JPH0222107A - Production of sodium hydrosulfide - Google Patents
Production of sodium hydrosulfideInfo
- Publication number
- JPH0222107A JPH0222107A JP17181388A JP17181388A JPH0222107A JP H0222107 A JPH0222107 A JP H0222107A JP 17181388 A JP17181388 A JP 17181388A JP 17181388 A JP17181388 A JP 17181388A JP H0222107 A JPH0222107 A JP H0222107A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen sulfide
- reaction
- concentration
- gas
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 105
- 238000006243 chemical reaction Methods 0.000 claims abstract description 46
- 239000007789 gas Substances 0.000 claims abstract description 46
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000010992 reflux Methods 0.000 claims abstract description 14
- 238000004064 recycling Methods 0.000 claims abstract description 6
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 31
- 239000012295 chemical reaction liquid Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- 239000007795 chemical reaction product Substances 0.000 abstract description 3
- 238000005504 petroleum refining Methods 0.000 abstract description 3
- 230000001172 regenerating effect Effects 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 2
- 239000002253 acid Substances 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- IHYNKGRWCDKNEG-UHFFFAOYSA-N n-(4-bromophenyl)-2,6-dihydroxybenzamide Chemical compound OC1=CC=CC(O)=C1C(=O)NC1=CC=C(Br)C=C1 IHYNKGRWCDKNEG-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002951 depilatory effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Industrial Gases (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高濃度苛性ソーダ溶液と高濃度硫化水素含有
ガスとを塔式反応器中で接触反応させて、連続的に高濃
度・高純度の水硫化ソーダ水溶液を製造する方法に関す
る。Detailed Description of the Invention (Industrial Field of Application) The present invention involves the catalytic reaction of a highly concentrated caustic soda solution and a highly concentrated hydrogen sulfide-containing gas in a tower reactor to continuously produce high-concentration and high-purity solutions. The present invention relates to a method for producing an aqueous sodium hydrogen sulfide solution.
水硫化ソーダは脱毛剤、パルプの蒸解剤、脱毛促進剤お
よびチオール化剤として広範囲な分野に使用されておシ
、また、最近はPP8 (ポリフェニレンサルファイド
)が脚光を浴びるようになシ、その硫化剤として特に高
濃度、高純度の水硫化ソーダが要求されるようになった
。Sodium hydrogen sulfide is used in a wide range of fields as a depilatory agent, pulp digester, hair removal accelerator, and thiolating agent.Recently, PP8 (polyphenylene sulfide) has been in the spotlight, and its sulfurization Particularly high concentration and high purity sodium hydrogen sulfide is now required as a reagent.
(従来技術と解決しようとする課題)
従来から、水硫化ソーダの製造方法としては、バッチ式
による方法と反応塔方式による連続方法の2つの方法が
あった。(Prior Art and Problems to be Solved) Conventionally, there have been two methods for producing sodium hydrogen sulfide: a batch method and a continuous method using a reaction column method.
パッチ式による方法は、反応槽中の苛性ソーダ溶液に硫
化水素ガスを吹き込んで水硫化ソーダを製造する方法で
ある。この方法の難点は通常大きな反応槽を複数必要と
し、設備が大型化すること、及び苛性ソーダ溶液が高濃
度でかつ硫化水素ガス濃度を高くした(約80〜98モ
ル%)場合には反応開始当初は硫化水素ガスの吸収・反
応が急速に進行し液の攪拌・混合が間に合わず均一な反
応の完結が困難であること等の欠点があった。The patch method is a method for producing sodium bisulfide by blowing hydrogen sulfide gas into a caustic soda solution in a reaction tank. The disadvantages of this method are that it usually requires multiple large reaction vessels, which increases the size of the equipment, and that when the caustic soda solution is highly concentrated and the hydrogen sulfide gas concentration is high (approximately 80 to 98 mol%), However, there were drawbacks such as the absorption and reaction of hydrogen sulfide gas proceeding rapidly and the stirring and mixing of the liquid being insufficient in time, making it difficult to complete the reaction uniformly.
