JPH022208B2 - - Google Patents

Info

Publication number
JPH022208B2
JPH022208B2 JP10493382A JP10493382A JPH022208B2 JP H022208 B2 JPH022208 B2 JP H022208B2 JP 10493382 A JP10493382 A JP 10493382A JP 10493382 A JP10493382 A JP 10493382A JP H022208 B2 JPH022208 B2 JP H022208B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
coercive force
magnetic pole
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10493382A
Other languages
Japanese (ja)
Other versions
JPS58222415A (en
Inventor
Masuzo Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10493382A priority Critical patent/JPS58222415A/en
Publication of JPS58222415A publication Critical patent/JPS58222415A/en
Publication of JPH022208B2 publication Critical patent/JPH022208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は、面に垂直な磁化容易軸を持つ垂直磁
気記録媒体に信号を記録再生するために用いる垂
直磁気記録再生ヘツドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a perpendicular magnetic recording/reproducing head used for recording and reproducing signals on a perpendicular magnetic recording medium having an axis of easy magnetization perpendicular to the surface.

記録面に垂直な方向に磁化容易軸を持つ垂直磁
気記録媒体に、面に垂直な方向に記録磁界を発生
するヘツドで磁化をおこなう、あるいは記録され
た信号を再生する記録再生方式は、記録媒体の面
内方向へ記録再生する方式に比べ、より高密度な
記録再生ができる。
A recording/reproduction method that magnetizes a perpendicular magnetic recording medium, which has an axis of easy magnetization perpendicular to the recording surface, using a head that generates a recording magnetic field in a direction perpendicular to the recording surface, or reproduces recorded signals, is a recording medium. Compared to the method of recording and reproducing in the in-plane direction, it is possible to record and reproduce at a higher density.

垂直磁気記録媒体に信号を垂直方向に記録、あ
るいは記録した信号を再生するヘツドとして、
種々のものが提案されている。その中で良好に垂
直記録再生できるヘツドとして、第1図に示した
如き補助磁極励磁型ヘツドが提案されている。す
なわち、第1図において、ポリイミド、あるいは
ポリエチレンテレフタレートなどの有機フイルム
1上に設けた垂直磁気記録媒体2の表面に近接し
て非磁性基板例えばガラス基板3に単層のパーマ
ロイ薄膜4をたんざく状に形成してなる主磁極5
を配置する。一方、記録媒体2の背面には、主磁
極5と対向する面6の面積が主磁極の対向面7の
面積より十分大きな、Mn−Znフエライトなどの
軟磁性体片からなる補助磁極8が近接して配置し
てある。なお、補助磁極8には励磁用あるいは信
号再生用コイル9が巻かれている。
As a head that records signals vertically on a perpendicular magnetic recording medium or reproduces recorded signals,
Various things have been proposed. Among these, an auxiliary magnetic pole excitation type head as shown in FIG. 1 has been proposed as a head capable of good perpendicular recording and reproduction. That is, in FIG. 1, a single-layer permalloy thin film 4 is disposed on a nonmagnetic substrate, for example, a glass substrate 3, in close proximity to the surface of a perpendicular magnetic recording medium 2 provided on an organic film 1 such as polyimide or polyethylene terephthalate. The main magnetic pole 5 formed in
Place. On the other hand, an auxiliary magnetic pole 8 made of a piece of soft magnetic material such as Mn-Zn ferrite is adjacent to the back surface of the recording medium 2, and the area of the surface 6 facing the main magnetic pole 5 is sufficiently larger than the area of the opposing surface 7 of the main magnetic pole. It is arranged as follows. Note that an excitation or signal reproducing coil 9 is wound around the auxiliary magnetic pole 8.

