JPH02219304A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH02219304A
JPH02219304A JP3939389A JP3939389A JPH02219304A JP H02219304 A JPH02219304 A JP H02219304A JP 3939389 A JP3939389 A JP 3939389A JP 3939389 A JP3939389 A JP 3939389A JP H02219304 A JPH02219304 A JP H02219304A
Authority
JP
Japan
Prior art keywords
film
thickness
dielectric loss
etching
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3939389A
Other languages
Japanese (ja)
Inventor
Hiroshi Tokuda
浩 徳田
Hiroyuki Tanaka
宏之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3939389A priority Critical patent/JPH02219304A/en
Publication of JPH02219304A publication Critical patent/JPH02219304A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To thin the thickness of a film, to reduce dielectric loss, and to improve efficiency by selecting the film with superior mechanical or physical characteristic as the film made of synthetic resin. CONSTITUTION:The film 4 made of synthetic resin is provided with the thickness 4-20mum, tensile elastic modulus >=200kg/mm<2>, beading elastic modulus >=300kg/mm<2> in a plane antenna, and also, it is stuck directly on a conductor foil for pattern circuit without using an adhesive. Also, a rate of change of dimension after applying an etching treatment is set less than 0.2%. And a substrate for flexible print circuit in which a metallic conductor foil represented by copper or aluminum and the film 4 are stuck with each other is generated, and the metallic conductor foil on an unrequired part is eliminated by protecting a circuit pattern part by a method such as a screen print method, etc., and applying etching. At such a case, the thickness of the film can be reduced by selecting the film with superior mechanical or physical characteristic, and also, the dielectric loss can be reduced since the substrate for circuit includes no adhesive.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、合成樹脂製フィルムと導体箔との積層体を用
いて形成されたパターン回路より構成される、高効率の
平面アンテナに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a highly efficient planar antenna composed of a patterned circuit formed using a laminate of a synthetic resin film and a conductor foil. be.

〔従来の技術〕[Conventional technology]

衛星放送、衛星通信などに使用されるマイクロ波領域の
平面アンテナとしては、微細パターンに対する加工の自
由度、軽量さならびにコストなどの観点から、最近合成
樹脂からつくられた誘電体フィルム上に、給電部や放射
部のパターン回路を形成させた形式のものが盛んに開発
されている。
Planar antennas in the microwave range used for satellite broadcasting, satellite communications, etc. have recently been designed to feed power on dielectric films made from synthetic resins, from the viewpoints of freedom of processing fine patterns, light weight, and cost. Types in which pattern circuits are formed in the part and radiation part are being actively developed.

第2図はこの種のアンテナの代表的な構成を示したもの
で、合成樹脂製フィルム(4)、(5)の一方の面にそ
れぞれ一例として示した第3図のような、給電回路パタ
ーン(1)、放射回路パターン(2)を形成し、2つの
回路パターン(1)と(2)の間に空間を保つために支
持体(6)を配置し、また、支持体(7)を介して給電
回路パターン(1)と対向する位置には、地導体(3)
が配置されている。これらの支持体(6)、(7)は、
通常回路パターンを保持する合成樹脂フィルム(4)、
(5)が空間的に平面性を維持できる最適な箇所に挿入
された絶縁物のスペーサーでもよいし、発泡シートなど
の誘電率の小さいシートでもかまわない。一般に第2回
に示す基本構造はサスペンデッド型トリプレート方式と
よばれている。
Figure 2 shows a typical configuration of this type of antenna.The feeder circuit pattern shown in Figure 3 is shown as an example on one side of each of the synthetic resin films (4) and (5). (1), a radiating circuit pattern (2) is formed, a support (6) is arranged to maintain a space between the two circuit patterns (1) and (2), and a support (7) is arranged. A ground conductor (3) is located at a position facing the power supply circuit pattern (1) through the
is located. These supports (6) and (7) are
A synthetic resin film (4) that usually holds a circuit pattern;
(5) may be an insulating spacer inserted at an optimal location where spatial flatness can be maintained, or a sheet with a low dielectric constant such as a foam sheet may be used. Generally, the basic structure shown in Part 2 is called the suspended triplate system.

