JPH02219576A - Fish growth hormone gene - Google Patents

Fish growth hormone gene

Info

Publication number
JPH02219576A
JPH02219576A JP31060688A JP31060688A JPH02219576A JP H02219576 A JPH02219576 A JP H02219576A JP 31060688 A JP31060688 A JP 31060688A JP 31060688 A JP31060688 A JP 31060688A JP H02219576 A JPH02219576 A JP H02219576A
Authority
JP
Japan
Prior art keywords
gene
growth hormone
red sea
cdna
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31060688A
Other languages
Japanese (ja)
Inventor
Yutaka Momota
裕 百田
Rei Kosugi
玲 小杉
Yoshihiro Nakao
中尾 嘉弘
Hiroshi Hiramatsu
平松 博志
Hideo Okai
大貝 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earth Corp
Original Assignee
Earth Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earth Chemical Co Ltd filed Critical Earth Chemical Co Ltd
Priority to JP31060688A priority Critical patent/JPH02219576A/en
Publication of JPH02219576A publication Critical patent/JPH02219576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide the subject gene consisting of a fish growth hormone gene capable of coding an amino acid sequence containing a specified fish growth hormone polypeptide and enabling ready mass production of a growth hormone of a red sea-bream in a high state of purity using the gene recombination technique. CONSTITUTION:A fish growth hormone gene capable of coding an amino acid sequence containing a fish growth hormone polypeptide represented by the formula. The above-mentioned gene can be produced, e.g. by preparing a poly(A)RNA from the hypophysis of a red sea-bream which is cells producing a growth hormone thereof, synthesizing cDNA using the obtained poly(A)RNA as a template, coupling the resultant cDNA with a suitable vector, amplifying the coupled cDNA in a host cell, selecting a clone having the objective cDNA of the red sea-bream GH and carrying out isolation using the vector contained in the selected clone, or chemically synthesizing the objective acid based on the DNA sequence of the gene using the phosphoamidite method, etc.

Description

【発明の詳細な説明】 良東上2公1 本発明は、新しい魚類成長ホルモン遺伝子、より詳細に
はマダイ(pagrus major )の成長ホルモ
ン((3rowth t(ormone : (3日)
ポリペプチドをコードするDNA配列、これを含むベク
ター、該ベクターを保有する宿主細胞に関する。
[Detailed Description of the Invention] Ryoto J. 2 Ko 1 The present invention provides a new fish growth hormone gene, more specifically a red sea bream (Pagrus major) growth hormone ((3rowth (ormone: (3 days)).
The present invention relates to a DNA sequence encoding a polypeptide, a vector containing the same, and a host cell harboring the vector.

旭−米一五一旦−■ 成長ホルモン(Gl(>とは、ヒト及びその他の各種動
物の脳下垂体から分泌され、これら動物の成長促進作用
を発揮するポリペプチドであり、特にヒトではその分泌
異常によって、小人症、先端巨大症等の疾患を生じるこ
とがよく知られている〔鎖目和夫、三浦・鎖目編「ポリ
ペプチドホルモン」、朝倉書店、第177〜191頁(
1973年)〕。
Asahi - Beiichigo - ■ Growth hormone (Gl) is a polypeptide that is secreted from the pituitary gland of humans and other various animals and exerts a growth-promoting effect in these animals. It is well known that abnormalities in secretion cause diseases such as dwarfism and acromegaly [Kazuo Kusame, edited by Miura and Kusame, "Polypeptide Hormones", Asakura Shoten, pp. 177-191 (
1973)].

従来よりヒト脳下垂体から抽出されたG)Jは、GHの
欠損乃至分泌機能障害によって起こる小人症の治療の目
的で臨床的に用いられているが、その供給量は極めて微
量で、充分な治療を行なうには不充分である〔鎖目、日
本内分泌学会誌、60゜1492−1502 (198
4))。
G)J extracted from the human pituitary gland has been clinically used to treat dwarfism caused by GH deficiency or secretion dysfunction, but its supply is extremely small and insufficient. It is insufficient to carry out proper treatment [Chain, Journal of the Japanese Endocrine Society, 60゜1492-1502 (198
4)).

一方、家畜、魚類等の成長促進、増肉等の面でも、2等
動物のGHの有用性はおおいに期待されるが、上記と同
様の理由により、かかる用途面でのG)lの研究、開発
は殆んど進行していない。
On the other hand, GH from second-class animals is highly expected to be useful in terms of growth promotion and meat increase in livestock, fish, etc., but for the same reasons as above, research on G)l in such applications Development is hardly progressing.

また、GHは種族特異性が高(、異種動物由来のGHの
転用は困難であるとされており〔上記文献(1973)
)、この面からもGHの研究は進んでいない。
In addition, GH is highly species-specific (and it is said that it is difficult to repurpose GH derived from a different species [see the above-mentioned document (1973)].
), research on GH has not progressed from this aspect either.

上記GHの化学構造についての最初の報告はリーら(C
,H,Li et al、)によってなされ(J、 A
mer、Chem、soc、、88.2050(196
6))、その後、遺伝子の単離及び構造解析技術より、
各種動物のGel、例えばヒトGe1(J、 M、 M
artial et al、、5cience、 20
5゜602 (1979)LラットGH(P、H。
The first report on the chemical structure of GH was by Lee et al.
, H, Li et al.) (J, A
mer,Chem,soc,,88.2050(196
6)) Then, from gene isolation and structural analysis technology,
Gel of various animals, such as human Gel (J, M, M
artial et al., 5science, 20
5°602 (1979) L Rat GH (P, H.

5eeburg et at、、 Nature 、 
270.486(1977))、ウシG)f及びブタG
)l (P、 )l。
5eeburg et at, Nature,
270.486 (1977)), bovine G) f and pig G
)l (P, )l.

Seebrug et al、、DNA、 2.37 
(1983) )、ヒツジGH(特開昭60−1155
7@公!/Ii)、ニワトリGel及びシチメンチョウ
GH(特N昭59−501852号公報)、シロザケG
H(3ekine et al、、 Pr0C,Nat
j、ACad、3Ci、。
Seebrug et al., DNA, 2.37
(1983)), Sheep GH (JP-A-60-1155
7@Ko! /Ii), chicken Gel and turkey GH (Special Publication No. Sho 59-501852), chum salmon G
H(3ekine et al., Pr0C, Nat
j, ACad, 3Ci,.

USA、82,4306 (1985) 、ウナギG)
−J(特開昭62−22BOO@公報〕等の構造が明ら
かにされた。また之等に伴って、各種G)l遺伝子も明
らかになり、単離された2等遺伝子を用いて、遺伝子組
換え技術によるGHの製造も種々検討されつつあり、か
(して得られた粗換え体GHの実用性の検討も報告され
てきている(K。
USA, 82, 4306 (1985), Eel G)
-J (Japanese Unexamined Patent Application Publication No. 62-22-22BOO@publication) etc., the structures of various G)l genes were also revealed, and using the isolated secondary genes, Various studies are being conducted on the production of GH using recombinant techniques, and studies on the practicality of the crude recombinant GH obtained using recombinant techniques have also been reported (K.

Takano et al、、 Endocrinal
、Japan、 5゜589 (1986)等参照)。
Takano et al., Endocrinal
, Japan, 5°589 (1986), etc.).

上記各種GHが食料資源としての養殖魚、殊に主要海産
養殖魚であるマダイ、ブリ、ヒラメ等に応用できれば、
その実用価値は非常に高いが、Gelの種属特異性を考
慮すれば、上記各種哺乳動物G)lについての研究成果
は全く役立たない。シロザケ、ウナギ等の魚類について
の報告もまた、之等とマダイ等とは分類学上大きな隔た
りがあり、その応用可能性は非常に低い。従って、現在
上記主要海産養殖魚類、中でも特に成長の遅いマダイの
G)−1の構造解析及びその量産化技術の確立が、斯界
で切望されている。
If the various GHs mentioned above can be applied to farmed fish as food resources, especially to major marine farmed fish such as red sea bream, yellowtail, and flounder,
Although its practical value is very high, when considering the species-specificity of Gel, the above research results on various mammals G)l are of no use at all. Reports on fish such as chum salmon and eel also have a large taxonomic gap between them and red sea bream, and their applicability is extremely low. Therefore, there is currently a strong desire in the industry to analyze the structure of G)-1 of the main marine cultured fish, which grows particularly slowly, and to establish a technology for its mass production.

明が解決しようとする問題点 本発明の目的は、上記斯界で切望されているマダイのG
Hを、遺伝子組換え技術を利用して、容易に高純度で且
つ大量に製造可能とする新しい技術を確立し、殊に該技
術に有用なマダイG)−1遺伝子を提供することにある
Problems to be Solved by Akira The purpose of the present invention is to solve the above-mentioned red sea bream G.
The object of the present invention is to establish a new technology that makes it possible to easily produce H with high purity and in large quantities using genetic recombination technology, and to provide a red sea bream G)-1 gene that is particularly useful for this technology.

4題つを解決するための手段 本発明者らは、上記目的より鋭意研究を重ねた結果、遺
伝子組換え技術によるマダイGHの製造に有用なマダイ
G)Iのアミノ酸配列をコードする遺伝子(DNA配列
)の単離、精製にはじめて成功し、ここに本発明を完成
するに至った。
Means for Solving the Four Problems As a result of intensive research for the above-mentioned purposes, the present inventors have discovered a gene (DNA) encoding the amino acid sequence of red sea bream G)I useful for producing red sea bream GH using genetic recombination technology. Sequence) was successfully isolated and purified for the first time, leading to the completion of the present invention.

即ち、本発明は、下記式(1)の魚類成長ホルモンポリ
ペプチドを含むアミノ酸配列をコードする魚類成長ホル
モン遺伝子に係わる。
That is, the present invention relates to a fish growth hormone gene encoding an amino acid sequence containing a fish growth hormone polypeptide represented by the following formula (1).

Gln−Pro−I 1e−丁hr−ASI)−GIV
−Glrl−ArO−LeU−1’ge−Ser−I 
1e−Ala−Val−3er−Arg−Val−Gl
n−旧5−teu−旧5−Leu−Leu−Ala−G
ln−ArQ−Leu−Phe−3er−Asp−Ph
e−Glu−3er−3er−Leu−Gln−Thr
−Glu−Glu−a?n−Leu−Lys−Leu−
Asn−Lys−I 1e−Phe−Pro−Asp−
Bge−Cys−Asn−3er−Asp−Tyr−I
 Ie−11e−3er−Pro−¥?e−Asp−L
ys−)fis−Glu−Thr−Gln−Arg−3
er−3er−Val−Leu−Lys−Leu−Le
u−3er−I 1e−3er−■yr−Arg−te
u−Val−Glu−3er−■rp−Glu−Phe
−Pro−3er−Arg−3er−1(i)O Leu−3er−Gly−Gly−3er−Ala−P
ro−Arg−Asn−G n−GIy−11e−Hi
s−LeU−LeU−11e−Arp−Ala−ASn
−aイg−Glu−Ala−ASn−CyS−丁hr−
Leu             (1)本明細書にお
いて、ペプチド及びアミノ酸、核si基及びDNA配列
ならびにその他の略号による表示は、IUPAC−IL
JBの規定乃至当該分野における慣用記号に従うもので
ある。
Gln-Pro-I 1e-dinghr-ASI)-GIV
-Glrl-ArO-LeU-1'ge-Ser-I
1e-Ala-Val-3er-Arg-Val-Gl
n-old 5-teu-old 5-Leu-Leu-Ala-G
ln-ArQ-Leu-Phe-3er-Asp-Ph
e-Glu-3er-3er-Leu-Gln-Thr
-Glu-Glu-a? n-Leu-Lys-Leu-
Asn-Lys-I 1e-Phe-Pro-Asp-
Bge-Cys-Asn-3er-Asp-Tyr-I
Ie-11e-3er-Pro-¥? e-Asp-L
ys-)fis-Glu-Thr-Gln-Arg-3
er-3er-Val-Leu-Lys-Leu-Le
u-3er-I 1e-3er-■yr-Arg-te
u-Val-Glu-3er-■rp-Glu-Phe
-Pro-3er-Arg-3er-1(i)O Leu-3er-Gly-Gly-3er-Ala-P
ro-Arg-Asn-G n-GIy-11e-Hi
s-LeU-LeU-11e-Arp-Ala-ASn
-aig-Glu-Ala-ASn-CyS-Dinghr-
Leu (1) In this specification, peptides and amino acids, nuclear si groups, DNA sequences, and other abbreviations are expressed as IUPAC-IL
It follows the JB regulations or common symbols in the field.