第1図に基づいて動作を説明すると、補助磁極
8の励磁により主磁極5が磁化され、この時発生
する磁界によつて記録媒体2が磁化されて信号が
記録される。記録された信号の再生は、主磁極5
にて記録媒体2からの信号に対応する磁束をひろ
い、これにより主磁極5に生ずる磁化にて発生す
る磁界の変化を補助磁極8でピツクアツプして再
生する。
The operation will be explained based on FIG. 1. The main magnetic pole 5 is magnetized by excitation of the auxiliary magnetic pole 8, and the recording medium 2 is magnetized by the magnetic field generated at this time, so that a signal is recorded. The recorded signal is reproduced using the main magnetic pole 5.
The magnetic flux corresponding to the signal from the recording medium 2 is collected by the auxiliary magnetic pole 8, and the change in the magnetic field generated by the magnetization generated in the main magnetic pole 5 is picked up and reproduced by the auxiliary magnetic pole 8.

このような構成の垂直磁気記録再生ヘツドにお
いては、記録媒体2は、主磁極5のパーマロイ薄
膜4の膜厚方向9に移動するため、再生される信
号の線密度は主磁極5のパーマロイ薄膜4の厚み
で決定される。このパーマロイ薄膜4の厚みを薄
くすれば線密度は向上するが、薄くなるに従い補
助磁極8から得られる信号強度は小さくなり、感
度が悪くなる。
In the perpendicular magnetic recording/reproducing head having such a configuration, since the recording medium 2 moves in the film thickness direction 9 of the permalloy thin film 4 of the main magnetic pole 5, the linear density of the reproduced signal is higher than that of the permalloy thin film 4 of the main magnetic pole 5. It is determined by the thickness of If the permalloy thin film 4 is made thinner, the linear density will be improved, but as the permalloy thin film 4 becomes thinner, the signal strength obtained from the auxiliary magnetic pole 8 will become smaller and the sensitivity will deteriorate.

本発明は、垂直磁気記録媒体の表面に近接して
配置した主磁極と、記録媒体の背面に近接し、か
つ主磁極に対向して配置した磁性体片に巻線をし
た補助磁極との組合せよりなる垂直磁気記録再生
ヘツドにおいて、主磁極が非磁性基板上に保磁力
の小さい磁性薄膜と保磁力の大きい磁性薄膜を重
ねて形成したたんざく状の構造を有し、保磁力の
小さい磁性薄膜が磁化反転する磁界強度を、保磁
力の大きい磁性薄膜の磁化方向によつて制御する
ように構成したことを特徴とするものである。
The present invention is a combination of a main magnetic pole disposed close to the surface of a perpendicular magnetic recording medium and an auxiliary magnetic pole wound around a piece of magnetic material disposed close to the back surface of the recording medium and facing the main magnetic pole. In a perpendicular magnetic recording/reproducing head made of The present invention is characterized in that the magnetic field strength at which the magnetization is reversed is controlled by the magnetization direction of the magnetic thin film having a large coercive force.

すなわち、本発明の特徴である保磁力の異なる
2種類の軟磁性薄膜を重ねて形成した主磁極は、
外部磁場の変化に対し、基本的には次に述べる如
き特性を持つものである。
In other words, the main magnetic pole, which is a feature of the present invention and is formed by stacking two types of soft magnetic thin films with different coercive forces,
Basically, it has the following characteristics in response to changes in the external magnetic field.