このような構造の平面アンテナの効率は、主に給電部に
於ける伝送損失に大きく依存し、この線路損失が小さい
程ロスも小さくアンテナとしての効率も向上することは
周知の事実である。一方、パターン回路用に使用する導
体箔が一定であれば、給電部の線路損失は殆んどパター
ン回路を保持するフィルムに寄因する誘電損失により支
配される。
It is a well-known fact that the efficiency of a planar antenna with such a structure largely depends on the transmission loss in the feeding section, and that the smaller the line loss, the smaller the loss, and the higher the efficiency of the antenna. On the other hand, if the conductive foil used for the pattern circuit is constant, the line loss of the power feeding section is mostly dominated by the dielectric loss due to the film holding the pattern circuit.

したがってこのような基本構造をもつ平面アンテナの効
率向上には、給電部の誘電損失を極力低下させることが
必要である。第4図は従来の平面アンテナ用フレキシブ
ル印刷回路用基板の構成を示す断面図で、第5図はその
給電部の電気力線のパターンを示すが、電気力線(9)
が保持用の合成樹脂製フィルム(4)を貫く分だけフィ
ルム層の誘電損失が影響する。この影響をできるだけ小
さくするため、従来はできるだけ小さな誘電率、誘電正
接を有する合成樹脂フィルムを使用するか、できるだけ
フィルムの影響を取り除くため、可能を限りフィルムの
厚さを薄くする努力が試みられてきた。
Therefore, in order to improve the efficiency of a planar antenna having such a basic structure, it is necessary to reduce the dielectric loss of the feed section as much as possible. Fig. 4 is a sectional view showing the structure of a conventional flexible printed circuit board for a planar antenna, and Fig. 5 shows a pattern of electric lines of force in the power feeding section.
The dielectric loss of the film layer is affected by the amount that the film penetrates through the holding synthetic resin film (4). In order to minimize this effect, conventional efforts have been made to use synthetic resin films with as small a dielectric constant and dielectric loss tangent as possible, or to reduce the thickness of the film as much as possible in order to eliminate the effect of the film as much as possible. Ta.

このような観点から、これまで例えばポリエステル、ポ
リエチレン、ポリプロピレン、あるいはこれらの変性な
いし共重合体(GHz帯での誘電率約2.0、誘電損失
60ないし80X10−’)などの合成樹脂材料が候補
材料として選ばれてきた。
From this point of view, synthetic resin materials such as polyester, polyethylene, polypropylene, or modified or copolymers thereof (dielectric constant approximately 2.0 in the GHz band, dielectric loss 60 to 80 x 10-') have been considered as candidates. has been selected as a material.

しかし、これらはいずれも40ないし50μm以上の厚
さに於いては充分な腰の強さがあり、フィルムの平面性
も保たれているが、これ以下の厚さではフィルム自体も
腰がなくなるばかりか、回路パターン形成時に通常よく
用いられるエツチング処理に於いて、加工後のフィルム
の寸法変化が大きく、平面性に乏しくなるだけでなく、
この結果として得られるアンテナの周波数特性が、設計
から大きくずれることがあった。この現象はフィルムの
厚さが20ないし30μm程度となるとより顕著となる
However, at a thickness of 40 to 50 μm or more, all of these have sufficient stiffness and maintain the flatness of the film, but when the thickness is less than this, the film itself tends to lose its stiffness. Moreover, in the etching process that is commonly used when forming circuit patterns, the dimensional change of the film after processing is large and the flatness is poor.
As a result, the frequency characteristics of the antenna may deviate significantly from the design. This phenomenon becomes more noticeable when the thickness of the film is about 20 to 30 μm.