また、本明細書に記載のポリペプチドにおけるアミノM
番号は、上記式(1)に示すマダイGHアミノ酸配列の
アミノ末端(N末端)のGinを1とし、以下順次カル
ボキシ末1m(C末端)方向に数えて表示するものであ
る。
Also, amino M in the polypeptides described herein
The numbers are indicated with Gin at the amino terminus (N terminus) of the red sea bream GH amino acid sequence shown in formula (1) above being 1, and counting sequentially in the direction of the carboxy terminus 1 m (C terminus).

本発明遺伝子は、これを利用して遺伝子組換え技術によ
り、マダイGHを容易且つ大量に製造可能とするもので
あり、これにより得られるマダイGHは、魚類養殖産業
分野において非常に価値あるものである。
The gene of the present invention makes it possible to easily produce red sea bream GH in large quantities through genetic recombination technology, and the red sea bream GH obtained thereby is extremely valuable in the fish aquaculture industry. be.

現在、各種動物由来のGHのアミノ酸配列は知られてい
るが、マダイG)(のそれはいまだ報告がなく、また本
発明により解明されたマダイGHのアミノ酸配列は公知
のいかなるGHのそれらとも異なっている。因みに本発
明マダイGHのアミノ酸配列はヒトG)(とは僅かに3
3%しか相同せず、シロザケGHとは約68%、ウナギ
GHとは約45%の相同性の認められるものである。
At present, the amino acid sequences of GH derived from various animals are known, but that of red sea bream G) has not yet been reported, and the amino acid sequence of red sea bream GH clarified by the present invention is different from that of any known GH. Incidentally, the amino acid sequence of the red sea bream GH of the present invention is only 3 different from human G).
It has only 3% homology, approximately 68% homology with chum salmon GH, and approximately 45% homology with eel GH.

以下、本発明遺伝子につき詳述する。The genes of the present invention will be described in detail below.

本発明遺伝子は、より詳しくは前記式(1)で表わされ
る魚類成長ホルモンポリペプチドのアミノ酸配列をコー
ドするDNA配列を包含している。
More specifically, the gene of the present invention includes a DNA sequence encoding the amino acid sequence of the fish growth hormone polypeptide represented by the above formula (1).

上記DNA配列の具体例は、下記式(4)に示す通りで
ある。
A specific example of the above DNA sequence is as shown in the following formula (4).

5°−CAG  CCG  ATG  ACA  GA
丁 GGCCAG  CGT  CTG  T丁C丁C
CATG  GC丁 GTCAGCAGA  G丁T 
 CAA  CACC丁CCACCTCCTCGC丁 
CAG  AGA  CTCTTC丁CT  GACG
AG GCCAACTGCACCCTG −3°   
 (4)しかして、本発明遺伝子は、魚類成長ホルモン
(マダイGH)のアミノ酸配列をコードするものであり
且つこれを利用して遺伝子工学的手法により得られる物
質がマダイGHの活性を発揮できるものである限り、上
記式(4)に示されるDNA配列に限定されるものでは
ない。例えば上記式(1)のアミノ酸配列を構成する各
アミノ酸について、それぞれ知られている1〜6種類の
DNAコドンの中から任意のコドンを選択して構成され
る改変されたDNA配列もまた之等がマダイGel活性
発現を可能とする限り本発明遺伝子に包含される。また
上記式(4)に示されるDNA配列を基本として、その
5′末端にMetのコドンであるATGを付加したDN
A配列や之等のDNA配列の3′末端に終止コドンとし
てのTAA、TAG、TGA等を付加したDNA配列も
本発明遺伝子に包含される。
5°-CAG CCG ATG ACA GA
Ding GGCCAG CGT CTG T Ding C Ding C
CATG GC Ding GTCAGCAGA G Ding T
CAA CACC Ding CCACCTCCTCGC Ding
CAG AGA CTCT TC GACG
AG GCCAAACTGCACCCTG -3°
(4) Therefore, the gene of the present invention encodes the amino acid sequence of fish growth hormone (red sea bream GH), and a substance obtained by genetic engineering using this gene can exhibit the activity of red sea bream GH. As long as it is, the DNA sequence is not limited to the one shown in formula (4) above. For example, for each amino acid constituting the amino acid sequence of formula (1) above, a modified DNA sequence constructed by selecting an arbitrary codon from among the 1 to 6 known types of DNA codons may also be used. is included in the gene of the present invention as long as it enables the expression of red sea bream Gel activity. Also, based on the DNA sequence shown in formula (4) above, a DNA with ATG, which is a Met codon, added to its 5' end.
DNA sequences in which a stop codon such as TAA, TAG, TGA, etc. is added to the 3' end of a DNA sequence such as the A sequence are also included in the gene of the present invention.

更に、マダイGHのアミノ酸配列も、これがマダイGH
の活性を発揮するものである限り、前記式(1)で表わ
されるものに限定されるものではなく、遺伝子組換え技
術によりマダイGH発現ベクターを創製し、該ベクター
を組込んで得られる宿主細胞が実際に上記マダイGHを
発現できる限り、その任意の一部、例えばN末端部又は
C末端部のアミノ酸配列の一部を欠失するか、之等を他
のアミノ酸配列に置換させるか、或いは之等に更に任意
のアミノ酸配列を付加することによって改変されたもの
であってもよい。2等改変されたアミノ酸配列をコード
するDNA配列も本発明遺伝子に包含される。その具体
例としては、後記実施例において詳述するマダイGHの
前駆体をコードするDNA配列やマダイGHの産生細胞
であるマダイ脳下垂体からポリ(A> RN/’!−調
製し、これを鋳型として合成されるCDNAのDNA配
列を例示できる。
Furthermore, the amino acid sequence of red sea bream GH is
Host cells obtained by creating a red sea bream GH expression vector by genetic recombination technology and integrating the vector are not limited to those represented by formula (1) as long as they exhibit the activity of As long as the red sea bream GH can actually be expressed, any part thereof, such as a part of the amino acid sequence at the N-terminus or C-terminus, may be deleted or substituted with other amino acid sequences, or It may be modified by further adding an arbitrary amino acid sequence to these. DNA sequences encoding second-modified amino acid sequences are also included in the genes of the present invention. As a specific example, poly(A>RN/'!- is prepared from a DNA sequence encoding a precursor of red sea bream GH, which will be described in detail in the Examples below, or from the red sea bream pituitary gland, which is a cell that produces red sea bream GH, and The DNA sequence of CDNA synthesized as a template can be exemplified.

本発明遺伝子は、以下に示す各種の方法により製造する
ことができる。該方法としては、例えば上記マダイGH
の産生細胞′であるマダイ脳下垂体からポリ(A>RN
AをWallし、これを鋳型としてCDNAを合成し、
これを適当なベクターに接続して宿主細胞内で増幅させ
、目的のマダイGHのCDNAを有するクローンを選別
し、該クローンの有するベクターより単離する方法、本
発明遺伝子のDNA配列に基づいて、例えばホスホアミ
ダイト法(Nature、310. 105 (198
4) )等の常法に従って、核酸の化学合成を行なう方
法、之等の組合せ等を例示できる。
The gene of the present invention can be produced by various methods shown below. As the method, for example, the above-mentioned red sea bream GH
Poly(A>RN
Wall A, use this as a template to synthesize cDNA,
A method of connecting this to an appropriate vector and amplifying it in a host cell, selecting a clone having the target red sea bream GH cDNA, and isolating it from the vector possessed by the clone, based on the DNA sequence of the gene of the present invention, For example, the phosphoramidite method (Nature, 310. 105 (198
Examples include methods for chemically synthesizing nucleic acids according to conventional methods such as 4)), and combinations thereof.

以下、上記マダイの脳下垂体から調製単離する方法につ
いて詳述する。
The method of preparation and isolation from the pituitary gland of the above-mentioned red sea bream will be described in detail below.

本発明遺伝子を入手するためのマダイの脳下垂体として
は、養殖マダイ及び天然マダイのいずれからでも摘出で
きるが、養殖マダイを用いるのが、−時に大きざの揃っ
た多数の固体を用意できるので有利である。摘出は常法
に従うことができ、か(して得られる脳下垂体は、即座
に液体窒素、ドライアイス−エタノール等を用いて凍結
させた後、RNAの抽出に用いるのが望ましい。上記R
NAの抽出操作は、通常の方法、例えばチオシアン義り
アニシンー塩化セシウム法(Qhirgvin et 
at、。
The pituitary gland of red sea bream for obtaining the gene of the present invention can be extracted from either cultured red sea bream or wild red sea bream, but it is preferable to use farmed red sea bream because it is possible to prepare a large number of individuals of uniform size. It's advantageous. The pituitary gland can be extracted by a conventional method, and it is preferable to immediately freeze the pituitary gland using liquid nitrogen, dry ice-ethanol, etc., and then use it for RNA extraction.
Extraction of NA can be carried out using conventional methods, such as the thiocyanine-based anisine-cesium chloride method (Qhirgvin et al.
at.

Biochemistry 、 i旦、5294 (1
979))、チオシアン酸グアニジン−フェノール・ク
ロロホルム法等に従うこととができる。上記チオシアン
酸グアニジン−塩化セシウム法は、より詳しくは、まず
凍結脳下垂体をチオシアン酸グアニジン、クエン酸ナト
リウム、N−ラウロイルザルコシン酸ナトリウム、β−
メルカプトエタノール等の混合液中で、機械的に破砕、
可溶化し、次いで塩化セシウムを含む水溶液上に重層し
、超遠心を行なうことにより実施される。かくして沈澱
としてRNAを得ることができる。該沈澱中には、rR
NA%tRNA等の不純物が含まれているため、目的と
するポリA鎖を有するRNAを、通常の方法に従い精製
する。これは例えばオリゴdT−セルロース[コラボレ
イティプ リサーチ社コ等の7フイニテイカラムを用い
て有利に実施できる。
Biochemistry, idan, 5294 (1
979)), the guanidine thiocyanate-phenol chloroform method, etc. More specifically, in the above guanidine thiocyanate-cesium chloride method, the frozen pituitary gland is first treated with guanidine thiocyanate, sodium citrate, sodium N-lauroylsarcosinate, β-
Mechanically crushed in a mixture of mercaptoethanol, etc.
It is carried out by solubilizing, then layering on an aqueous solution containing cesium chloride, and performing ultracentrifugation. In this way, RNA can be obtained as a precipitate. In the precipitation, rR
Since it contains impurities such as NA% tRNA, RNA having the desired polyA chain is purified according to a conventional method. This can be advantageously carried out using, for example, an oligo dT-cellulose [7 affinity column such as Collaboration Tip Research Co., Ltd.].

かくして得られるポリ(A)RNAは、これを鋳型とし
て、例えば逆転写酵素を用いて二本鎖DNA (cDN
A)の合成に供することができる。
The thus obtained poly(A) RNA is used as a template to convert double-stranded DNA (cDNA) using, for example, reverse transcriptase.
It can be used for the synthesis of A).