また、反応塔方式はいわゆる充填塔を用い、苛性ソーダ
溶液を上部から流下させ、下部から硫化水素ガスを吹き
込んで水硫化ソーダを製造する方法である。従来、この
方法は、石油精製工程から発生する廃ガス(20〜30
9JH,13分)やオフガス等のスィート化からの硫化
水素ガス及び廃ソーダ(15〜20%1jaOE分)の
中和処理等主として公害防止用として用いられ、そして
、低濃度(26wt%以下)の水硫化ソーダの製造や高
濃度NaOH(48wt%)と低濃度のH,8廃ガスと
の反応による高濃度(約45優)の水硫化ソーダが製造
されていたのみであシ、高濃度苛性ソーダと高濃度硫化
水素含有ガスと?組み合わせて反応させることによシ、
高濃度の水硫化ソーダを製造する方法は、行われていな
かった。In addition, the reaction column method is a method of producing sodium hydrogen sulfide by using a so-called packed column, causing a caustic soda solution to flow down from the top, and blowing hydrogen sulfide gas into the bottom. Conventionally, this method uses waste gas (20 to 30
It is mainly used for pollution prevention purposes, such as neutralization of hydrogen sulfide gas and waste soda (15-20% 1jaOE) from sweetening of off-gas (9JH, 13 minutes), and low concentration (26wt% or less). Highly concentrated caustic soda (about 45%) was produced through the production of sodium hydrogensulfide and the reaction between high-concentration NaOH (48wt%) and low-concentration H,8 waste gas. and gas containing high concentration hydrogen sulfide? By combining and reacting,
A method for producing highly concentrated sodium hydrogen sulfide had not been used.
その理由として、つい最近まで高濃度、高純度の水硫化
ソーダの需要が少なかったことに加えて、高濃度苛性ソ
ーダと高濃度硫化水素ガスとの反応は、発熱が著しく、
反応系内の温度が異常上昇し易く、塔内温度のコントロ
ールが困難であることさらに、温度の異常上昇による反
応塔使用材料の腐食および応力腐食割れ等の欠点が解決
出来なかったためである。The reason for this is that until recently there was little demand for highly concentrated, highly purified sodium hydrogen sulfide, and the reaction between highly concentrated caustic soda and highly concentrated hydrogen sulfide gas generates a significant amount of heat.
This is because the temperature in the reaction system tends to rise abnormally, making it difficult to control the temperature inside the column.Furthermore, the problems such as corrosion and stress corrosion cracking of the materials used in the reaction column due to the abnormal temperature rise could not be solved.
(課@を解決するための手段及び作用)本発明者は、高
濃度苛性ソーダ溶液と高濃度硫化水素含有ガスとから水
硫化ソーダを連続的に製造する場合の従来からの欠点を
克服するため鋭意検討を重ねた結果A#度苛性ンソー溶
液と高濃度硫化水素含有ガスとの反応において、反応を
十分に行わせるため塔弐反広器を用いること、さらに接
触効果を高める一方、温度制御のし易さ、腐食防止の点
から冷却された反応液ヲ環流液として、反応塔の特定位
置にリサイクルし、高濃度・高純度の水硫化ソーダを連
続的に製造する方法を見い出し本発明を完成するに至っ
た。(Means and effects for solving Section @) The present inventor has made efforts to overcome the conventional drawbacks of continuously producing sodium bisulfide from a highly concentrated caustic soda solution and a highly concentrated hydrogen sulfide-containing gas. As a result of repeated studies, we decided to use a two-container vessel in order to ensure a sufficient reaction between the A# degree caustic acid solution and gas containing high concentration hydrogen sulfide, and to improve the contact effect while also improving temperature control. From the viewpoint of ease of use and prevention of corrosion, the inventors discovered a method for continuously producing high-concentration, high-purity sodium hydrogen sulfide by recycling the cooled reaction liquid as a reflux liquid to a specific position in the reaction tower, and completed the present invention. reached.
すなわち、本発明は、高濃度苛性ソーダ溶液と高濃度硫
化水素含有ガスとを塔式反応器で連続的に接触反応させ
るに際し、塔底からの反応液を冷却した後、その一部を
反応塔の高濃度苛性ソーダのフィード部よシ上部から環
流液としてリサイクルさせることを特徴とする高濃度、
高純度の水硫化ソーダの連続的製造方法に存する。That is, in the present invention, when a high concentration caustic soda solution and a high concentration hydrogen sulfide-containing gas are subjected to a continuous contact reaction in a tower reactor, after cooling the reaction liquid from the bottom of the tower, a part of it is transferred to the reaction tower. High concentration, characterized by recycling high concentration caustic soda as a reflux liquid from the upper part of the feed section.