このような事情により、従来フィルムの厚さについては
現実的にはせいぜい40μmまでの薄さが限界であり、
上述の合成樹脂フィルムを用いると、線路の誘電体損は
1.0 dB/ m程度と大きく、アンテナの効率の向
上には限界があった。一般ニフィルムの厚さが薄くなる
と、それにともない線路の誘電体損も減少することから
、機械的強度を低下させることなくフィルムの厚さを2
0μm以下にした平面アンテナ用のフレキシブル印刷回
路用基板が望まれていた。
Due to these circumstances, the practical limit for the thickness of conventional films is 40 μm at most.
When the above-mentioned synthetic resin film is used, the dielectric loss of the line is as large as about 1.0 dB/m, and there is a limit to the improvement of antenna efficiency. In general, as the thickness of the film becomes thinner, the dielectric loss of the line also decreases, so the thickness of the film can be reduced to 2 without reducing the mechanical strength.
A flexible printed circuit board for a planar antenna with a thickness of 0 μm or less has been desired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、従来のサスペンプント型トリプレート方式平
面アンテナのかかる状況に鑑みて、種々検討を重ねた結
果発明されたものであり、その目的とするところは、従
来もっばら誘電特性の観点からフィルム素材を選択して
いたのに対し、むしろ機械的強度や寸法安定性の観点か
ら選択されたフィルムを使用することにより、効率のよ
い平面アンテナを実現するにある。
The present invention was invented as a result of various studies in view of the situation of conventional suspended triplate planar antennas. In contrast to the conventional method of selecting materials, the goal is to create an efficient planar antenna by using films selected from the viewpoint of mechanical strength and dimensional stability.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、合成樹脂製フィルムに貼合せられた
導体箔をエツチング処理して形成された、放射部および
給電部のパターン回路より基本的に構成される平面アン
テナにおいて、少なくとも給電部に相当するパターン回
路を保持する前記フィルムは、厚さが4〜20μm、引
張弾性率200kg/mm2以上、曲げ弾性率300 
kg / mm 2以上で、かつ接着剤を使用すること
なく直接パターン回路用導体箔に貼合せられており、エ
ツチング処理後の寸法変化率が0.2%以下であること
を特徴とする平面アンテナである。
In other words, the present invention provides a planar antenna basically consisting of a pattern circuit of a radiating part and a feeding part, which is formed by etching a conductive foil laminated to a synthetic resin film, which corresponds to at least the feeding part. The film holding the pattern circuit has a thickness of 4 to 20 μm, a tensile modulus of 200 kg/mm or more, and a flexural modulus of 300.
kg/mm 2 or more, is bonded directly to a patterned circuit conductor foil without using an adhesive, and has a dimensional change rate of 0.2% or less after etching treatment. It is.

本発明は線路損失のうち誘電損の低下をはかることを目
的とし、主に機械的、物理的性質の観点からフィルムと
しての合成樹脂材料を選択することによって、従来使用
されていたフィルムに比較して、大幅な誘電体損の低下
が実現できるとの知見に基づいてなされたものである。
The purpose of the present invention is to reduce dielectric loss among line losses, and by selecting a synthetic resin material for the film mainly from the viewpoint of mechanical and physical properties, compared to conventionally used films. This was done based on the knowledge that a significant reduction in dielectric loss could be achieved.