このCDNAの合成は、通常の方法、例えばS1ヌクレ
アーゼ法、オカヤマーベルグ法(Okayamaet 
al、、Mo1. Ce1l 3io1.、3.280
−289 (1983))等により行ない得るが、実用
的には、例えばアマジャム社等から市販されているCD
NA合成キットを用いて実施するのが便利である。
This CDNA can be synthesized using conventional methods, such as the S1 nuclease method and the Okayama Berg method.
al,,Mo1. Ce1l 3io1. , 3.280
-289 (1983)), but in practical use, for example, CDs commercially available from Amajam Co., Ltd.
This is conveniently carried out using an NA synthesis kit.

次いで、上記方法では、得られるCDNAから目的とす
るマダイGHのアミノ酸配列をコードするDNA配列を
単離する。このDNAの単離は、CDNAを適当なベク
ターに挿入し、このベクターを宿主に導入して増幅させ
ると共に該DNA配列を含む宿主のプラーク又はコロニ
ーとして個別化した上で、目的のDNA配列を選択する
ことにより実施される。ここでCDNAの挿入に用いら
れるベクターとしては、通常のもの、例えばλフアージ
由来の各種ファージDNA1pBR322を初めとする
各種プラスミド等を例示できる。上記ファージDNAを
ベクターとする場合は、容易に多数の候補株を調製、ス
クリーニングできる利点がある。殊に例えばλgtl’
0DNAは、外来DNA配列が挿入されたベクターのみ
宿主細胞NM514株に対してプラークを形成する特徴
があり、上記ベクターとしてより有利に利用できる。
Next, in the above method, a DNA sequence encoding the target amino acid sequence of red sea bream GH is isolated from the obtained CDNA. Isolation of this DNA involves inserting the CDNA into an appropriate vector, introducing this vector into a host to amplify it, individualizing it as a plaque or colony of the host containing the DNA sequence, and then selecting the DNA sequence of interest. It is implemented by Examples of vectors used for inserting the CDNA include common ones, such as various plasmids such as various phage DNA1pBR322 derived from λ phage. When the above-mentioned phage DNA is used as a vector, there is an advantage that a large number of candidate strains can be easily prepared and screened. Especially for example λgtl'
0 DNA has the characteristic that only a vector into which a foreign DNA sequence has been inserted forms a plaque against the host cell strain NM514, and can be used more advantageously as the above-mentioned vector.

上記ベクターへのCDNAの挿入は、合成リンカ−を用
いる方法、ホモポリマー法等の通常の方法により行なう
ことができ、例えばCDNAの両末端にEC0RIリン
カ−を付加した後、制限酵素EC0RIで切断し、これ
をベクターのEC0RI切断部位に挿入すればよく、こ
れにより所望の組換えベクターを得ることができる。ま
た得られる組換えベクターの宿主への導入及びこれによ
る組換えベクターの増幅と個別化は、一般に用いられて
いる各種の方法、例えば主として対数増殖期にある細胞
を集め、M gSO4処理を行なった後、粗換えファー
ジを感染させる方法、或いは同様にして集めた細胞をC
aCQ2処理により自然にDNAを取込みやすい状態と
し、これにベクターを取込ませる方法等により行ない得
る。更に上記組換えベクターの調製及び増幅と個別化は
、市販のCDNAクローニング用キットを用いて行なう
こともできる。
Insertion of CDNA into the above vector can be carried out by conventional methods such as a method using a synthetic linker or a homopolymer method. For example, after adding EC0RI linkers to both ends of the CDNA, cDNA is cut with the restriction enzyme EC0RI. , this can be inserted into the ECORI cleavage site of the vector, thereby making it possible to obtain the desired recombinant vector. In addition, the resulting recombinant vector can be introduced into a host, and the recombinant vector can be amplified and individualized using various commonly used methods, such as collecting cells mainly in the logarithmic growth phase and treating them with MgSO4. After that, infect cells with crudely modified phage, or infect cells collected in the same way.
This can be carried out by, for example, creating a state in which DNA is naturally easy to incorporate through aCQ2 treatment, and then allowing the vector to be incorporated into this state. Furthermore, the preparation, amplification, and individualization of the above-mentioned recombinant vectors can also be carried out using a commercially available CDNA cloning kit.

上記で得られるCDNAを含むベクターを導入された粗
換え体からの、目的DNA配列を含む組換え体の単離は
、ベクターの種類に応じて、それぞれ公知の各種の方法
により実施できる。例えばファージDNAをベクターと
する場合は、プラークハイブリダイゼーションにより、
またプラスミドをベクターとする場合は、コロニーハイ
ブリダイゼーションにより、それぞれ有利に行ない得る
Isolation of a recombinant containing a target DNA sequence from a crude recombinant into which a vector containing the CDNA obtained above has been introduced can be carried out by various known methods depending on the type of vector. For example, when using phage DNA as a vector, plaque hybridization
Furthermore, when a plasmid is used as a vector, colony hybridization can be advantageously carried out.

之等各方法は、いずれもB、H,HamesとS、J。These methods are all described by B.H. Hames and S.J.

HigginSにより編集された「ヌクレイツク アシ
ッド ハイブリダイゼーション(N ucleicAc
id l−5ybridisation) J  (I
 RL Press。
Nucleic Acid Hybridization, edited by Higgin S.
id l-5ybridition) J (I
RL Press.

1985>に詳述されている。2等方法は、組換え体の
DNAをナイロンメンブラン等のフィルター上に固定し
、これを標識したプローブと反応させれば、プローブは
目的のDNA配列に選択的に結合するという性質を利用
して、目的の組換え体を単離するものである。ここでプ
ローブとは、目的のDNA配列に対して相捕的な配列を
有する核酸配列であり、DNAでもRNAでもよいが、
化学合成したDNA配列を用いるのが一般的でありまた
有利である。上記プローブのDNA配列は、目的とする
マダイGHの部分アミノ酸配列に基づいて設定すること
ができ、また上記マダイGH遺伝子の少なくとも一部は
、シロザケGH遺伝子のそれとかなり相同性が高いと考
えられるため、かかる相同性の高い既知のシロザケG)
−JのCDNA配列部分を上記プローブとして利用する
ことも可能である。
1985>. The second method utilizes the property that recombinant DNA is immobilized on a filter such as a nylon membrane and reacted with a labeled probe, which selectively binds to the target DNA sequence. , to isolate the desired recombinant. Here, the probe is a nucleic acid sequence having a complementary sequence to the target DNA sequence, and may be DNA or RNA, but
It is common and advantageous to use chemically synthesized DNA sequences. The DNA sequence of the probe can be set based on the target partial amino acid sequence of red sea bream GH, and at least a portion of the red sea bream GH gene is considered to have considerable homology with that of the chum salmon GH gene. , known chum salmon G with such high homology)
It is also possible to use the cDNA sequence portion of -J as the above probe.

かくして単離される粗換え体中に、本発明遺伝子が含ま
れている。
The gene of the present invention is contained in the thus isolated crude recombinant.

なお、上記方法において、採用される各種の操作、例え
ば一部DNAの化学合成、DNA鎖の切断、削除、付加
乃至結合を目的とする酵素処理、DNAの単離、精製、
複製、選択等は、いずれも常法に従うことができる。よ
り具体的には、上記DNAの単離精製は、アガロースゲ
ル電気泳動法等に従うことができ、核酸配列のコドンの
一部改変は、サイトスペシフィック ミ1−タジエネシ
ス(5ite−Specific Nutaaenes
is) (P roc、 N atl。
In addition, in the above-mentioned method, various operations employed, such as chemical synthesis of a portion of DNA, enzymatic treatment for the purpose of cutting, deleting, adding or bonding DNA strands, isolation and purification of DNA,
Copying, selection, etc. can be carried out according to conventional methods. More specifically, the isolation and purification of the DNA described above can be carried out by agarose gel electrophoresis, etc., and partial modification of codons in the nucleic acid sequence can be carried out using 5ite-specific Nutaenesis (5ite-Specific Nutaaenes).
is) (Proc, N atl.

Acad、sci、、8ユ、5662−5666(19
84))等に従えばよい。
Acad, sci, 8U, 5662-5666 (19
84)) etc.

また上記で得られる本発明遺伝子のDNA配列の決定は
、サンガー法(YaniSCh−PerrOn et 
al、。
Furthermore, the DNA sequence of the gene of the present invention obtained above can be determined by the Sanger method (YaniSCh-PerrOn et
al.

Gene、33,103 (1985))やマキサム−
ギルバート法〔^、H,Haxam and W、G1
1bert。
Gene, 33, 103 (1985)) and Maxam-
Gilbert method [^, H, Haxam and W, G1
1 bert.

Methods in EnxymoloOY、65.
499−560(1980))等により行ない得る。な
お、ファージDNAベクターとして得られる組換え体の
DNA配列を決定するに当たっては、該ベクターは分子
量が大きいために、予め上記組換え体中のCDNA部分
を適当なベクター、例えばpUC19、pBR322等
に移しかえてから、そのDNA配列の決定を行なうのが
好ましい。
Methods in EnxymoloOY, 65.
499-560 (1980)). Note that when determining the DNA sequence of a recombinant obtained as a phage DNA vector, since the vector has a large molecular weight, the CDNA portion of the recombinant described above must be transferred in advance to an appropriate vector such as pUC19, pBR322, etc. It is preferable to determine the DNA sequence after hatching.

更に、上記DNA配列の決定は、市販のシーケンスキッ
ト等を用いることによっても、容易に行ない得る。
Furthermore, the above DNA sequence can be easily determined using a commercially available sequence kit or the like.

上記により、各種の文献〔例えばJ、E。According to the above, various documents [for example, J, E.

[)arnell et al、、” Mo1ecul
ar  Ce1l 3io1ogy”5cientif
ic American 3ooks (19F35 
)の記載を参考にして、組換え体中に含まれる目的のマ
ダイGH遺伝子を含むDNA配列、その中の本発明遺伝
子のDNA配列及びマダイGHのアミノ酸配列を決定で
きる。
[) Arnell et al,,” Mo1ecul
ar Ce1l 3io1ogy”5cientif
ic American 3ooks (19F35
), the DNA sequence containing the target red sea bream GH gene contained in the recombinant, the DNA sequence of the gene of the present invention therein, and the amino acid sequence of red sea bream GH can be determined.

かくして決定された目的のマダイGH遺伝子を含むDN
A配列及び対応するアミノ酸配列は、下記式(5)に示
される通りである。これは正確には、マダイG)l前駆
体のDNA配列及びアミノ酸配列である。即ち、このD
NA配列はマダイGHのアミノ酸配列のN末端にシグナ
ルペプチドのアミノ酸配列の付加されたアミノ酸配列を
コードするDNA配列となっており、マダイG)−1が
上記前駆体としてまず生合成され、その後シグナルペプ
チド部分が除去される分泌性の蛋白質であることを明ら
かにしている。上記マダイGH#駆体アミノ酸配列中の
シグナルペプチド部分のアミノ酸配列は、例えばVon
 He1jneの方法(Nucl、Ac1dsRes、
、14.4683 (1986))により決定できる。
DN containing the target red sea bream GH gene thus determined
The A sequence and the corresponding amino acid sequence are as shown in the following formula (5). This is precisely the DNA sequence and amino acid sequence of the red sea bream G)l precursor. That is, this D
The NA sequence is a DNA sequence that encodes an amino acid sequence in which a signal peptide amino acid sequence is added to the N-terminus of the amino acid sequence of red sea bream GH. Red sea bream G)-1 is first biosynthesized as the above precursor, and then the signal peptide is added. It has been revealed that this is a secreted protein from which the peptide portion is removed. The amino acid sequence of the signal peptide portion in the red sea bream GH# precursor amino acid sequence is, for example, Von
He1jne's method (Nucl, Ac1dsRes,
, 14.4683 (1986)).