基板上に保磁力の小さい軟磁性薄膜と、保磁力
の大きい軟磁性薄膜を重ねて設け、これをたんざ
く状に形成したのち、ピツクアツプ用にコイルを
巻き、磁性膜の磁化反転によつて生ずる誘導起電
圧をとりだすことのできる素子を準備する。今、
この素子のコイルの巻き径に直角な方向へ、保磁
力の大きい磁性薄膜の保磁力より大きい外部磁界
を印加し、2層の磁性薄膜の磁化方向を揃える。
つぎに外部磁界を零にし、その方向を反対向にし
て次第に強くして行く。このとき、外部磁界が保
磁力の小さい磁性薄膜の保磁力よりも少し強くな
つても、保磁力の大きい磁性薄膜との相互作用に
より、保磁力の小さい磁性薄膜の磁化反転が拘束
されて反転せずにいる。外部磁界が相互作用によ
り拘束されている磁界の強さより強くなると、保
磁力の小さい磁性薄膜は拘束から解かれ、磁化反
転をする。この時、保磁力の大きい磁性薄膜の磁
化方向は変つていない。
A soft magnetic thin film with a low coercive force and a soft magnetic thin film with a large coercive force are layered on a substrate, and after forming these into a tanzag shape, a coil is wound for pick-up, and the magnetic film is produced by magnetization reversal of the magnetic film. Prepare an element that can extract induced electromotive voltage. now,
An external magnetic field larger than the coercive force of the magnetic thin film having a large coercive force is applied in a direction perpendicular to the winding diameter of the coil of this element to align the magnetization directions of the two magnetic thin films.
Next, the external magnetic field is reduced to zero, and then gradually strengthened in the opposite direction. At this time, even if the external magnetic field becomes slightly stronger than the coercive force of the magnetic thin film with a small coercive force, the magnetization reversal of the magnetic thin film with a small coercive force is restrained due to the interaction with the magnetic thin film with a large coercive force and cannot be reversed. I'm in the middle of the day. When the external magnetic field becomes stronger than the magnetic field that is constrained by interaction, the magnetic thin film with a small coercive force is released from the constraint and undergoes magnetization reversal. At this time, the magnetization direction of the magnetic thin film with a large coercive force remains unchanged.

次に、外部磁界を零にし、のち方向を反対にし
てしだいに強くして行くと、保磁力の小さい磁性
薄膜の磁化方向の保磁力の大きい磁性薄膜の磁化
方向は反対になつており、しかも保磁力の大きい
磁性薄膜の磁化方向と外部磁界の方向が同じであ
るから、保磁力の小さい磁性薄膜の磁化反転を促
すように保磁力の大きい磁性薄膜が働くので、前
者の場合より外部磁界の弱い値で磁化反転がおこ
る。よつて、結果として保磁力の小さい磁性薄膜
の磁化反転は、外部磁界がその保磁力程度になつ
たとき、急俊におこることになる。前者の場合は
保磁力の大きい磁性薄膜が拘束する様に働くた
め、保磁力の小さい磁性薄膜の磁化反転は後者よ
り急俊でない。
Next, when the external magnetic field is made zero, and then the direction is reversed and gradually strengthened, the direction of magnetization of the magnetic thin film with a small coercive force becomes opposite to the direction of magnetization of a magnetic thin film with a large coercive force. Since the direction of magnetization of the magnetic thin film with a large coercive force is the same as the direction of the external magnetic field, the magnetic thin film with a large coercive force works to promote magnetization reversal of the magnetic thin film with a small coercive force, so the external magnetic field is more sensitive to the magnetic thin film than in the former case. Magnetization reversal occurs at weak values. Therefore, as a result, the magnetization reversal of a magnetic thin film with a small coercive force occurs rapidly when the external magnetic field reaches about the coercive force. In the former case, since the magnetic thin film with a large coercive force acts as a restraint, the magnetization reversal of the magnetic thin film with a small coercive force is less rapid than in the latter.

一定の磁化量を持つ磁性体が磁化反転する場
合、反転速度が急俊であればある程これによつて
コイルに生ずる誘導起電圧は高くなるから、後者
の場合の磁化反転では前者より大きな起電圧がコ
イル両端に発生する。本発明は主磁性にこの特性
を利用したものである。
When a magnetic material with a certain amount of magnetization undergoes magnetization reversal, the faster the reversal speed, the higher the induced electromotive force generated in the coil. A voltage is developed across the coil. The present invention utilizes this characteristic for the main magnetism.

次に、従来の主磁極として基板上に軟磁性膜を
単層設けて構成した場合と本発明の場合を比較す
る。
Next, a comparison will be made between a conventional main pole in which a single layer of soft magnetic film is provided on a substrate and a case according to the present invention.