本発明に於いて用いられるフィルムは、低誘電率、低誘
電損失の材料であることにこしたことはないが、従来候
補とされていた特性の範囲にとられれる必要はなく、G
Hz帯に於いて誘電率は4以下、誘電正接は50ないし
200X 10−’の範囲であれば充分であって、むし
ろ本発明に於いては、薄くしてもなおフィルム自体の変
形やたるみがなく、この上に形成される回路パターンを
平面性よく保持できるだけの充分な腰の強さを有してい
ることが要件である。この要求を満足するため、フィル
ムの弾性率は200kg/mm”以上、曲げ弾性率は3
00kg/mm2以上である合成樹脂素材であることが
必要である。弾性率や曲げ弾性率がこの値以下であると
、40μm以下の厚さにした時にフィルム自体の剛性が
顕著に乏しくなることにより、給電回路パターンと地導
体ないし放射回路パターンとの空間的な平行度が低下す
るだけでなく、パターンを形成するための加工や組立て
の際の作業性が著しく低下するので好ましくない。
Although it is true that the film used in the present invention is a material with a low dielectric constant and low dielectric loss, it is not necessary to have properties within the range of conventional candidates, and G
In the Hz band, it is sufficient that the dielectric constant is 4 or less and the dielectric loss tangent is in the range of 50 to 200 x 10-'.In fact, in the present invention, even if the film is made thin, the film itself does not deform or sag. It is necessary to have sufficient stiffness to hold the circuit pattern formed thereon with good flatness. In order to meet this requirement, the film has an elastic modulus of 200 kg/mm or more and a flexural modulus of 3.
It is necessary that the synthetic resin material has a weight of 00 kg/mm2 or more. If the elastic modulus or flexural modulus is less than this value, the rigidity of the film itself will be significantly reduced when the thickness is 40 μm or less, resulting in spatial parallelism between the power supply circuit pattern and the ground conductor or radiation circuit pattern. This is not preferable because it not only lowers the accuracy but also significantly lowers the workability during processing and assembly for pattern formation.

また、誘電体損はフィルムの厚さにほぼ比例して小さく
なるため、本発明に於いてもフィルムの厚さは薄い程好
ましく、20μm以下であることがより望ましい。しか
し、あまり薄くなるとフィルムの作成が困難となり、ま
た十分な機械的強度が確保できなくなるため、4〜7μ
mが下限となる。従来用いられてきたフィルムでは、現
実的な厚さがせいぜい40μm程度であり、このときの
誘電体損はたかだか1.0dB/m程度であったのに対
し、フィルム厚さが20μm以下としたときの本発明の
アンテナの給電部の誘電体損は0.2ないし0.4dB
/mと従来のものに比較して大幅な改善をはかることが
可能となる。
Further, since the dielectric loss decreases almost in proportion to the thickness of the film, the thinner the film is in the present invention, the more preferable it is, and the more preferably 20 μm or less. However, if the film becomes too thin, it will be difficult to make the film and it will not be possible to ensure sufficient mechanical strength.
m is the lower limit. The realistic thickness of conventionally used films was about 40 μm at most, and the dielectric loss was about 1.0 dB/m at most, but when the film thickness was 20 μm or less, The dielectric loss of the feeding part of the antenna of the present invention is 0.2 to 0.4 dB.
/m, which makes it possible to achieve a significant improvement compared to the conventional one.

第2図に示すような基本構造の平面アンテナを構成する
回路パターン付フィルムは、通常まず銅や、アルミニウ
ムに代表される金属導体箔とフィルムをはり合わせたフ
レキシブル印刷回路用基板を作成し、ついでスクリーン
印刷法ないし写真感光法などの手法で回路パターンとな
る部分を保護したうえで、塩化第二鉄水溶液、リン酸水
溶液などでエンチングすることにより不必要な部分の金
属導体箔を除去し、所望のパターンを得るのであるが、
本発明に於けるフィルムはエツチング処理後の寸法変化
率が極めて小さいことが肝要であり、寸法変化率がこの
値より大きいと、特にフィルムを40μm以下、さらに
は2olIm以下にした時のエツチング後の変形が無視
できなくなり、平面性や周波数特性あるいは作業性に乏
しくなり好ましくない。
The circuit patterned film that makes up the planar antenna with the basic structure shown in Figure 2 is usually produced by first creating a flexible printed circuit board by gluing the film to metal conductor foil, typically copper or aluminum. After protecting the portion that will become the circuit pattern using methods such as screen printing or photosensitization, unnecessary portions of the metal conductor foil are removed by etching with a ferric chloride aqueous solution, phosphoric acid aqueous solution, etc., and the desired pattern is formed. We get a pattern of
It is important that the film used in the present invention has an extremely small dimensional change rate after etching. The deformation cannot be ignored, resulting in poor flatness, frequency characteristics, and workability, which is undesirable.