^TCAGATCCA 上記により得られる本発明の7ダイG)l遺伝子を含む
ベクターの具体例としては、後記実施例に詳述するpT
GHEl 1を例示できる。該ベクターpTGHE11
は、大きさ3.6キロベースペアーズ(kbp)のプラ
スミドであり、前記式(1)に示したマダイGHをコー
ドするDNA配列と共に、アンピシリン耐性遺伝子を保
有している。
^TCAGATCCA As a specific example of the vector containing the 7-die G)l gene of the present invention obtained as above, pT
GHEl 1 can be exemplified. The vector pTGHE11
is a plasmid with a size of 3.6 kilobase pairs (kbp), and carries an ampicillin resistance gene as well as a DNA sequence encoding red sea bream GH shown in formula (1) above.

本発明者らは、該ベクターpTGHE11を、大腸菌J
M109株に保有させ、該大腸菌を工業技術院微生物工
業研究所に微工研条寄第1457号(FERM  BP
1457)として寄託した。
The present inventors transformed the vector pTGHE11 into Escherichia coli J
M109 strain, and the E. coli was submitted to the Institute of Microbiology, Agency of Industrial Science and Technology, as part of the FERM BP Report No. 1457 (FERM BP
1457).

本発明遺伝子は、上記ベクターより制限酵素を利用する
常法に従い取り出すことができる。またこの本発明遺伝
子の利用によれば、遺伝子組換え技術に従って、高純度
のマダイGHを容易に且つ大量に製造することができる
The gene of the present invention can be extracted from the above vector according to a conventional method using restriction enzymes. Further, by using the gene of the present invention, highly pure red sea bream GH can be easily produced in large quantities according to genetic recombination technology.

このマダイG)fの製造は、本発明遺伝子を利用するこ
とを除いて、基本的には通常の遺伝子組換え技術に従う
ことができる。より詳しくは、本発明遺伝子が宿主細胞
中で発現されるような組換えDNAを作成し、これを宿
主細胞に導入して形質転換させ、該形質転換株を培養す
ればよい。
The production of red sea bream G)f can basically be carried out according to conventional genetic recombination techniques, except for the use of the gene of the present invention. More specifically, a recombinant DNA that allows the gene of the present invention to be expressed in a host cell may be prepared, introduced into the host cell for transformation, and the transformed strain may be cultured.

ここで宿主細胞としての代表例としては大腸菌JM10
9株(Vanish−Perron et aJ、、 
Qene。
Here, a representative example of the host cell is Escherichia coli JM10.
9 strains (Vanish-Perron et aJ,,
Qene.

33.103 (1985))を例示できるが、他の公
知の各種大腸菌株も同様に宿主細胞として利用できる。
33.103 (1985)), but various other known E. coli strains can also be used as host cells.

宿主細胞によるマダイGHの産生は、大別してN末端に
シグナルペプチドを持たない形で宿主の細胞質内に産生
させる場合と、シグナルペプチドを利用して宿主細胞か
ら分泌産生させる場合とに別れる。いずれの場合も、目
的ポリペプチドのN末端は開始コドンに由来するメチオ
ニン(fMet)であり、またC末端をコードするDN
A配列は、その直後に終止コドンとしてのTAASTA
G又はTGAを有するものとされる。従って本発明遺伝
子には、かかる開始コドンと終止コドンとが付加される
The production of red sea bream GH by host cells can be roughly divided into two types: production in the cytoplasm of the host without a signal peptide at the N-terminus, and secretion production from the host cell using a signal peptide. In either case, the N-terminus of the target polypeptide is a methionine (fMet) derived from the start codon, and the C-terminus is a DN encoding
The A sequence is immediately followed by TAASTA as a stop codon.
G or TGA. Therefore, such a start codon and a stop codon are added to the gene of the present invention.

上記開始コドンの付与された本発明遺伝子によりコード
されるアミノ酸配列の例は、下記式(2)及び(3)で
表わされる。
Examples of amino acid sequences encoded by the gene of the present invention provided with the above-mentioned initiation codon are represented by the following formulas (2) and (3).

)1et−ASp−Arg−Val−Val−LeU−
)1et−Lelj−3er−Val−Leu−3er
−Leu−Gly−Val−3er−3er−Gln−
Pro−I 1e−Thr−Asp−Gly−Gln−
Arg−Leu−Phe−3er−I 1e−Ala−
Val−3er−Arp−Val−Gln−His−L
eu−旧s−teu−teu−Ala−Gln−Arg
−Leu−Phe−3er−Asp−Phe−Glu−
3er−3er−Leu−Gln−Thr−Glu−G
lu−Gln−Leu−Lys−Leu−Asn−Ly
s−I 1e−Phe−Pro−Asp−Phe−Cy
s−Asn−3er−Glu−Thr−Gln−Arg
−3er−3er−Val−Leu−Lys−Leu−
Leu−3er−11e−3er−Tyr−Arg−L
eu−Val−Glu−3er−丁rp−Glu−Ph
e−Pro−3er−Arg−3er−Leu−3er
−Gly−Gly−3er−Ala−Pro−Arg−
Asn−Gln−11e−3er−Pro−Lys−L
eu−3er−Glu−Leu−Lys−Net−GJ
y−11e−)1 is−Leu−Leu−11e−A
rg−Ala−Asn−Glu−Asp−Gly−Al
a−Glu−I 1e−Phe−Pro−Asp−3e
r−3er−Ala−Leu−Gln−LetJ−A 
 a−pro−丁yr−GIy−ASrl−丁yr−丁
yr−Gln−3er−Leu−Gly−Ala−As
p−Glu−3er−Leu−Arg−Arp−丁hr
−■yr−Glu−Leu−Leu−Ala−Cys−
Phe−Lys−Lys−Asp−Het−His−L
ys−Val−Glu−丁hr−Tyr−Leu−丁h
r−Val−Ala−Lys−Cys−Arg−Leu
−3er−Pro−Glu−Ala−Asn−cys−
丁hr−Leu                  
       (2>Net−Gin−Pro−I 1
e−Thr−Asp−Gly−Gln−Arg−Leu
−Phe−3er−I 1e−Ala−Val−3er
−Arg−Val−Gln−His−Leu−11is
−Leu−Leu−Ala−Gln−Arg−Leu−
Phe−3er−Asp−Phe−Glu−3er−3
er−Leu−Gln−Thr−Glu−Glu−Gl
n−Leu−Lys−Leu−Asn−Lys−11e
−Phe−Pro−Asp−phe−cys−Asn−
ser−Asp−■yr−11e−I 1e−3er−
Pro−IIe−Asp−Lys−His−Glu−丁
tlr−Gljl−Arp−3er−3er−Val−
Leu−Lys−Leu−Leu−3er−I 1e−
3er−丁yr−Arg−teu−val−GJu−3
er−■rp−Glu−Phe−Pro−3er−Ar
g−3er−Leu−3er−Gly−Gly−3er
−Ala−Pro−Arg−Asn−GIn−11e−
3er−Pro−Lys−Leu−3er−Glu−L
eu−Lys−Met−Gly−11e−旧5−Leu
−Leu−I 1e−Arg−Ala−Asn−Glu
−Asp−Gly−Ala−Glu−I 1e−Phe
−Pro−Asp−3er−3er−Ala−Leu−
Gln−Leu−Ala−Pro−丁yr−c+y−A
sn−Tyr−丁yr−Gln−3er−Leu−Gl
y−Ala−Asp−Glu−3er−LeU−Arp
−Arp−Thr−丁yr−GIU−LeLl−1eU
−Ala−CyS−Phe−Lys−Lys−Asp−
)1et−旧5−Lys−Va I −Gl u−Th
r−丁yr−teu−丁hr−Val−Ala−Lys
−Cys−Arg−Leu−3er−Pro−Glu−
Ala−Asn−Cys−Thr−Leu     (
3)また、前記式(5)に示されるマダイGHのcDN
A配列中には、既に終止コドン(TAG)が存在してお
り、これは改めて終止コドンを導入することなく本発明
遺伝子として利用することができる。
)1et-ASp-Arg-Val-Val-LeU-
)1et-Lelj-3er-Val-Leu-3er
-Leu-Gly-Val-3er-3er-Gln-
Pro-I 1e-Thr-Asp-Gly-Gln-
Arg-Leu-Phe-3er-I 1e-Ala-
Val-3er-Arp-Val-Gln-His-L
eu-old s-teu-teu-Ala-Gln-Arg
-Leu-Phe-3er-Asp-Phe-Glu-
3er-3er-Leu-Gln-Thr-Glu-G
lu-Gln-Leu-Lys-Leu-Asn-Ly
s-I 1e-Phe-Pro-Asp-Phe-Cy
s-Asn-3er-Glu-Thr-Gln-Arg
-3er-3er-Val-Leu-Lys-Leu-
Leu-3er-11e-3er-Tyr-Arg-L
eu-Val-Glu-3er-Dingrp-Glu-Ph
e-Pro-3er-Arg-3er-Leu-3er
-Gly-Gly-3er-Ala-Pro-Arg-
Asn-Gln-11e-3er-Pro-Lys-L
eu-3er-Glu-Leu-Lys-Net-GJ
y-11e-)1 is-Leu-Leu-11e-A
rg-Ala-Asn-Glu-Asp-Gly-Al
a-Glu-I 1e-Phe-Pro-Asp-3e
r-3er-Ala-Leu-Gln-LetJ-A
a-pro-Dyo-Yr-GIy-ASrl-Dyo-Yr-Dyo-Yr-Gln-3er-Leu-Gly-Ala-As
p-Glu-3er-Leu-Arg-Arp-Dinghr
-■yr-Glu-Leu-Leu-Ala-Cys-
Phe-Lys-Lys-Asp-Het-His-L
ys-Val-Glu-Dinghr-Tyr-Leu-Dingh
r-Val-Ala-Lys-Cys-Arg-Leu
-3er-Pro-Glu-Ala-Asn-cys-
Dinghr-Leu
(2>Net-Gin-Pro-I 1
e-Thr-Asp-Gly-Gln-Arg-Leu
-Phe-3er-I 1e-Ala-Val-3er
-Arg-Val-Gln-His-Leu-11is
-Leu-Leu-Ala-Gln-Arg-Leu-
Phe-3er-Asp-Phe-Glu-3er-3
er-Leu-Gln-Thr-Glu-Glu-Gl
n-Leu-Lys-Leu-Asn-Lys-11e
-Phe-Pro-Asp-phe-cys-Asn-
ser-Asp-■yr-11e-I 1e-3er-
Pro-IIe-Asp-Lys-His-Glu-Dingtlr-Gljl-Arp-3er-3er-Val-
Leu-Lys-Leu-Leu-3er-I 1e-
3er-Tyr-Arg-teu-val-GJu-3
er-■rp-Glu-Phe-Pro-3er-Ar
g-3er-Leu-3er-Gly-Gly-3er
-Ala-Pro-Arg-Asn-GIn-11e-
3er-Pro-Lys-Leu-3er-Glu-L
eu-Lys-Met-Gly-11e-old 5-Leu
-Leu-I 1e-Arg-Ala-Asn-Glu
-Asp-Gly-Ala-Glu-I 1e-Phe
-Pro-Asp-3er-3er-Ala-Leu-
Gln-Leu-Ala-Pro-Dyr-c+y-A
sn-Tyr-Tyr-Gln-3er-Leu-Gl
y-Ala-Asp-Glu-3er-LeU-Arp
-Arp-Thr-Dyo-GIU-LeLl-1eU
-Ala-CyS-Phe-Lys-Lys-Asp-
) 1et-old 5-Lys-Va I-Gl u-Th
r-Dingyr-teu-Dinghr-Val-Ala-Lys
-Cys-Arg-Leu-3er-Pro-Glu-
Ala-Asn-Cys-Thr-Leu (
3) Also, the cDNA of red sea bream GH shown in the above formula (5)
A stop codon (TAG) already exists in the A sequence, and this can be used as the gene of the present invention without introducing a new stop codon.