The invention consists in a continuous method for producing high purity sodium hydrogen sulfide.
詳しくは、工業的に製造された高濃度・苛性ソーダと主
に石油精製工程から発生する高濃度硫化水素含有ガスと
を、苛性ソーダ1モルに対し硫化水素約1.0〜zOモ
ル、好ましくは、約1.2〜1.5モルの割合で塔式反
応器中を向流で通して接触反応させ、塔底からの反応液
をバキュームフラッシャ−に送夛、過剰に吸収された硫
化水素を抜気除去し、冷却した後、その一部を反応塔の
高濃度苛性ソーダのフィード部よシ上部から環流液とし
てリサイクルさせることによ1反応熱の上昇を防止し一
定の範囲の温度(約60〜110℃)で次の反応式で示
す2段階の反応を経て、高濃度、高純度の水硫化ソーダ
を連続的に製造する方法である。Specifically, industrially produced high concentration caustic soda and high concentration hydrogen sulfide-containing gas mainly generated from petroleum refining processes are mixed in a proportion of about 1.0 to zO mol of hydrogen sulfide, preferably about 1 mol of hydrogen sulfide per 1 mol of caustic soda. A ratio of 1.2 to 1.5 moles is passed through a column reactor in countercurrent for a contact reaction, and the reaction liquid from the bottom of the column is sent to a vacuum flasher to remove excess absorbed hydrogen sulfide. After removal and cooling, a part of it is recycled as a reflux liquid from the upper part of the highly concentrated caustic soda feed section of the reaction tower, thereby preventing the heat of reaction from increasing and keeping the temperature within a certain range (approximately 60 to 110 degrees Celsius). This is a method for continuously producing high-concentration, high-purity sodium hydrogen sulfide through a two-step reaction shown by the following reaction formula at a temperature of 100 °C.
第一段反応
21JaOH+ H,S −+ lla、S −) 2
H,O+ 1 [L5 Kaa’l/? −mol第二
段反応
Ha、S + H,S −+ 2 Na8H+ 1 a
7 Kcal/7−mob以下、本発明について更に詳
しく説明する。First stage reaction 21 JaOH+ H, S −+ lla, S −) 2
H, O+ 1 [L5 Kaa'l/? -mol Second stage reaction Ha, S + H, S −+ 2 Na8H+ 1 a
7 Kcal/7-mob The present invention will be explained in more detail below.
本発明で使用する高濃度苛性ソーダm液は、工業的に製
造されたものを用いることができ、その濃度は約60〜
60 wt優、好ましくは約40〜50 wt%の高濃
度のものが使用できる。The high-concentration caustic soda m solution used in the present invention can be one manufactured industrially, and its concentration is about 60 to
Concentrations as high as 60 wt% or more, preferably about 40-50 wt%, can be used.
本発明で使用する高濃度硫化水素含有ガスは、通常石油
精製工程から発生する硫化水素ガスを除去するために使
用した吸収液を再生する際、放出される硫化水素ガスが
用いられるが、これに限定されずその濃度が約70〜9
9 mo1%、好ましくは約80〜98 mo1% の
ものであれば使用できる。The highly concentrated hydrogen sulfide-containing gas used in the present invention is the hydrogen sulfide gas released when regenerating the absorption liquid used to remove hydrogen sulfide gas generated from the petroleum refining process. It is not limited and the concentration is about 70-9
9 mo1%, preferably about 80 to 98 mo1% can be used.
石油精製工程からの高濃度硫化水素ガスと、以下アシッ
ドガスという。Highly concentrated hydrogen sulfide gas from the oil refining process is hereinafter referred to as acid gas.
苛性ソーダと硫化水素のモル比は苛性ソーダ1モルに対
し硫化水素約tO〜2−0モル、好ましくは約1.2〜
t5モルの割合であシ、シたがってアシッドガスは、高
濃度苛性ソーダ溶液ニ対し化学量論的量の約1.0〜2
.0倍、好ましくは、約1.2〜1.5倍量で供給する
。The molar ratio of caustic soda to hydrogen sulfide is about tO to 2-0 mol of hydrogen sulfide per 1 mol of caustic soda, preferably about 1.2 to 20 mol.
Therefore, the acid gas is about 1.0 to 2 mol of the stoichiometric amount to the highly concentrated caustic soda solution.
.. 0 times, preferably about 1.2 to 1.5 times the amount.