また、本発明において使用するフレキシブル印刷回路用
基板は、第1図に示したように、第4図に示した従来の
基板に比較して接着剤(8)の層を含まない分だけ、誘
電体損を小さくすることが出来る。本発明に於けるフレ
キシブル印刷回路用基板の合成樹脂材料が具備すべき要
件は以上のとおりであり、例えばアミック酸を経由した
線状ポリイミド樹脂などは好適な材料として挙げること
ができる。
Furthermore, as shown in FIG. 1, the flexible printed circuit board used in the present invention has a dielectric layer that does not include the adhesive (8) layer, compared to the conventional board shown in FIG. Body damage can be reduced. The requirements that the synthetic resin material of the flexible printed circuit board according to the present invention should meet are as described above, and for example, linear polyimide resin via amic acid can be cited as a suitable material.

なお、本発明に於いても、回路パターンの形成に使用す
る金属導体箔は、フィルムにかかる荷重の負担をできる
だけ避けるため、金属導体箔上への合成樹脂の貼合せ、
塗布、巻取りなどの工程に於ける作業性に支障をきたさ
ない範囲で、できるだけ薄いものを選択した方が望まし
いのはいうまでもない。
In addition, in the present invention, the metal conductor foil used for forming the circuit pattern is made by laminating a synthetic resin onto the metal conductor foil, in order to avoid the burden of load on the film as much as possible.
It goes without saying that it is desirable to select a material that is as thin as possible without interfering with workability in processes such as coating and winding.

以下に、本発明を実施例をもとに具体的に説明する。The present invention will be specifically explained below based on examples.

(実施例1) 精製した無水バラフェニレンジアミン59.4g(アミ
ン成分の55%モル)を、固形分割合が15重量%にな
るように無水N−メチル−2−ピロリドン90重量%と
トルエン10重量%ノ混合溶液で溶解し、ついで精製し
た無水3.3’、4゜少量ずつ添加した後、20°Cで
5時間反応した。
(Example 1) 59.4 g of purified anhydrous bulk phenylenediamine (55% mole of amine component) was mixed with 90% by weight of anhydrous N-methyl-2-pyrrolidone and 10% by weight of toluene so that the solid content was 15% by weight. % mixed solution, then purified anhydrous 3.3', 4° was added little by little, and reacted at 20°C for 5 hours.

さらに精製した無水44′−ジアミノフェニルエーテル
90.0g (アミン成分の45モル%)、精製した無
水ピロメリット酸二無水物96.1g (酸成分の45
モル%)をこの順に撹拌添加した後、20゛Cで5時間
反応させた。
Furthermore, 90.0 g of purified anhydrous 44'-diaminophenyl ether (45 mol% of the amine component) and 96.1 g of purified pyromellitic anhydride dianhydride (45 mol% of the acid component)
% by mole) were added in this order with stirring, and the mixture was reacted at 20°C for 5 hours.

このポリアミック酸溶液を、18μm厚さの銅箔上に固
形分の厚さ20μmになるように流延塗布し、100°
Cから350°Cまで2時間かけて昇温、加熱した。
This polyamic acid solution was cast onto a copper foil with a thickness of 18 μm so that the solid content was 20 μm thick.
The temperature was raised from 350°C to 350°C over 2 hours.