上記開始コドンの導入は、常法に従い、例えば前記式(
4)の本発明遺伝子の5′末端側を適当な制限酵素で切
断後、これに適当な開始コドンを有するDNA配列を連
結させることにより行ない得る。より詳しくは、上記開
始コドンの導入は、例えば前記式(4)で表わされる本
発明遺伝子を制限酵素3alIで切断後、これに下記式
(6)で表わされるDNA配列を連結させることにより
実施できる。尚、該式中上線を付した配列はりボゾーム
結合部位である。
The above initiation codon can be introduced according to a conventional method, for example, the above formula (
4) can be carried out by cutting the 5' end of the gene of the present invention with an appropriate restriction enzyme, and then ligating thereto a DNA sequence having an appropriate initiation codon. More specifically, the introduction of the start codon can be carried out by, for example, cutting the gene of the present invention represented by the above formula (4) with restriction enzyme 3alI, and then ligating thereto a DNA sequence represented by the following formula (6). . The overlined sequence in this formula is the bosome binding site.

fHetGlnProl 1eThrAspGly5°
    CTGGAGGAAAA^^TT^TGCAG
CCG八TCACAG八TGG3°CT^GGACCT
CへTTTTTTへAT^CGTCGGCTAGTGT
CTACC本発明遺伝子を利用したマグ408発現ベク
ターの構築は、この種遺伝予相換え技術に慣用される通
常の方法に従うことができる。該方法に用いられる各種
操作乃至手法は、一部前述した通りであり、各種制限酵
素による切断処理、T4DNAリガーゼ等を用いる連結
処理、アガロースゲル電気泳動法、ポリアクリルアミド
ゲル電気泳動法等の単離、精製処理、フェノール抽出法
による回収、精製処理等を包含する。また得られるベク
ターのigも常法に従って、例えばそのDNA配列を前
記マキサム−ギルバート法で解析するか、ミニプレバレ
ージョンやマツピング法により遺伝子の導入やその方向
を確認する方法(H,C,Birnboim etal
、、Nucleic  Ac1ds  Res、、7.
1513−1523 (1979))等によることがで
きる。
fHetGlnProl 1eThrAspGly5°
CTGGAGGAAAA^^TT^TGCAG
CCG8TCACAG8TGG3°CT^GGACCT
To CTTTTTT AT^CGTCGGCTAGGTGT
The construction of the Mag408 expression vector using the CTACC gene of the present invention can be carried out in accordance with the usual methods commonly used in this type of genetic precomposition technology. Some of the various operations and techniques used in this method are as described above, including cleavage treatment with various restriction enzymes, ligation treatment using T4 DNA ligase, etc., isolation such as agarose gel electrophoresis, polyacrylamide gel electrophoresis, etc. , purification treatment, recovery by phenol extraction method, purification treatment, etc. The ig of the obtained vector can also be analyzed using conventional methods, such as analyzing its DNA sequence using the Maxam-Gilbert method, or confirming gene introduction and its direction using miniprevention or mapping methods (H, C, Birnboim et al.
, , Nucleic Ac1ds Res, , 7.
1513-1523 (1979)) etc.

上記マグ408発現ベクターの構築に利用される起源ベ
クターしては、特に制限はな(、従来公知の種々のもの
でよく、これには例えばバタテリオフ?−ジ及び動物ウ
ィルスを含む各種ウィルスベクター、各種プラスミド、
コスミド等が包含される。之等の内では特にpBR32
2又はこれに由来する各種の確立されたプラスミドベク
ターが好適である。
There are no particular restrictions on the source vector used for constructing the Mag408 expression vector (it may be of various types known in the art, including, for example, various viral vectors including batataeriophage and animal viruses, and various plasmid,
Includes cosmids and the like. Among these, pBR32 in particular
2 or various established plasmid vectors derived therefrom are suitable.

また、上記発現ベクターには、これが宿主IIII胞内
に導入されて目的とするマダイGHを実際に発現するた
めに、本発明遺伝子の外に、その発現に必要な各種の遺
伝情報、例えばプロモーター、転写終結信号、ポリA鎖
付加信号(真核細胞を宿主とする場合)等の転写のため
の情報やりボゾーム結合部位(シャイン・ダルガルノ配
列、SD配列)等の翻訳のための情報等が必要でおる。
In addition to the gene of the present invention, the expression vector includes various genetic information necessary for its expression, such as a promoter, in order to actually express the target red sea bream GH when introduced into the host III cell. Information for transcription such as transcription termination signal, poly A chain addition signal (when using eukaryotic cells as a host), and information for translation such as bosome binding site (Shine-Dalgarno sequence, SD sequence) are required. is.

かかる情報は、宿主細胞に応じてそれぞれよくしられて
おり、例えばプロモーターとしては、大腸菌に対するt
rpプロモーター、recプロモーター、λPLプロモ
ーター、llpプロモーター、tacプロモーター等、
枯草菌に対する5poiプロモーター、5PO2プロモ
ーター、penプロモーター等、酵母その他の真核細胞
に対するPH05プロモーター、PGにプロモーター、
GAPプロモーター、AD)lプロモーターV40由来
プロモーター等を例示できる。之等の遺伝情報は、目的
とするマグ408発現ベクターの構築に当たって、之等
を含むプラスミド等を選択して起源ベクターとして用い
ることにより、又は之等を含むプラスミド等より常法に
従い単離するか、化学合成した後、適当なベクターに組
込むことにより、それぞれ所望ベクターに導入存在させ
ることができる。
Such information is well known depending on the host cell. For example, as a promoter, t for E. coli is well known.
rp promoter, rec promoter, λPL promoter, llp promoter, tac promoter, etc.
5poi promoter, 5PO2 promoter, pen promoter, etc. for Bacillus subtilis, PH05 promoter for yeast and other eukaryotic cells, promoter for PG,
Examples include GAP promoter, AD)l promoter V40-derived promoter, and the like. The genetic information of these etc. can be isolated by selecting a plasmid etc. containing such etc. and using it as an origin vector when constructing the desired MAG408 expression vector, or from a plasmid etc. containing such etc. according to a conventional method. , can be introduced into a desired vector by chemically synthesizing the vector, and then integrating the vector into an appropriate vector.

かくして所望のマグ408発現ベクターを収得できる。In this way, the desired Mag408 expression vector can be obtained.

本発明はかかるマグ408発現ベクターをも提供するも
のである。
The present invention also provides such Mag408 expression vectors.

本発明のマグ408発現ベクターは、上記のように本発
明遺伝子の上流にプロモーター及びリボゾーム結合部位
を、また下流に転写終結信号をそれぞ連結されてなる一
組のマダイGH発現情報単位を有することにより特徴つ
けられる。
The Mag408 expression vector of the present invention has a set of red sea bream GH expression information units each having a promoter and a ribosome binding site linked upstream of the gene of the present invention, and a transcription termination signal linked downstream, as described above. Characterized by

また、本発明者らの研究によれば、同一ベクター内に上
記マダイGe1発現情報単位の二組以上を保有させたベ
クターによれば、所望のマダイGHの生産性が高められ
る場合のあることが見出された。従って、本発明はかか
るマダイG)1発現情報単位の複数個を保有するベクタ
ーをも提供するものである。
Furthermore, according to the research of the present inventors, the productivity of the desired red sea bream GH may be increased by using a vector containing two or more sets of the above red sea bream Ge1 expression information units in the same vector. discovered. Therefore, the present invention also provides a vector carrying a plurality of such red sea bream G)1 expression information units.

上記本発明マダイ発現ベクターは、これを適当な宿主細
胞に導入(形質転換)させることによって、該宿主細胞
に所望のマダイG1−1産生能を付与できる。ここで用
いられる宿主細胞としては、特に限定されるものではな
く、公知の各種のもの、例えば大腸菌等のグラム陽性細
菌、枯草菌等のグラム陽性細菌、放線菌等の原@細胞、
酵母、動植物細胞等の真核細胞のいずれでもよ(、特に
大腸菌に12株由来の88101株(H,W、 Boy
erand  D、 Roulland−Dussoi
x、、J、 MO+。
By introducing (transforming) the red sea bream expression vector of the present invention into an appropriate host cell, the desired red sea bream G1-1 producing ability can be imparted to the host cell. The host cells used here are not particularly limited, and include various known ones, such as gram-positive bacteria such as Escherichia coli, gram-positive bacteria such as Bacillus subtilis, proto-cells such as actinomycetes,
It can be any eukaryotic cell such as yeast, animal or plant cells (Especially 88101 strain derived from 12 strains of E. coli (H, W, Boy).
erand D, Roulland-Dussoi
x,,J,MO+.

3io1.、旦、459−472(1969))及びJ
M103株[J、 Messtng et al、、N
UcIeicAcids  Res、、9.309 (
1981) )は好適である。
3io1. , Dan, 459-472 (1969)) and J.
M103 strain [J, Messtng et al., N
UcIeic Acids Res, 9.309 (
1981) ) is preferred.

上記宿主細胞への本発明マダイGl(発現ベクターの導
入及びこれによる形質転換の方法は、一般に用いられて
いる各種の方法に従うことができ、例えば宿主細胞を低
温で塩化カルシウムを含む水溶液中で処理し、該溶液中
にベクターを添加する方法(E、 Lederberg
 and  3. Cohen、 J。
Methods for introducing the Red Sea Bream Gl (expression vector of the present invention into the above host cells) and transformation using the same can follow various commonly used methods. For example, the host cells are treated at low temperature in an aqueous solution containing calcium chloride. and adding the vector into the solution (E, Lederberg
and 3. Cohen, J.

3acterio1..119.1072 (1974
) )等によることができる。
3acterio1. .. 119.1072 (1974
) ) etc.

かくして本発明ベクターを導入され、形質転換された細
胞を収得できる。本発明は、かかるマグ408発現ベク
ターを保有し、マダイGH産生能を有する形質転換細胞
をも提供するものである。
In this way, cells introduced with the vector of the present invention and transformed can be obtained. The present invention also provides transformed cells that possess the Mag408 expression vector and have the ability to produce red sea bream GH.

上記形質転換細胞は、これを通常の細胞培養用培地で培
養することにより、マダイGHを生産、蓄積できる。該
細胞の培養に利用できる培地としては、例えばL培地、
E培地、M9培地、M63培地等の各種のものをいずれ
も使用できる。また2等培地には更に通常知られている
各種の炭素源、窒素源、無機塩、ビタミン類、天然物抽
出物、生理活性物質等を添加存在させることができる。
The above-mentioned transformed cells can produce and accumulate red sea bream GH by culturing them in a normal cell culture medium. Examples of the medium that can be used for culturing the cells include L medium,
Any of various media such as E medium, M9 medium, M63 medium, etc. can be used. Further, the secondary medium can further contain various commonly known carbon sources, nitrogen sources, inorganic salts, vitamins, natural product extracts, physiologically active substances, and the like.

形質転換細胞の培養は、該細胞の生育に適したp+、温
度、通気、撹拌等の条件を採用した各種方法により実施
できる。例えば大腸菌の場合には、pH約5〜8の範囲
、特にpH7付近が適当であり、約20〜43℃の温度
で、通気撹拌条件下で培養するのが望ましく、培養のス
ケールは特に限定はない。上記培養により、通常約5〜
90rf1で培養懸濁液中に、所望のマダイG)(が蓄
積される。
Culture of transformed cells can be carried out by various methods employing conditions such as p+, temperature, aeration, and stirring that are suitable for the growth of the cells. For example, in the case of Escherichia coli, a pH range of about 5 to 8, especially around pH 7, is appropriate, and it is desirable to culture at a temperature of about 20 to 43°C under aeration and agitation conditions, and there are no particular restrictions on the scale of the culture. do not have. By the above culture, usually about 5~
The desired red sea bream G) (accumulates in the culture suspension at 90rf1).