単層膜の場合は、磁気的に拘束するものが他に
ないので外部磁界の変化に応じ、保磁力の強さで
磁化反転する。この場合、外部磁界の周波数が低
い場合は磁化反転はゆつくりと、周波数が高くな
ると磁化反転は速くなる。すなわち、誘発起電圧
は周波数に依存し、低周波数側では小さくなる。
これに対し、本発明の保磁力の異なる2層膜の場
合、後者の磁化反転で得られる誘発パルスは、外
部磁界の周波数を変えても誘導起電圧の高さは一
定であるという特徴を持つている。これは、保磁
力の小さい磁性薄膜の磁化反転が、保磁力の大き
い磁性薄膜の助けにより、より急俊に生ずること
が起因していると考えられる。
In the case of a single layer film, since there is nothing else to magnetically constrain it, the magnetization is reversed depending on the strength of the coercive force in response to changes in the external magnetic field. In this case, when the frequency of the external magnetic field is low, the magnetization reversal is slow, and when the frequency is high, the magnetization reversal becomes faster. That is, the induced electromotive force depends on the frequency and becomes smaller on the low frequency side.
In contrast, in the case of the two-layer film of the present invention with different coercive forces, the induced pulse obtained by the latter magnetization reversal has the characteristic that the height of the induced electromotive force remains constant even if the frequency of the external magnetic field is changed. ing. This is thought to be due to the fact that the magnetization reversal of the magnetic thin film with a small coercive force occurs more quickly with the help of a magnetic thin film with a large coercive force.

第2図に、単層膜の場合と本発明の2層膜の場
合の、誘導起電圧の、外部磁界の周波数依存性を
示した。図中のAは単層膜の場合で、磁性薄膜は
Ni:Fe=60:40(重量%)、膜厚=0.8μmで、保
磁力は0.5エルステツドであつた。また、図中の
Bは後述の実施例に用いた2層膜の場合で、保磁
力の小さい磁性薄膜は、Ni:Fe=60:40(重量
%)、膜厚:0.8μm、保磁力:0.5エルステツド、
保磁力の大きい磁性薄膜は、Ni:Fe=25:75(重
量%)、膜厚:0.5μm、保磁力:10エルステツド
であつた。同図から明らかな様に、Bに示す本発
明のヘツドでは誘導起電圧は外部磁界の周波数に
依存せず一定で、その値は高い。
FIG. 2 shows the dependence of the induced electromotive force on the frequency of the external magnetic field in the case of a single-layer film and the case of a two-layer film of the present invention. A in the figure is for a single layer film, and the magnetic thin film is
Ni:Fe=60:40 (wt%), film thickness=0.8 μm, and coercive force was 0.5 oersted. In addition, B in the figure is the case of a two-layer film used in the examples described later, and the magnetic thin film with a small coercive force is Ni:Fe=60:40 (wt%), film thickness: 0.8 μm, and coercive force: 0.5 oersted,
The magnetic thin film with a high coercive force had a Ni:Fe ratio of 25:75 (wt%), a film thickness of 0.5 μm, and a coercive force of 10 oersteds. As is clear from the figure, in the head of the present invention shown in B, the induced electromotive voltage is constant regardless of the frequency of the external magnetic field, and its value is high.

本発明において、2層膜の基板上への析出の順
序は、基本的にはどちらを先に析出してもよい
が、これら軟磁性薄膜は、比較的歪により磁気特
性が変化しやすいため、基板の熱膨張係数を保磁
力の小さい磁性薄膜のそれに合せておき、保磁力
の小さい磁性薄膜を先に析出する方が膜の磁気特
性のずれが少なく安定してできる。
In the present invention, the order in which the two-layer films are deposited on the substrate is basically that either one may be deposited first, but since the magnetic properties of these soft magnetic thin films are relatively easily changed by strain, It is better to match the coefficient of thermal expansion of the substrate to that of a magnetic thin film with a small coercive force, and to deposit the magnetic thin film with a small coercive force first, so that the magnetic properties of the film are less likely to shift and are more stable.