アシッドガスの供給量が少ないと反応は最後まで進行せ
ず不完全となシ、未反応生成物(Ha!8)’i生じ、
これが反応塔内へ堆積し、閉塞の原因となる。又、アシ
ッドガスの供給量が多いと、未反応の硫化水素ガスを多
く発生させることとなシ、再処理が必要となシ、不経済
である。If the amount of acid gas supplied is small, the reaction will not proceed to the end and will be incomplete, resulting in unreacted products (Ha!8)'i.
This accumulates inside the reaction tower and causes blockage. Moreover, if the amount of acid gas supplied is large, a large amount of unreacted hydrogen sulfide gas is generated, and reprocessing is required, which is uneconomical.
本発明で使用する塔式反応器は、通常の反応塔型式のも
のを用いることが出来る。その構造は、塔頂部、反応部
、塔底部より成υ、塔頂部には、塔頂から多量の水分が
ペーパーアウトされるのを防止するために塔頂コンデン
サーを置くことができる。反応部には、反応を十分に行
わしめるために充填物が使用される。充填剤は、通常使
用される鋼製のラツシヒリングを用いうろことができる
が、腐食面で問題となるのなら、テフロン性のカスケー
ドリングを選択することもできる。As the column reactor used in the present invention, a conventional reaction column type can be used. Its structure consists of a column top, a reaction section, and a column bottom, and a column top condenser can be placed at the top of the column to prevent a large amount of water from being papered out from the column top. A packing is used in the reaction section to ensure sufficient reaction. The filler can be filled using commonly used steel Luschig rings, but if corrosion is a concern, Teflon cascade rings can also be selected.
塔底部には、液面コントローラが設けられ液面がコント
ロールされながら反応生成物である水硫化ソーダがバキ
ュームフラッシャ−に送らレル。バキュームフラッシャ
−では、過剰に吸収された硫化水素ガスが抜気され除去
される。A liquid level controller is installed at the bottom of the tower to control the liquid level while sending the reaction product, sodium hydrogen sulfide, to the vacuum flasher. In the vacuum flasher, excessively absorbed hydrogen sulfide gas is vented and removed.
抜気された液は、ポンプで昇圧され、クーラーで約38
〜55℃に冷却された後、その一部を反応塔へ環流液と
してリサイクルするが、リサイクルの位置は高濃度苛性
ソーダのフィード部よシわずかでも上部であればよく、
塔頂コンデンサーとの間に位置する。環流比(塔底液の
環流量(t/hr ’)を高濃度苛性ソーダ溶液供給量
(L/br )で割った値)は反応塔内の温度を約80
〜11′0℃とするため、約2.5〜6とするのが好ま
しい。環流比が小さいと反応塔内の温度上昇を抑えるこ
とは出来ない。The evacuated liquid is pressurized by a pump and heated to approximately 38 cm in a cooler.
After being cooled to ~55°C, a part of it is recycled to the reaction tower as a reflux liquid, but the recycling position may be at least slightly above the feed section of high concentration caustic soda.
Located between the tower top condenser. The reflux ratio (the value obtained by dividing the reflux rate (t/hr') of the tower bottom liquid by the amount of high-concentration caustic soda solution supplied (L/br)) is determined by adjusting the temperature inside the reaction tower to approximately 80°C.
In order to set the temperature to 11'0°C, it is preferably about 2.5 to 6. If the reflux ratio is small, it is impossible to suppress the temperature rise inside the reaction tower.
31E液を高濃度苛性ソーダのフィード部の下部よシリ
サイクルさせると塔頂温度が高くなシ温度コントロール
が難かしく腐食防止の面からも不利となる。If the 31E liquid is silily recycled from the lower part of the feed section of high concentration caustic soda, the temperature at the top of the column will be high, making it difficult to control the temperature, which is also disadvantageous in terms of corrosion prevention.
環流液としてリサイクルしない他の一部は、液面コント
ロールしながら高濃度、高純度の水硫化ソーダとして製
品タンクへ移送される。The remaining part that is not recycled as reflux liquid is transferred to the product tank as high-concentration, high-purity sodium hydrogen sulfide while controlling the liquid level.