かくして蓄積されるマダイGHは、通常の操作により分
離できる。該操作としては、例えば細胞の超音波破砕、
機械的破砕、凍結融解、浸透圧ショック等による抽出操
作や培養上清の分離操作等を例示できる。
Red sea bream GH thus accumulated can be separated by normal operations. The operation includes, for example, ultrasonic disruption of cells,
Examples include extraction operations using mechanical disruption, freeze-thaw, osmotic shock, etc., and separation operations of culture supernatants.

更に上記により分離される目的のマダイGHは、その物
理学的性質や化学的性質を利用した各種の精製操作によ
り精製することができる。該精製操作としては、例えば
通常の蛋白沈澱剤を利用する沈澱処理、限外濾過処理、
ゲル濾過処理、吸着クロマトグラフィー処理、イオン交
換クロマトグラフィー処理、アフィニティクロマトグラ
フィー処理、高速液体クロマトグラフィー処理等を適宜
組合せることにより実施できる。
Furthermore, the red sea bream GH to be separated as described above can be purified by various purification operations utilizing its physical and chemical properties. The purification operations include, for example, precipitation treatment using a common protein precipitant, ultrafiltration treatment,
This can be carried out by appropriately combining gel filtration treatment, adsorption chromatography treatment, ion exchange chromatography treatment, affinity chromatography treatment, high performance liquid chromatography treatment, and the like.

上記により、工業的規模で容易に、しかも高純′度、高
収率で所望のマダイGHを製造することができる。
By the above method, the desired red sea bream GH can be easily produced on an industrial scale with high purity and high yield.

得られるマダイGHは、5O8−ポリアクリルアミドゲ
ル電気泳動(R,F、 5chleif and  p
The obtained red sea bream GH was subjected to 5O8-polyacrylamide gel electrophoresis (R, F, 5chleif and p
.

C,Wensink、” Practical  Me
thods InMo1ecular Biology
”、 sprtnger−ver+ag(1981))
にかけ、クマーシーブリリアントプルー等で染色するこ
とにより、検出できる。
C. Wensink, “Practical Me
thods InMo1ecular Biology
”, sprtnger-ver+ag (1981))
It can be detected by staining with Coomassie brilliant blue or the like.

かくして得られるマダイGHは、マダイの成長ホルモン
として、殊にマダイ養殖産業分野で非常に有用である。
The red sea bream GH thus obtained is very useful as a growth hormone for red sea bream, particularly in the red sea bream aquaculture industry.

!−−五一一方 以下、本発明遺伝子の製造、マダイGHの製造のための
該遺伝子の利用につき、実施例を挙げてより詳述する。
! --51 Hereinafter, the production of the gene of the present invention and the use of the gene for the production of red sea bream GH will be described in more detail with reference to Examples.

実施例1 マ イ脳下垂体からのポリ(A)RNAの調平均魚体重
900gの養殖マグ480尾から摘出し、瞬時凍結した
脳下垂体を調製用材料とした。
Example 1 Preparation of poly(A) RNA from my pituitary gland The pituitary gland was extracted from 480 cultured mugs weighing 900 g and snap-frozen, and the pituitary gland was used as a material for preparation.

この脳下垂体の全湿重量は約500m0であった。The total wet weight of this pituitary gland was approximately 500 m0.

また、ポリ(A)RNAの調製は、チオシアン酸グアニ
ジン−塩化セシウム法(Chirgvin etal、
、 Biochemistry 、 18.5294(
1979))に従い、以下の通り行なった。
In addition, poly(A) RNA can be prepared using the guanidine thiocyanate-cesium chloride method (Chirgvin et al.
, Biochemistry, 18.5294 (
1979)), as follows.

即ち、上記脳下垂体を、6Mチオシアン醗グアニジン、
5mMクエン酸ナトリウム、0.5%N−ラウロイルザ
ルコシン酸ナトリウム及び0. IMβ−メルカプトエ
タノールからなる溶液7.5−中で、テフロンホモジナ
イザーにて破砕(10ストローク)して可溶化させた。
That is, the pituitary gland was treated with 6M thiocyanine guanidine,
5mM sodium citrate, 0.5% sodium N-lauroyl sarcosinate and 0.5% sodium lauroyl sarcosinate. It was solubilized by crushing (10 strokes) with a Teflon homogenizer in a solution 7.5 consisting of IM β-mercaptoethanol.

この可溶化物を18G注射針に数回通してDNAを分断
し、日立RPR20−20−ターにて110000rp
で10分間遠心して組織片、蛋白を除き、上滑を回収し
た。
This solubilized material was passed through an 18G injection needle several times to fragment the DNA, and then injected at 110,000 rpm in a Hitachi RPR20-20-ter.
The tissue was centrifuged for 10 minutes to remove tissue fragments and proteins, and the supernatant was collected.

回収された上漬約8m12を、ベックマン5W40Ti
用ポリアロマ−チューブ中に予め入れておいた5、7M
塩化セシウム−0,1M  EDTA溶液3溶液3和Q
上し、ベックマン5w40Tiローターにて35000
 rpmで18時間超遠心後、RNAを沈澱として回収
した。上滑を7スピレーターを用いて完全に除去した後
、RNAの沈澱を10mMトリス塩II(pH7,5>
及び1mMEDTAからなる溶液(以下rTEJと略記
する)0.9rrIQに溶解させ、5M  NaC;9
0.1mGを加えて、65℃で5分間インキュベートし
、水中で急冷した。この混合液11110を、予め0.
5MNaCQを含む丁Eで平衡化しておいたオリゴ(d
T)セルロースカラム(ベーリンガーマンハイム山之内
社製、カラム容積0.35mQ>にかけ、吸着されたR
NAをTEにて溶出させた。この溶出液5.5朦に、5
M  NaCQo、61mQを加えて、65℃の水浴中
で5分間加熱し、水中で急冷した後、この混合液6.1
1−を、再度オリゴ(dT)セルロースカラムにかけた
。吸着されたRNAをTEにて溶出させて、0.8μQ
のポリ(A)RNAを得た。
Approximately 8 m12 of the collected super-soaked rice was transferred to Beckman 5W40Ti
5,7M which had been placed in a polyaromer tube for
Cesium chloride-0,1M EDTA solution 3 solution 3 sum Q
35000 with Beckman 5w40Ti rotor
After ultracentrifugation at rpm for 18 hours, RNA was collected as a precipitate. After completely removing the supernatant using a 7-spirator, the RNA precipitate was diluted with 10 mM Tris salt II (pH 7,5>
and 1mM EDTA (hereinafter abbreviated as rTEJ) dissolved in 0.9rrIQ, 5M NaC;
0.1 mG was added, incubated at 65°C for 5 minutes, and quenched in water. This mixed liquid 11110 was added in advance to 0.
Oligo (d
T) Cellulose column (manufactured by Boehringer Mannheim Yamanouchi Co., Ltd., column volume 0.35 mQ)
NA was eluted with TE. After 5.5 hours of this eluate,
After adding M NaCQo, 61 mQ and heating in a 65 °C water bath for 5 minutes and quenching in water, this mixture 6.1
1- was applied to the oligo(dT) cellulose column again. The adsorbed RNA was eluted with TE and 0.8μQ
Poly(A) RNA was obtained.

立見Nへ匁塗濾 cDNAの合成を、CDI’、IA合成キット(アマジ
ャム社製)を用い、該キットに添附されたプロトコール
に従って、以下の通り行なった。
Synthesis of the Tatemi N mome coated cDNA was carried out as follows using a CDI', IA synthesis kit (manufactured by Amajam) according to the protocol attached to the kit.

ポリ(A)RNAの0.8μQを含む水溶液6.8μQ
に、上記キットに含まれる5Xフア一ストストランド合
成用バッフ1−4μQ1ビロリン酸ナトジナトリウム溶
液1μQ125単Qヒト胎盤リボヌクレアーゼインヒビ
ター1μQ1デオキシヌクレオシド三リン酸混液(dA
TP、dGTP、dTTP、dCTP各々10.10.
10.5mM)41!、2ma/mQオリゴ(dT  
  )プライマー1μQ及び18単位/戒逆転写酵素2
.2μQをそれぞれ加えて全量を20μQとし、42℃
で40分間反応させて、RNAに相補的なりNAを合成
させた。
6.8 μQ of an aqueous solution containing 0.8 μQ of poly(A) RNA
5X first strand synthesis buffer included in the above kit 1-4μQ1 sodium birophosphate solution 1μQ125 single Q human placental ribonuclease inhibitor 1μQ1 deoxynucleoside triphosphate mixture (dA
TP, dGTP, dTTP, dCTP each 10.10.
10.5mM)41! , 2ma/mQ oligo (dT
) Primer 1μQ and 18 units/Kai reverse transcriptase 2
.. Add 2μQ each to make the total amount 20μQ, and heat at 42°C.
The mixture was reacted for 40 minutes to synthesize RNA complementary to the RNA.

次に、得られた反応液20μQに、上記キットに含まれ
るセカンドストランド合成用バッフ?−37,5μQ、
大腸菌リボヌクレアーゼ80.8単位、大腸菌DNAポ
リメラーゼI23単位及び蒸留水を加えて全量を99μ
Qとし、これをまず12℃で60分間、次に22℃で6
0分間、最後に70℃で10分間それぞれインキュベー
トした。
Next, add the second strand synthesis buffer included in the above kit to 20μQ of the obtained reaction solution. -37,5μQ,
Add 80.8 units of E. coli ribonuclease, 23 units of E. coli DNA polymerase I, and distilled water to bring the total volume to 99μ.
Q, first at 12℃ for 60 minutes, then at 22℃ for 60 minutes.
0 min and finally 10 min at 70°C, respectively.

水冷後、T4DNAポリメラーゼ4単位(1μQ)を加
えて37°Cで10分間反応させた。この反応によりR
NA−DNA二本鎖のRNA部分がDNAに置換され、
完全な二本鎖CDNAが得られた。
After cooling with water, 4 units (1 μQ) of T4 DNA polymerase were added and reacted at 37°C for 10 minutes. This reaction causes R
The RNA part of the NA-DNA double strand is replaced with DNA,
A complete double-stranded CDNA was obtained.

上記反応液に、0.25M  EDTA(pl(8,0
>10μQ及び10%5DS10μQを加えて反応を停
止させ、該反応物をフェノール−クロロホルム抽出し、
エタノール沈澱により、二本鎖CDNA60μqを回収
した。
Add 0.25M EDTA (pl(8,0
>10 μQ and 10 μQ of 10% 5DS were added to stop the reaction, the reaction was extracted with phenol-chloroform,
60 μq of double-stranded CDNA was recovered by ethanol precipitation.

組 えベクターのw4製 上記で合成されたCDNAを、ベクターλgt10 (
T、 V、 Huynh et at、、 ”DNAc
+ontng:Apractical approac
h tt 、 QIOVer I1゜49−78.IR
L  Press(1984))に挿入する操作を、C
DNAクローニングシステム(アマジャム社製)に添附
のプロトコールに従って、以下の通り行なった。
Preparation of recombinant vector w4 The CDNA synthesized above was transferred to vector λgt10 (
T., V. Huynh et at, “DNAc
+ontng: Practical approach
h tt, QIOVer I1゜49-78. IR
L Press (1984))
The following procedure was carried out according to the protocol attached to the DNA cloning system (manufactured by Amajam).

上記で合成したCDNAの全量を含む水溶液13μQに
、上記キットに含まれる5 X E CORIメチラー
ゼ反応液4μQ、0.8mMアデノシルメチオニン液2
μQSECOR■メチラーゼ1μQ(20単位)を加え
て全量を20μQとし、混合物を37℃で60分間イン
キュベートして、上記CDNA中に含まれているEC0
RIサイトをメチル化した後、70℃で10分間加熱し
てEC0RIメチラーゼを不活性とした。
To 13 μQ of the aqueous solution containing the total amount of the CDNA synthesized above, 4 μQ of the 5
1 μQ (20 units) of μQSECOR methylase was added to bring the total volume to 20 μQ, and the mixture was incubated at 37°C for 60 minutes to detect the EC0 contained in the above CDNA.
After methylating the RI site, EC0RI methylase was inactivated by heating at 70°C for 10 minutes.