この2層膜を主磁極に用いた本発明のヘツドに
おいて、特に記録媒体から信号を再生する場合、
記録媒体からの磁界に十分応答する特性を持つた
主磁極でなければならない。記録媒体からの磁界
は、ヘツドとのスペースロスを多少あると考えて
数エルステツド〜10エルステツドと考えると、こ
の磁界に応答するには、保磁力の小さい磁性薄膜
の保磁力が1エルステツド以下であることが望ま
しい。この保磁力が大き過ぎると記録媒体の信号
に対し応答ができない。すなわち、記録媒体から
でる磁界により主磁極の保磁力の小さい磁性薄膜
が十分な量磁化反転できず、補助磁極の再生用コ
イルに生ずる誘導起電圧は小さく感度は悪い。
In the head of the present invention using this two-layer film for the main magnetic pole, especially when reproducing signals from a recording medium,
The main pole must have characteristics that sufficiently respond to the magnetic field from the recording medium. Considering that the magnetic field from the recording medium is a few to 10 Oersteds, taking into account some space loss with the head, in order to respond to this magnetic field, the coercive force of a magnetic thin film with a small coercive force must be 1 Oersted or less. This is desirable. If this coercive force is too large, no response can be made to the signal from the recording medium. That is, the magnetization of the magnetic thin film with a small coercive force of the main pole cannot be reversed by a sufficient amount due to the magnetic field emitted from the recording medium, and the induced electromotive force generated in the reproducing coil of the auxiliary pole is small and the sensitivity is poor.

次に第3図に基づき本発明の垂直磁気記録再生
ヘツドの一実施例を説明する。ポリイミドあるい
はポリエチレンテレフタレートなどの有機フイル
ム10の上に設けた垂直磁化膜11の表面に近接
してガラス基板12にまず保磁力の小さい磁性薄
膜13を、続いて保磁力の大きい磁性薄膜14を
重ねて析出し、これをたんざく状に形成した主磁
極15を配置する。一方、記録媒体の背面には主
磁極15と対向する面16の面積が主磁極の対向
面17の面積より十分大きなMn−Znフエライト
などの軟磁性体片からなる補助磁極18が近接し
て配置してある。なお補助磁極18には励磁用あ
るいは信号再生用コイル19が巻かれている。ま
た記録媒体の進行方向は20の矢印で示した。保
磁力の小さい磁性薄膜13にNi:Fe=60:40(重
量比)、保磁力の大きい磁性薄膜14にNi:Fe=
25:75(重量比)なる組成の膜を重ねて析出し、
磁性薄膜13の膜厚を0.8μm、磁性薄膜14の膜
厚を0.5μm、たんざくの大きさは、媒体に対向し
ている面17の幅(トラツク幅に相当)が1mm、
長さが15mm、とした。補助磁極18に巻いた励磁
用コイルは100ターンとし、再生用コイルは400タ
ーンとした。また垂直磁化膜11を基板10の上
に形成する前に、基板10の上へMo−パーマロ
イの軟磁性膜を析出し、その上に垂直磁化膜を析
出した。20KBPIの記録密度に、記録電流3ATで
記録した場合、再生出力が0.4μVo−p/ターン
であつた。主磁極の磁性膜を、保磁力の小さい磁
性薄膜13のみにした場合、5ATの記録電流で
0.08μVo−p/ターンであつた。
Next, an embodiment of the perpendicular magnetic recording/reproducing head of the present invention will be explained based on FIG. A magnetic thin film 13 with a small coercive force is first layered on a glass substrate 12 in close proximity to the surface of a perpendicularly magnetized film 11 provided on an organic film 10 such as polyimide or polyethylene terephthalate, and then a magnetic thin film 14 with a large coercive force is layered. The main magnetic pole 15 is formed by depositing the deposit and forming it into a tanzag shape. On the other hand, on the back side of the recording medium, an auxiliary magnetic pole 18 made of a piece of soft magnetic material such as Mn-Zn ferrite is arranged close to the main magnetic pole 15 and the area of the surface 16 facing the main magnetic pole is sufficiently larger than the area of the opposing surface 17 of the main magnetic pole. It has been done. Note that an excitation or signal reproduction coil 19 is wound around the auxiliary magnetic pole 18. Further, the traveling direction of the recording medium is indicated by an arrow 20. The magnetic thin film 13 with a small coercive force has Ni:Fe=60:40 (weight ratio), and the magnetic thin film 14 with a large coercive force has Ni:Fe=
Films with a composition of 25:75 (weight ratio) are deposited in layers,
The thickness of the magnetic thin film 13 is 0.8 μm, the thickness of the magnetic thin film 14 is 0.5 μm, and the width of the surface 17 facing the medium (corresponding to the track width) is 1 mm.
The length was set to 15 mm. The excitation coil wound around the auxiliary magnetic pole 18 had 100 turns, and the regeneration coil had 400 turns. Furthermore, before forming the perpendicularly magnetized film 11 on the substrate 10, a soft magnetic film of Mo-permalloy was deposited on the substrate 10, and a perpendicularly magnetized film was deposited thereon. When recording was performed at a recording density of 20 K BPI and a recording current of 3 AT, the reproduction output was 0.4 μVo-p/turn. When the magnetic film of the main pole is made of only the magnetic thin film 13 with a small coercive force, a recording current of 5 AT is required.
It was 0.08 μVo-p/turn.

