−Nb水素化物は、当初のイン
ゴットの形態は崩れ一部崩壊した状態であって、乳鉢等
で簡単に粉砕でき微粉(100メツシユ下)が容易に得
られる。
The Ti-Nb hydride subjected to the hydrogen storage treatment is in a state where the original ingot shape is collapsed and partially collapsed, and it can be easily ground in a mortar or the like to easily obtain a fine powder (100 mesh or less).

なお、ここに粉砕されたものは水素ガスを吸蔵している
ため、再び真空容器に挿入し、300〜800℃に加熱
しつつ排気すれば簡単に脱水素化したTl−Nb合金の
粉末が得られる。
Since the crushed material absorbs hydrogen gas, dehydrogenated Tl-Nb alloy powder can be easily obtained by inserting it into the vacuum container again and evacuation while heating it to 300 to 800°C. It will be done.

[作用] 本発明は機械的に粉砕困難なTi−Nb合金に水素を吸
蔵せしめることによって該合金内にクラックを生ぜしめ
ることによって乳鉢等で簡単に粉砕することができる。
[Function] The present invention allows a Ti--Nb alloy, which is difficult to crush mechanically, to absorb hydrogen and thereby generate cracks in the alloy, thereby making it possible to easily crush it in a mortar or the like.

従って、水素を吸蔵させ易崩壊性とされたTi−Nb合
金を乳鉢等で粉砕しこれを脱水素化したものを、前記塩
素化処理によってTlC14、NbC1a等の塩化物と
し、これら塩化物を蒸留によってTiCl4およびNb
Cl5に分離した後、NaまたはMgで還元することに
よって高収率でTIおよびNbを回収することができる
Therefore, a Ti-Nb alloy that has absorbed hydrogen and is easily disintegrated is crushed in a mortar or the like, dehydrogenated, and then subjected to the chlorination treatment to produce chlorides such as TlC14 and NbC1a, and these chlorides are distilled. TiCl4 and Nb by
After separation into Cl5, TI and Nb can be recovered in high yield by reduction with Na or Mg.

[実施例] Ti−Nb合金の丸棒(3φ)10gをステンレス製容
器に挿入し密封した後、300℃に加熱しつつロータリ
ーポンプで約30分排気(5X 1O−2Torr) 
L/、その後150℃で水素ガス圧を30atmにする
まで水素ガスを導入して水素を吸蔵させた。約3時間後
に該合金1 mo1当たりの水素量(H/M)が1.1
5であった。
[Example] After inserting 10 g of a Ti-Nb alloy round rod (3φ) into a stainless steel container and sealing it, it was heated to 300°C and evacuated using a rotary pump for about 30 minutes (5X 1O-2 Torr).
After that, hydrogen gas was introduced at 150° C. until the hydrogen gas pressure reached 30 atm to absorb hydrogen. After about 3 hours, the amount of hydrogen per mo1 of the alloy (H/M) was 1.1.
It was 5.

次に、該合金を室温まで冷却し、水素ガスをパージした
後、容器から取り出した。得られたTl−Nb合金丸棒
は崩壊して丸棒の原形はとどめず、一部2mm程度の小
塊を含む粉末状であった。
The alloy was then cooled to room temperature, purged of hydrogen gas, and then removed from the container. The obtained Tl-Nb alloy round bar collapsed and did not retain its original shape, but was in the form of a powder containing small lumps of about 2 mm in size.

前述小塊を含めこれを乳鉢で軽くたたくことによって全
量100メツシユ下の微粉末とすることができた。
By tapping the powder including the aforementioned small lumps in a mortar, it was possible to make a fine powder with a total amount of less than 100 mesh.

次に、この微粉末を再び真空容器に挿入して約700℃
に加熱しつつ排気を行ない脱水素化し、Tl−Nb合金
の粉末とすることができた。
Next, insert this fine powder into the vacuum container again and heat it to about 700°C.
Dehydrogenation was carried out by evacuation while heating to a temperature of 100.degree. C., and a Tl--Nb alloy powder was obtained.

[発明の効果] 以上のごとく本発明は超伝導用として用いられるTl−
Nb合金を棒加工する際に生ずるスクラップに水素を吸
蔵させることによって粉砕困難なTi−Nb合金を簡単
に粉砕することができ、従ってTI、 Nb等の金属を
回収するに当たり塩素化処理等の効率を高め、Tl−N
bの回収率を向上することができる。
[Effects of the Invention] As described above, the present invention provides Tl-
By storing hydrogen in the scrap generated when Nb alloy is processed into bars, it is possible to easily crush the Ti-Nb alloy, which is difficult to crush, thereby increasing the efficiency of chlorination treatment, etc. when recovering metals such as TI and Nb. Tl-N
The recovery rate of b can be improved.

Claims (1)

【特許請求の範囲】[Claims] Ti−Nb合金のインゴットを真空下で加熱し、該Ti
−Nb合金のインゴットに水素を吸蔵せしめた後粉砕す
ることを特徴とするTi−Nb合金の粉砕方法。
A Ti-Nb alloy ingot is heated under vacuum and the Ti
- A method for pulverizing a Ti--Nb alloy, which comprises pulverizing an ingot of the Nb alloy after occluding hydrogen therein.
JP1040617A 1989-02-21 1989-02-21 Method for pulverizing ti-nb alloy Pending JPH02221337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040617A JPH02221337A (en) 1989-02-21 1989-02-21 Method for pulverizing ti-nb alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040617A JPH02221337A (en) 1989-02-21 1989-02-21 Method for pulverizing ti-nb alloy

Publications (1)

Publication Number Publication Date
JPH02221337A true JPH02221337A (en) 1990-09-04

Family

ID=12585489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040617A Pending JPH02221337A (en) 1989-02-21 1989-02-21 Method for pulverizing ti-nb alloy

Country Status (1)

Country Link
JP (1) JPH02221337A (en)

Similar Documents

Publication Publication Date Title
US6958257B2 (en) Tantalum sputtering target and method of manufacture
US5728355A (en) Method for recovering reusable rare earth compounds
Köck et al. Tantalum—processing, properties and applications
US6007597A (en) Electron-beam melt refining of ferroniobium
CN106048231B (en) The method that tantalum, silver, nickel and iron are recycled in waste and old tantalum capacitor
US4470847A (en) Process for making titanium, zirconium and hafnium-based metal particles for powder metallurgy
JPS6070154A (en) Hydrogen storing material
JPH02221337A (en) Method for pulverizing ti-nb alloy
JP3379957B2 (en) Preparation method of niobium nitride
Peterson et al. The preparation of high-purity thorium by the magnesium reduction of thorium tetrachloride
Gilbert et al. Forging of Arc-Melted Chromium
JP3526983B2 (en) Method for recovering active components from nickel-hydrogen storage alloy secondary batteries
JPH05452B2 (en)
Rosenbaum et al. Preparation of high purity rhenium
JP2784324B2 (en) Manufacturing method of titanium
KR101757626B1 (en) Manufacturing system of metal comprising zirconium
US3383184A (en) Process for the production of hydrides of ti, zr and th
JP2600282B2 (en) Method for producing metal scandium powder
US2817585A (en) Process of refining metals
JP3809514B2 (en) Method for producing titanium metal by reducing lower chloride of titanium
JP2610575B2 (en) W-Ti alloy target
JP3076067B2 (en) Metal beryllium pebbles for fusion reactors
US5322548A (en) Recovery of niobium metal
JP3508419B2 (en) Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method
JP2876761B2 (en) Method for producing rare earth metal powder