得られた反応液20μQに、上記キットに含まれる10
XT4DNAリガーゼバツフ?−3μQ1末端をリン酸
化したEC0RIリンカ−[5°d(pGGAATTC
C)] 2μQ(1μQ)、T4DNAリガーゼ2μQ
及び蒸留水3μQを加えて30μQとした後、15℃で
16時間反応させてCDNA末端にEC0RIリンカ−
を付加し、70℃で10分間反応させてT4DNAリガ
ーゼを不活性とした。
To 20 μQ of the obtained reaction solution, add 10 μQ of the above kit.
XT4DNA ligase buffer? -3μQ1 end phosphorylated EC0RI linker-[5°d(pGGAATTC
C)] 2μQ (1μQ), T4 DNA ligase 2μQ
After adding 3 μQ of distilled water to make 30 μQ, the mixture was reacted at 15°C for 16 hours to form an EC0RI linker at the end of the CDNA.
was added and reacted at 70°C for 10 minutes to inactivate T4 DNA ligase.

得られた反応液30μQに、上記キットに含まれる10
xEcoRIバツフアー10μQ1制限酵素EC0RI
2μQ及び蒸留水58μQを加えて100μQとし、3
7℃で5時間インキュベートして、末端にEC0RIリ
ンカ−由来のEC0RI粘着末端を有するCDNAを得
た。
To 30 μQ of the obtained reaction solution, add 10 μQ of the above kit.
xEcoRI buffer 10μQ1 restriction enzyme EC0RI
Add 2μQ and 58μQ of distilled water to make 100μQ,
By incubating at 7° C. for 5 hours, CDNA having EC0RI sticky ends derived from the EC0RI linker was obtained.

得られた反応液をCDNAクローニングシステムに添附
のカラムにかけ、100mM  NaCQを含むTEに
て溶出させた。これによりEC0RIリンカ−由来の低
分子1DNAが除去された。上記で溶出されたEC0R
I粘着末端を有するCDNAをエタノール沈澱により回
収した。
The obtained reaction solution was applied to a column attached to a CDNA cloning system and eluted with TE containing 100mM NaCQ. This removed the low molecular weight 1 DNA derived from the EC0RI linker. EC0R eluted above
CDNA with I sticky ends was recovered by ethanol precipitation.

上記で回収されたcDNAの半量30noを含む水溶液
6μgに、上記キットに含まれるIOXリガーゼバッフ
1−1μΩ、λgt70ECORIアーム2μM1μQ
)及びT4DNAリガーゼ1μQ (2,5単位)を加
えて、全量を10μQとし、12℃で一夜インキユベー
トし、CDNAを含む粗換えλQt10DNA@得た。
To 6μg of an aqueous solution containing half of the cDNA recovered above (30no), IOX ligase buffer 1-1μΩ included in the above kit, λgt70ECORI arm 2μM 1μQ
) and 1 μQ (2.5 units) of T4 DNA ligase were added to bring the total amount to 10 μQ, and the mixture was incubated at 12° C. overnight to obtain crude recombinant λQt10DNA containing CDNA.

この反応物をエタノール沈澱により回収し、TE2.5
μQに溶解させた後、大腸菌BH32688株lN20
5recΔ″″(λ 1mm434 CItS b2r
ed3 E am4 Sam7 ) / /1 ] (
D凍taMIWljh出H10μQ及び大腸mBHB2
690株[N205recA−(λ 1mm434 c
l ts b2 red3 Dam15Sam7)/λ
]の超音波破砕抽出液15μQを加えて、20℃で2時
間インキユベートシ、インビトロパッケージングを行な
った。その後、反応混合液に、100mM  NaCQ
、50mMトリ0.01%ゼラチンからなる溶液0.5
戒及びクロロホルム20μQを加えた。
This reaction product was recovered by ethanol precipitation and TE2.5
After dissolving in μQ, E. coli BH32688 strain lN20
5recΔ″″(λ 1mm434 CItS b2r
ed3 E am4 Sam7 ) / /1 ] (
D frozen taMIWljh H10μQ and large intestine mBHB2
690 strains [N205recA-(λ 1mm434c
l ts b2 red3 Dam15Sam7)/λ
15 μQ of the ultrasonically disrupted extract was added and incubated at 20° C. for 2 hours, followed by in vitro packaging. The reaction mixture was then supplemented with 100mM NaCQ.
, a solution consisting of 50mM tri-0.01% gelatin 0.5
20μQ of chlorine and chloroform were added.

上記により、CDNAを含む組換えλQt10DNAが
λファー2粒子内に封入された。
As described above, recombinant λQt10 DNA containing CDNA was encapsulated in λfur2 particles.

マダイGHC[)NAを む組 えDNAの1上記で得
られた組換えファージの全量を、マニアティスらの方法
(T、 Maniatis et af、。
The total amount of the recombinant phage obtained above was prepared using the method of Maniatis et al.

Mo1ecular  C1oninp、p63. C
o1d SpringHarvor L aborat
ory(1982) )に従って調製された宿主細胞N
M514(アマジャム社製)の懸濁液1mG(109細
胞/鵬)に感染させ、得られた約1 X 10S個のフ
ァージプラークを、ナイロンメンブレン バイオダイン
A(日本ボール社製)上に固定した。
Molecular C1oninp, p63. C
o1d Spring Harbor L aborat
(1982)) host cell N
A suspension of 1 mg (109 cells/Peng) of M514 (manufactured by Amajam) was infected, and approximately 1×10S phage plaques obtained were immobilized on a nylon membrane Biodyne A (manufactured by Nippon Ball).

次いでシロザケ成長ホルモンのCDNA配列中、LeL
l   −Vat175の領域に相当する50塩基のD
NA、即ち下記DNAを、DNA合成機381A型(ア
プライドバイオシステムズ社製)を用いて合成し、32
Pで標識してプローブとした。
Next, in the CDNA sequence of chum salmon growth hormone, LeL
50 bases of D corresponding to the region of l-Vat175
NA, that is, the following DNA, was synthesized using a DNA synthesizer model 381A (manufactured by Applied Biosystems), and 32
It was labeled with P and used as a probe.

5’   GACGG丁CAGGTAGGTC丁CGA
CC丁TG丁GCATGTC(JrCTrGAAGCA
TGCCA  3゜ ベントン(3enton )とディビイス([)avi
s)の方法〔前掲書、”Mo1ecular  Cl0
ninQ”p320参照〕に従って、65℃でプラーク
ハイブリダイゼーションを行なった結果、約1×103
個のプラークが、32P標識プローブと結合することが
示された。そのうちの12個のプラークをそれぞれ里離
し、λTGH1〜λTGH12と命名した。
5' GACGG-CAGGTAGGTC-CGA
CC Ding TG Ding GCATGTC (JrCTrGAAGCA
TGCCA 3゜benton (3enton) and Davis ([)avi
s) method [ibid., “Mo1ecular Cl0
As a result of plaque hybridization at 65°C according to
32 plaques were shown to bind to the 32P-labeled probe. Twelve of the plaques were isolated and named λTGH1 to λTGH12.

マ イGHCDNAの塩基  の決定 上記で得られた12個の粗換えファージから、フェノー
ル抽出及びエタノール沈澱を行なって、それぞファージ
DNAを調製した。
Determination of the base of my GHC DNA Phage DNA was prepared from the 12 crude phages obtained above by phenol extraction and ethanol precipitation.

次に得られたDNAの各々を、以下の通り、制限酵素E
C0RIで切断し、該DNA中に保持されているCDN
Ae得た。即ち、ファージDNA5tlQを、100m
M  NaCQ、50mMトリス塩酸(pH7,5>、
10mM  MaSOt及び1mMジチオスレイトール
(DTT)を含む水溶液(以下「高塩濃度緩衝液」とい
う)に溶解させ、これにEcoRI(宝酒造社製)50
単位を加えて300μQとし、37℃で3時間反応させ
た後、エタノール沈澱により切断されたDNAを回収し
、これをTE20μQに溶解させた。
Next, each of the obtained DNAs was treated with restriction enzyme E as follows.
CDN cut with C0RI and retained in the DNA
I got Ae. That is, 100 m of phage DNA 5tlQ
M NaCQ, 50mM Tris-HCl (pH 7.5>,
It was dissolved in an aqueous solution containing 10mM MaSOt and 1mM dithiothreitol (DTT) (hereinafter referred to as "high salt concentration buffer"), and EcoRI (manufactured by Takara Shuzo Co., Ltd.) 50
After adding units to make 300 μQ and reacting at 37° C. for 3 hours, the cleaved DNA was recovered by ethanol precipitation and dissolved in 20 μQ of TE.

別に、プラスミドp UC19(Yanisch −P
erron et al、、 Gene 、 33.1
03(1985))3μQ@EcoR120単位を含む
高塩濃度緩衝液100μQ中で、37℃にて12時間反
応させた後、エタノール沈澱を行なって回収したDNA
をTE20μQに溶解させた溶液を調製した。
Separately, plasmid pUC19 (Yanisch-P
Erron et al., Gene, 33.1
03 (1985)) 3 μQ @ EcoR 120 units of high salt concentration buffer containing 100 μQ, reacted at 37°C for 12 hours, and then ethanol precipitated and recovered DNA.
A solution was prepared by dissolving the following in TE20μQ.

上記ファージDNAのEC0RI断片液2μQ、pLI
c19EcoRI断片液1μQ、IOX断片−ゼ緩衝液
[660mMトリス塩酸(pH7,5>、66 m M
  M Q S Oを及び100mM  DTTの水溶
液11μQ、10mM  ATP1μQ、蒸留水4μQ
及びT4DNAリガーゼ(宝酒造社製)1μQ (35
0単位)を混合し、12℃で16時間反応させた。
2 μQ of EC0RI fragment solution of the above phage DNA, pLI
c19EcoRI fragment solution 1μQ, IOX fragment-ase buffer [660mM Tris-HCl (pH 7.5>, 66mM
11 μQ of an aqueous solution of MQSO and 100 mM DTT, 1 μQ of 10 mM ATP, 4 μQ of distilled water
and T4 DNA ligase (manufactured by Takara Shuzo Co., Ltd.) 1μQ (35
0 units) were mixed and reacted at 12°C for 16 hours.

次いで、上記反応液を用いて大腸菌JM109株(Ya
niSCh−Perron et al、、 (3en
e 、 33 。
Next, using the above reaction solution, E. coli strain JM109 (Ya
niSCh-Perron et al, (3en
e, 33.

103 (1985))を、形質転換させた。この形質
転換はリーデルベルグ(L ederberg )とコ
ーエン(COhen)の方法(J 、13acteri
o1.、1 ’l 9 。
103 (1985)) was transformed. This transformation was performed using the method of Lederberg and Cohen (J, 13acteri).
o1. , 1 'l 9.