(発明の効果)
塔底液を環流液として苛性ソーダフィード部より上部に
リサイクルすることにより、塔内温度のコントロールが
容易となシ、温度上昇による反応塔材料の腐食等の問題
も解決でき、始めて高濃度苛性ソーダと高濃度硫化水素
含有ガスとを塔式反応器で接触反応することが可能とな
シ、高濃度・高純度の水硫化ソーダが得られ、従来の低
濃度のものに比し炭酸ソーダ等の不純物がほとんど無い
高濃度(約50〜60 wt%1Ja8Hのものをいう
。)で高純度の水硫化ソーダが得られ、貯蔵や運搬の費
用を削減出来る。(Effects of the invention) By recycling the column bottom liquid as a reflux liquid from the caustic soda feed section to the upper part, the temperature inside the column can be easily controlled, and problems such as corrosion of the reaction column material due to temperature rise can be solved, and for the first time. It is possible to carry out a catalytic reaction between high concentration caustic soda and gas containing high concentration hydrogen sulfide in a column reactor, and high concentration and high purity sodium hydrogen sulfide can be obtained. Highly concentrated (approximately 50 to 60 wt% 1Ja8H) and highly pure sodium hydrogen sulfide can be obtained, with almost no impurities such as soda, and storage and transportation costs can be reduced.
又、連続製造の丸め設備は小型化し、アシッドガスの消
費量も一定化し、関連装置の運転も安定化する。In addition, the rounding equipment for continuous production becomes smaller, the consumption of acid gas becomes constant, and the operation of related equipment becomes more stable.
(実施列) 以下に実施列および比較列により本発明を説明する。(Implementation row) The present invention will be explained below with reference to examples and comparison columns.
実施列1〜6
図面に示すように、アシッドガスを管1から導入し、セ
パレーター9でアシッドガス中の水分を除去し、更にフ
ィルター10で、同伴の固形分を除去する。アシッドガ
スは、高濃度苛性ソーダ1モルに対し硫化水素1.2〜
1.5モル址を塔の底部に吹き込む。管路2よシの高濃
度苛性ソーダ溶液を一定量にコントロールしながら塔頂
コンデンサー12の下部(充填物17■上部)に噴射供
給する。反応塔17内では、上記のアシッドガスと高濃
度苛性ソーダ溶液が反応し、生成した水硫化ソーダは塔
底から管路3によシ抜出され未反応のオフガス(余剰硫
化水素ガス及び不活性ガス)は塔頂から圧力をコントロ
ールしながら管路6によシ放出させる。この場合、塔頂
から多量の水分がペーパーアウトされるのを防止するた
めに塔頂コンデンサー12を置く。Embodiments 1 to 6 As shown in the drawings, acid gas is introduced through a pipe 1, water in the acid gas is removed by a separator 9, and entrained solid content is further removed by a filter 10. Acid gas is hydrogen sulfide 1.2 to 1 mole of highly concentrated caustic soda.
Blow 1.5 mol into the bottom of the column. The high concentration caustic soda solution from the pipe 2 is injected and supplied to the lower part of the tower top condenser 12 (above the packing 17) while controlling the amount to be constant. In the reaction tower 17, the above acid gas and the highly concentrated caustic soda solution react, and the generated sodium hydrogen sulfide is extracted from the bottom of the tower through the pipe 3 and unreacted off-gas (excess hydrogen sulfide gas and inert gas ) is discharged from the top of the tower through pipe 6 while controlling the pressure. In this case, an overhead condenser 12 is placed to prevent large amounts of water from being papered out from the top of the column.
塔底の水硫化ソーダは液面コントローラで塔底の液面が
コントロールされてバキュームフラッシャ−14に送ら
れる。The liquid level of the sodium bisulfide at the bottom of the tower is controlled by a liquid level controller, and the sodium bisulfide is sent to the vacuum flasher 14.
バキュームフラッシャ−14により過剰に吸収された硫
化水素ガスを抜気し、後工程での硫化水素ガスの発生?
極力抑える。抜気された液はボンダ15で昇圧し、クー
ラー8で冷却されて一部は管5により反志塔17の高濃
度苛性ソーダのフィード部より、10d上部に噴!1猿
流する。項流夜は水硫化ソーダの生成熱による塔内の温
度上昇を抑制し、塔内温度が約60〜110℃になるよ
うに環流する。他の一部は液面コントローラーで液面を
コントロールしながらフィルター16を通し、管4から
高濃度高純度の水硫化ソーダを得る。収率は、塔頂から
の飛散を防いでいるため、Na8H浴液としては100
優である。Vacuum flasher 14 removes excessively absorbed hydrogen sulfide gas and generates hydrogen sulfide gas in the subsequent process?