以上に示した如く、本発明の垂直磁気記録再生
ヘツドは、主磁極の磁性薄膜を保磁力の異なる2
層で構成することにより、単層の場合よりも磁化
反転をより急俊にさせることができるため、発生
する磁界は強くなり、記録媒体への記録に際して
記録効率が高くなり、再生においても効率が高く
なる。従つて、主磁極の磁性薄膜の厚みをより薄
くできることになり、線密度がより向上するとい
う優れた特徴を有している。
As described above, the perpendicular magnetic recording/reproducing head of the present invention has two magnetic thin films of different coercive forces on the main pole.
By configuring the layer, magnetization reversal can be made more rapidly than in the case of a single layer, so the generated magnetic field becomes stronger, resulting in higher recording efficiency when recording on a recording medium, and higher efficiency during playback. It gets expensive. Therefore, the thickness of the magnetic thin film of the main pole can be made thinner, which has the excellent feature of further improving the linear density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は主磁極と補助磁極よりなる従来の垂直
磁気記録再生ヘツドを用いての、記録媒体への記
録、再生状態を説明するための概略構成図、第2
図は従来例と本発明の外部磁界の周波数とその周
波数誘導起電圧との関係を示す特性比較図、第3
図は本発明の一実施例の垂直磁気記録再生ヘツド
を用いての、記録媒体への記録、再生状態を説明
するための概略構成図である。 10……有機フイルム、11……垂直磁化膜、
12……ガラス基板、13,14……磁性薄膜、
15……主磁極、18……補助磁極、19……コ
イル。
FIG. 1 is a schematic configuration diagram for explaining the state of recording and reproducing data on a recording medium using a conventional perpendicular magnetic recording/reproducing head consisting of a main magnetic pole and an auxiliary magnetic pole.
The figure is a characteristic comparison diagram showing the relationship between the frequency of the external magnetic field and the frequency-induced electromotive force of the conventional example and the present invention.
The figure is a schematic configuration diagram for explaining recording and reproducing states on a recording medium using a perpendicular magnetic recording and reproducing head according to an embodiment of the present invention. 10... Organic film, 11... Perpendicular magnetization film,
12... Glass substrate, 13, 14... Magnetic thin film,
15...Main magnetic pole, 18...Auxiliary magnetic pole, 19...Coil.