1072 (1974))に従って、次の通り実施した
。即ち、CaCQ2処理したJM109株の懸濁液20
0μQに、上記反応液10μQを加えて60分間氷冷し
た後、42.5℃の水浴中で90秒間加温し、これにし
−ブロス[1%バタトトリプトン、0.5%酵母エキス
及び0.5%NaCQの水溶液] 2,8m12を加え
、37℃で30分間インキュベートした。次いで得られ
た懸濁液を10枚の選択プレートに300μQづつ塗抹
し、37℃にて一夜培養した。尚、上記選択プレートと
しては、アンピシリン50μg/1110、イソプロピ
ルβ−D−チオガラクトシド12.5μQ/1Tl12
及び5−ブロモ−4−クロロ−3−インドリル−β−D
−ガラクトシド40μQ/mQを含むL−ブロスに、寒
天1.5%を添加して固めた平板培地(25mG/プレ
ート)を用いた。
1072 (1974)) as follows. That is, suspension 20 of JM109 strain treated with CaCQ2
10 μQ of the above reaction solution was added to 0 μQ, cooled on ice for 60 minutes, heated for 90 seconds in a water bath at 42.5°C, and mixed with broth [1% Batato tryptone, 0.5% yeast extract and 0 μQ]. .5% NaCQ aqueous solution] was added and incubated at 37° C. for 30 minutes. Next, 300 μQ of the obtained suspension was spread on 10 selection plates each and cultured at 37° C. overnight. In addition, as the above selection plate, ampicillin 50μg/1110, isopropyl β-D-thiogalactoside 12.5μQ/1Tl12
and 5-bromo-4-chloro-3-indolyl-β-D
- A plate medium (25 mG/plate) prepared by adding 1.5% agar to L-broth containing 40 μQ/mQ of galactoside and solidifying it was used.

上記選択培地のプレートに生育する白色のコロニーを分
離し、該コロニーからプラスミドDNAを単離した。得
られたプラスミドは、その由来する組換えファージの名
と同一番号を付して、それぞれpTGHE1〜pTGH
E12と命名した。
A white colony growing on the plate of the above selective medium was isolated, and plasmid DNA was isolated from the colony. The obtained plasmids are named pTGHE1 to pTGH, respectively, with the same numbers as the names of the recombinant phages from which they are derived.
It was named E12.

上記で得られた12種のプラスミドを、各種の制限酵素
、例えばBplII、EcoRI、 Hind m、H
l)aI、PStI、PVuII(以上いずれも宝酒造
社製) 、Ba1I (二yボンジーン社f%j) 、
CIaIにューイングランドバイオラブズ社1)、SS
t工(ベセスダ リサーチ ラボラトリーズ社製)で切
断して、解析することにより、各プラスミドに含まれる
CDNAの制限酵素地図を作成Cた。
The 12 types of plasmids obtained above were treated with various restriction enzymes, such as BplII, EcoRI, Hind m, H
l) aI, PStI, PVuII (all manufactured by Takara Shuzo Co., Ltd.), Ba1I (2y Bongene f%j),
CIaI New England Biolabs 1), SS
A restriction enzyme map of the CDNA contained in each plasmid was created by cutting and analyzing the fragments using T-T (manufactured by Bethesda Research Laboratories, Inc.).

また、これと共にCDNAの長さを推定した。In addition, the length of the CDNA was also estimated.

その結果、pTGHEllのCDNAが最も長く、約9
20塩基からなっており、Ba1I、BOI■、Cla
I、HindI[I、Ha I、PstI、pvu[,
3stIのそれぞれの制限酵素により切断される部位を
各1個ずつ有することが確認された。
As a result, the cDNA of pTGHell was the longest, about 9
It consists of 20 bases, Ba1I, BOI■, Cla
I, HindI[I, Ha I, PstI, pvu[,
It was confirmed that each of them had one site that was cleaved by each of the 3stI restriction enzymes.

上記pTGHE11に含まれるCDNAの制限酵素地図
を第1図に示す。
A restriction enzyme map of the cDNA contained in the above pTGHE11 is shown in FIG.

また、上記1)TG)−IE11以外の各プラスミドに
含まれるCDNAについても上記と同様の制限酵素地図
を有することが確認された。
Furthermore, it was confirmed that the CDNAs contained in each plasmid other than 1) TG)-IE11 described above had the same restriction enzyme map as above.

次に、DTGHEl 1のCDNAの全塩基配列をM1
3ファージを用いたサンガー法(Yanisch−pe
rron et al、、 (3ene 、 33.1
03(1985))に従い、M13シーケンスキット(
東洋紡社製)を用いて決定した。
Next, the entire base sequence of the CDNA of DTGHEl 1 was converted into M1.
Sanger method using 3 phages (Yanisch-pe
rron et al, (3ene, 33.1
03 (1985)), M13 Sequencing Kit (
(manufactured by Toyobo Co., Ltd.).

その結果は、前記式(5)に示した通りである。The result is as shown in equation (5) above.

該式(5)より、この塩基配列の一方の末端には、真核
生物の通常のmRNAに共通して存在するポリ(A)鎖
があり、且つその上流にはポリ(A>付加信号として知
られる(5°)AATAAA(3’ )の塩基配列が存
在している。
According to the formula (5), at one end of this base sequence, there is a poly(A) chain that is commonly present in normal mRNA of eukaryotes, and upstream of the poly(A) chain, there is a poly(A>addition signal). A known (5°) AATAAA (3') base sequence exists.

また該塩基配列は、203個のアミノ酸配列をコードす
る翻訳領域を含んでいる。該アミノ酸配列は前記式(2
)に示すものであり、そのうち−17(Met)から−
1(Sep)までのアミノ酸配列はハイネ(Heijn
e)の方法(Nucl、Ac1dsRes、、14.4
683 (1986))に従い、分泌タンパクのシグナ
ルペプチドであることが確認された。このことは、本発
明により得られるマダイGHが、ヒトGH,シロザケG
H等と同様に、本来そのN末端にシグナルペプチドを持
った前駆体として産生細胞より合成されるものであるこ
とを明らかにしている。
The base sequence also includes a translated region encoding a 203 amino acid sequence. The amino acid sequence is represented by the formula (2
), of which -17 (Met) to -
The amino acid sequence up to 1 (Sep) is from Heijn.
e) method (Nucl, Ac1dsRes, 14.4
683 (1986)), it was confirmed to be a signal peptide of a secreted protein. This means that the red sea bream GH obtained by the present invention is human GH, chum salmon GH,
It has been revealed that, like H and others, it is originally synthesized from producing cells as a precursor with a signal peptide at its N-terminus.

更に、上記アミノ酸配列からシグナルペプチドのそれを
除いた186個のアミノ酸配列(マダイGHのアミノ酸
配列)を、既知の各種動物のGHのそれらと対比して相
同性を検討した結果、本マダイGHのアミノ酸配列は、
シロザケGHとは68%、ヒトGHとは33%共通して
いると認められた。因みに、シロザケGHとヒトGHと
は36%の相同性が認められる。
Furthermore, we compared the 186 amino acid sequence (amino acid sequence of red sea bream GH) obtained by excluding the signal peptide from the above amino acid sequence with those of known GH of various animals to examine the homology, and as a result, we found that this red sea bream GH has The amino acid sequence is
It was found to have 68% commonality with chum salmon GH and 33% commonality with human GH. Incidentally, 36% homology is observed between chum salmon GH and human GH.

更にまた、一般にGHとしての活性発現に重要であると
考えられているCyS残基の数と位置を、上記各GHに
ついて比較した所、3者の間で完全な一致が認められた
Furthermore, when the number and position of CyS residues, which are generally considered to be important for the expression of GH activity, were compared for each of the above GHs, complete agreement was found among the three.

以上のことより、上記アミノ酸配列がマダイGHのアミ
ノ酸配列であると確認できた。
From the above, it was confirmed that the above amino acid sequence was that of red sea bream GH.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明プラスミドpTGH611に含まれる
cDNAの制限酵素地図を示すものである。 (以上)
FIG. 1 shows a restriction enzyme map of the cDNA contained in the plasmid pTGH611 of the present invention. (that's all)

Claims (1)

【特許請求の範囲】 [1]下記式(1)の魚類成長ホルモンポリペプチドを
含むアミノ酸配列をコードする魚類成長ホルモン遺伝子
。 【遺伝子配列があります】(1) [2]下記式(2)及び(3)のいずれかのアミノ酸配
列のポリペプチドをコードする特許請求の範囲第1項に
記載の遺伝子。 【遺伝子配列があります】(2) 【遺伝子配列があります】(3) [3]3′末端に更にTAA、TAG及びTGAのいず
れかの終止コドンが付加された特許請求の範囲第1項に
記載の遺伝子。 [4]魚類成長ホルモン産生能を有する組織乃至細胞か
ら調製されたポリ(A)RNAに対応するcDNAとし
て単離された特許請求の範囲第1項記載の遺伝子。 [5]特許請求の範囲第1項乃至第4項に記載の遺伝子
を含む魚類成長ホルモン発現ベクター。 [6]特許請求の範囲第4項に記載のベクターを保有す
る宿主細胞。
[Scope of Claims] [1] A fish growth hormone gene encoding an amino acid sequence containing a fish growth hormone polypeptide represented by the following formula (1). [There is a gene sequence] (1) [2] The gene according to claim 1, which encodes a polypeptide having the amino acid sequence of either of the following formulas (2) and (3). [There is a gene sequence] (2) [There is a gene sequence] (3) [3] As described in claim 1, in which a stop codon of TAA, TAG, or TGA is further added to the 3' end. genes. [4] The gene according to claim 1, which is isolated as cDNA corresponding to poly(A) RNA prepared from tissues or cells capable of producing fish growth hormone. [5] A fish growth hormone expression vector comprising the gene according to claims 1 to 4. [6] A host cell carrying the vector according to claim 4.
JP31060688A 1988-12-08 1988-12-08 Fish growth hormone gene Pending JPH02219576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31060688A JPH02219576A (en) 1988-12-08 1988-12-08 Fish growth hormone gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31060688A JPH02219576A (en) 1988-12-08 1988-12-08 Fish growth hormone gene

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62230390 Division 1987-09-14 1987-09-14

Publications (1)

Publication Number Publication Date
JPH02219576A true JPH02219576A (en) 1990-09-03

Family

ID=18007283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31060688A Pending JPH02219576A (en) 1988-12-08 1988-12-08 Fish growth hormone gene

Country Status (1)

Country Link
JP (1) JPH02219576A (en)

Similar Documents

Publication Publication Date Title
AU620673B2 (en) Somatotropin analogs
AU662302B2 (en) Purification directed cloning of peptides
KR100316347B1 (en) Recombinant microorganisms expressing a fusion protein of Escherichia coli enterotoxin II signal peptide and fusion protein of human growth hormone and a method of producing human growth hormone using the same
RU2072393C1 (en) Method for obtaining recombination polypeptide possessing growth hormone properties
JPS60115528A (en) Human interleukin-2 protein, its production and pharmacological composition containing the same
JPS5863390A (en) Development of dna array by microorganism and product
JPH0648987B2 (en) Method for producing peptide by expression of partially synthetic gene
JPH05502880A (en) Hybrid molecule with a translocation region and a cell binding region
JPS59173083A (en) Dna arrangement for producing pig growing hormone, rearranged dna molecule and production thereof
JPS62275695A (en) Production of mature type human serum albumin
JPH0797995B2 (en) Method for producing peptides
JP2970811B2 (en) Expression systems for preparing polypeptides in prokaryotic cells
CZ278883B6 (en) Process for preparing a vector for dna transfer
JP2634132B2 (en) New peptide
JPS6011557A (en) Clone sheep growth hormone gene
AU643194B2 (en) Recombinant fish hormone proteins
JPH02219576A (en) Fish growth hormone gene
EP1196607B1 (en) Chlamysin b antibacterial protein, gene encoding it and an expression system for it
JPH01165384A (en) Growth hormone of fishes and production thereof
CN111116738B (en) Recombinant protein of turbot serine protease inhibitor H1, and preparation and application thereof
JP2666069B2 (en) Recombinant avian prolactin or recombinant avian preprolactin, recombinant chicken prolactin, recombinant chicken prolactin structural gene, recombinant chicken preprolactin, recombinant chicken preprolactin structural gene, recombinant plasmid, recombinant plasmid Microorganisms containing
JP2565668B2 (en) Vector for producing peptides
CA1302321C (en) Preparation of polypeptides
JPH04305599A (en) Prolactin
JPS59130186A (en) Production of reca operator dependent polypeptid