Minimize as much as possible. The vented liquid is pressurized by the bonder 15, cooled by the cooler 8, and a part of it is sprayed through the pipe 5 from the high concentration caustic soda feed section of the reaction tower 17 to the upper part of 10d! 1 monkey runs away. At night, the temperature rise in the tower due to the heat of formation of sodium hydrogen sulfide is suppressed, and the temperature in the tower is refluxed to about 60 to 110°C. The other part passes through a filter 16 while controlling the liquid level with a liquid level controller, and highly concentrated and highly purified sodium hydrogen sulfide is obtained from the pipe 4. The yield is 100% as Na8H bath liquid because it prevents scattering from the top of the column.
Excellent.
第1表に高濃度苛性ソーダの組成を、第2表にアシッド
ガスの組成を、第3表に運転条件を、第4表に得られた
高濃度、高純度水硫化ソーダの性状を示す。本実施例で
使用した反応塔は塔径8インチ、基材料5UB304
、反応部ラツシヒリング充填高さ50 cIRX 2段
、ラツシヒリングサイズ捧インチ、ラツシヒリング材質
8U8504のものを使用した。Table 1 shows the composition of the highly concentrated caustic soda, Table 2 shows the composition of the acid gas, Table 3 shows the operating conditions, and Table 4 shows the properties of the high-concentration, high-purity sodium hydrogen sulfide obtained. The reaction column used in this example had a column diameter of 8 inches and a base material of 5UB304.
A Raschig ring with a filling height of 50 cIRX in the reaction section, 2 stages, a Raschig ring size of approximately 1 inch, and a Raschig ring material of 8U8504 were used.
第1表
第2表
ガス比重
1.147
第4表
比較列1
実施列1において、管路5よりの環流液を反応塔17の
高濃度苛性ソーダのフィード部の下部へ環流した以外は
、同様の方法により運転を行った。Table 1 Table 2 Gas specific gravity 1.147 Table 4 Comparison row 1 Same procedure as in practical row 1 except that the reflux liquid from pipe 5 was refluxed to the lower part of the feed section of high concentration caustic soda of reaction column 17. The operation was carried out according to the method.
その結果、塔内温度は、最高温度120℃、最低温度8
0℃となった。これ以上の温度上昇は、反応塔使用材料
の急激な腐食が予想されるため、その後の運転は行わな
かった。As a result, the maximum temperature inside the tower was 120°C, and the minimum temperature was 8°C.
The temperature reached 0℃. If the temperature rose further than this, rapid corrosion of the materials used in the reaction tower would be expected, so no further operation was carried out.
第1図は本祐明を実施する装置の−I!jlJを示すフ
ロー概略図である。
1 高濃度硫化水素含有ガス(アシッドガス)管路
2 高濃ノ厨苛性ソーダ1容液管路
3 水硫化ソーダ(半製品)
4 高濃度、高純度水硫化ソーダ
5 環流液
6 オフガス(余剰硫化水素ガスおよび不活性ガス)
7 抜気硫化水素ガス
8 冷却水
9 セパレータ
10 了ジッドガスフィルタ
11 反応塔(塔底部)
12 反応塔(塔頂コンデンサー)
13 クーラ
14 バキュームフラッシャ−
15水硫化ソーダポンプ
16 水硫化ソーダ・フィルター
T工C
L工C
IO
反応塔(ラツシヒリング等)
温度コントローラ(塔反応部の温度を測定し、還流液の
増減で制御)
液面コントローラ(塔底液レベルを測定し、抜出し量ヲ
コントロールしている)流量コントローラ(液ガス遺を
測定し、流量一定になる様に制御)Figure 1 shows -I! of the device that implements Yumei Moto! It is a flow schematic diagram showing jlJ. 1 Highly concentrated hydrogen sulfide containing gas (acid gas) pipe 2 Highly concentrated sodium hydroxide 1 volume liquid pipe 3 Sodium hydrogen sulfide (semi-finished product) 4 High concentration, high purity sodium hydrogen sulfide 5 Reflux liquid 6 Off gas (surplus hydrogen sulfide) (gas and inert gas) 7 Venting hydrogen sulfide gas 8 Cooling water 9 Separator 10 Reaction tower (bottom of tower) 12 Reaction tower (top condenser) 13 Cooler 14 Vacuum flasher 15 Sodium hydrogen sulfide pump 16 Water Sodium sulfide filter T-type C L-type C IO Reaction tower (Ratschig ring, etc.) Temperature controller (measures the temperature of the tower reaction part and controls it by increasing or decreasing the reflux liquid) Liquid level controller (measures the bottom liquid level and controls the withdrawal amount ) Flow controller (measures liquid gas and controls the flow rate to be constant)
Claims (1)
を塔式反応器で接触反応させるに際し、塔底からの反応
液を冷却した後、その一部を反応塔の高濃度苛性ソーダ
のフィード部より上部から環流液としてリサイクルさせ
ることを特徴とする高濃度・高純度の水硫化ソーダの連