Claims (1)

【特許請求の範囲】 1 垂直磁気記録媒体の表面に近接して配置した
主磁極と、前記垂直磁気記録媒体の背面に近接
し、かつ前記主磁極に対向して配置した磁性体片
に巻線をした補助磁極で構成されると共に、前記
主磁極が非磁性基板上に保磁力の異なる2種類の
軟磁性薄膜を重ねて析出し、たんざく状に形成し
たものであることを特徴とする垂直磁気記録再生
ヘツド。 2 保磁力の小さい磁性薄膜が磁化反転する磁界
強度が1エルステツド以下であることを特徴とす
る特許請求の範囲第1項記載の垂直磁気記録再生
ヘツド。
[Claims] 1. A main magnetic pole disposed close to the surface of a perpendicular magnetic recording medium, and a wire wound around a magnetic piece disposed close to the back surface of the perpendicular magnetic recording medium and facing the main magnetic pole. The perpendicular magnetic pole is composed of an auxiliary magnetic pole having the following characteristics, and the main magnetic pole is formed by depositing two types of soft magnetic thin films having different coercive forces on a non-magnetic substrate and forming a tanzag shape. Magnetic recording/playback head. 2. The perpendicular magnetic recording/reproducing head according to claim 1, wherein the magnetic field strength at which the magnetic thin film with a small coercive force undergoes magnetization reversal is 1 oersted or less.
JP10493382A 1982-06-17 1982-06-17 Head for vertical magnetic recording and reproducing Granted JPS58222415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10493382A JPS58222415A (en) 1982-06-17 1982-06-17 Head for vertical magnetic recording and reproducing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10493382A JPS58222415A (en) 1982-06-17 1982-06-17 Head for vertical magnetic recording and reproducing

Publications (2)

Publication Number Publication Date
JPS58222415A JPS58222415A (en) 1983-12-24
JPH022208B2 true JPH022208B2 (en) 1990-01-17

Family

ID=14393892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10493382A Granted JPS58222415A (en) 1982-06-17 1982-06-17 Head for vertical magnetic recording and reproducing

Country Status (1)

Country Link
JP (1) JPS58222415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175072A1 (en) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 Compressor rotor, compressor, and gas turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175072A1 (en) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 Compressor rotor, compressor, and gas turbine

Also Published As

Publication number Publication date
JPS58222415A (en) 1983-12-24

Similar Documents

Publication Publication Date Title
US4251842A (en) Magnetic recording and reproducing device
US5590008A (en) Magnetic disc unit having a plurality of magnetic heads which include multilayer magnetic films
US4546398A (en) Perpendicular magnetic recording and reproducing head
US4575777A (en) Magnetic recording and reproducing head
KR950000948B1 (en) Magnetic recorder medium having discrete magnetic storage and saturable layers and magnetic signal processing apparatus and method using the medium
JP2834231B2 (en) Magnetic head and magnetic storage device
JPS62145527A (en) Compound type thin film magnetic head
KR100296731B1 (en) Magnetic recording method
JPH022208B2 (en)
JPS6142717A (en) Thin-film magnetic head
JPH0916905A (en) Thin-film magnetic transducer
JP2814741B2 (en) Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same
JP3019140B2 (en) Perpendicular magnetic recording media
JPH0619809B2 (en) Perpendicular magnetic recording method
JPH0922509A (en) Magneto-resistance effect type head and magnetic recording and reproducing device
JPH0234083B2 (en)
JPH06124415A (en) Composite-type thin film magnetic head
JP2773258B2 (en) Magnetoresistive read head
JPH0256713A (en) Magneto-resistance effect type reproducing head
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPS58222416A (en) Head for vertical magnetic recording and reproducing
JPS59221801A (en) Vertical magnetic recording method
JPS60115014A (en) Magnetic head for vertical magnetization
JPH07118061B2 (en) Magnetoresistive head
JPH0570205B2 (en)