続的製造方法。1. When a high concentration caustic soda solution and a high concentration hydrogen sulfide-containing gas are subjected to a contact reaction in a tower reactor, after cooling the reaction liquid from the bottom of the tower, a part of it is transferred from the high concentration caustic soda feed section of the reaction tower. A method for continuously producing high-concentration, high-purity sodium hydrogen sulfide, which is characterized by recycling the reflux liquid from the top.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63171813A JP2579533B2 (en) | 1988-07-12 | 1988-07-12 | Method for producing sodium bisulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63171813A JP2579533B2 (en) | 1988-07-12 | 1988-07-12 | Method for producing sodium bisulfide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0222107A true JPH0222107A (en) | 1990-01-25 |
JP2579533B2 JP2579533B2 (en) | 1997-02-05 |
Family
ID=15930205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63171813A Expired - Lifetime JP2579533B2 (en) | 1988-07-12 | 1988-07-12 | Method for producing sodium bisulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2579533B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116251539A (en) * | 2023-05-15 | 2023-06-13 | 黑龙江莱睿普思环境科技发展有限公司 | Absorption reactor for preparing sodium hydrosulfide from acid gas |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101067660B1 (en) * | 2011-01-27 | 2011-09-27 | (주)엔코아네트웍스 | Apparatus for manufacturing nahs and method for manufacturing nahs |
KR101334641B1 (en) | 2013-05-07 | 2013-11-29 | (주)엔코아네트웍스 | Apparatus for recycling of valuable metal from wastewater and the method thereof |
-
1988
- 1988-07-12 JP JP63171813A patent/JP2579533B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116251539A (en) * | 2023-05-15 | 2023-06-13 | 黑龙江莱睿普思环境科技发展有限公司 | Absorption reactor for preparing sodium hydrosulfide from acid gas |
Also Published As
Publication number | Publication date |
---|---|
JP2579533B2 (en) | 1997-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4473540A (en) | High efficiency chlorine dioxide process | |
KR101149143B1 (en) | Process for producing methionine | |
CN1810780A (en) | Methylsulfonic acid preparing process | |
US2863725A (en) | Process for making sulfur free hydrogen sulfide | |
US6143270A (en) | Anhydrous magnesium chloride | |
JPH0511045B2 (en) | ||
JPH0222107A (en) | Production of sodium hydrosulfide | |
CA1039030A (en) | Method for removal of sulfur dioxide from gases | |
EP0337839B1 (en) | Process for the preparation of lower dialkyldisulfides | |
US4439411A (en) | Production of sodium hydrosulfide | |
US4781910A (en) | Hydrogen sulfide removal and sulfur recovery | |
CN111689858B (en) | Method for preparing ethyl chloroformate | |
US4105754A (en) | Production of high purity calcium thiosulfate | |
US4154806A (en) | Process for the production of nitrous oxide | |
CN117377654A (en) | Method for producing methionine | |
JPH0420845B2 (en) | ||
CA1114133A (en) | Process for producing aqueous solution of calcium nitrite | |
US4108966A (en) | Preparation of iodine pentafluoride by direct fluorination of molten iodine | |
KR970002889B1 (en) | Process for the preparation of sodium hydrosulphide | |
US4285923A (en) | Manufacture of calcium nitrite solutions with low nitrate content | |
US3661518A (en) | Process for converting sulfates to sulfides | |
US2479781A (en) | Purification of hydrogen sulfide | |
US2376433A (en) | Manufacture of sodium hydrosulphides | |
JPH1120895A (en) | Method for storing trichlorosilane and silicon tetrachloride | |
KR100217957B1 (en) | Process for preparing concentrated solutions of alkali metal hypochlorites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071107 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 12 |