このようにして得られたフレキシブル印刷回路用基板を
、40°Cの塩化第二鉄水溶液でエツチングし、銅箔を
除去した後のフィルムの寸法変化率は0.18%であっ
た。また、フィルムだけの引張弾性率は300kg/m
m” 、曲げ弾性率は400kg / m+n ”で、
12GHzに於ける誘電率は4.0、誘電正接は170
X 10−’であった。
The thus obtained flexible printed circuit board was etched with an aqueous ferric chloride solution at 40° C., and the dimensional change rate of the film after removing the copper foil was 0.18%. In addition, the tensile modulus of the film alone is 300 kg/m
m", the bending modulus is 400 kg/m+n",
The dielectric constant at 12GHz is 4.0, and the dielectric loss tangent is 170.
It was X 10-'.

一方、このフレキシブル印刷回路用基板をパターン化し
、幅5mmで10mm間隔に並べられたプラスチック製
支持台の上に置いたところ、フレキシブル印刷回路は平
面性を失うことなく保持することができた。
On the other hand, when this flexible printed circuit board was patterned and placed on a plastic support stand with a width of 5 mm and arranged at 10 mm intervals, the flexible printed circuit could be held without losing its flatness.

さらにこのフレキシブル印刷回路用基板を用いて、幅1
.5 mmの直線状線路をエツチングで形成し、銅箔−
厚さ2陶の発泡ポリエチレンシート−フレキシブル印刷
回路−厚さ2+++n+の発泡ポリエチレンシート−銅
箔をこの順に積層し、サスペンデッド型トリプレート方
式、特性インピーダンス100Ωでの線路の誘電体損を
測定したところ、その値は0.46dB/mであった。
Furthermore, using this flexible printed circuit board, a width of 1
.. A 5 mm straight line was formed by etching, and a copper foil
A foamed polyethylene sheet of 2mm thickness - a flexible printed circuit - a foamed polyethylene sheet of 2+++n+ thickness - copper foil were laminated in this order, and the dielectric loss of the line was measured using a suspended triplate system with a characteristic impedance of 100Ω. Its value was 0.46 dB/m.

次いで、本実施例のフレキシブル印刷用基板を用いてそ
れぞれ放射用フレキシブル印刷回路、給電用フレキシブ
ル印刷回路をエツチングにより作製し、接地用導体板の
上に、それぞれ2mmずつの間隔をおいてこの順に積層
保持した。このようにして得られた平面アンテナの開口
効率は61%であった。
Next, a flexible printed circuit for radiation and a flexible printed circuit for power feeding were fabricated by etching using the flexible printed circuit board of this example, and laminated in this order on the grounding conductor plate with an interval of 2 mm between each. held. The aperture efficiency of the planar antenna thus obtained was 61%.

(実施例2) 実施例1と同じ方法で、フィルムの厚さが8μmのフレ
キシブル印刷回路用基板を得た。これをエツチングした
後のフィルムの寸法変化率は0.2%であり、フィルム
だけの引張弾性率350kg/mm2、曲げ弾性率は4
00kg / mm2であった。また、エツチングでパ
ターン化したフレキシブル印刷回路を、実施例1のプラ
スチック製支持台の上にのせても平面性は殆んど失うこ
となく保持できた。
(Example 2) A flexible printed circuit board having a film thickness of 8 μm was obtained in the same manner as in Example 1. After etching, the dimensional change rate of the film was 0.2%, the tensile modulus of the film alone was 350 kg/mm2, and the bending modulus was 4.
00kg/mm2. Moreover, even when the flexible printed circuit patterned by etching was placed on the plastic support base of Example 1, the flatness could be maintained without almost losing its flatness.

フィルムの誘電率、誘電損失はそれぞれ4.0.170
X 10−’と実施例1とかわりなかった。また、実施
例1と同じ方法で測定した線路の誘電体損は0.30d
B/mであり、アンテナ開口効率は63%であった。
The dielectric constant and dielectric loss of the film are 4.0.170 respectively.
There was no difference between X 10-' and Example 1. In addition, the dielectric loss of the line measured using the same method as in Example 1 was 0.30d.
B/m, and the antenna aperture efficiency was 63%.

(実施例3) 精製した無水の4,4′−ジアミノフェニルエーテルと
、精製した無水のピロメリット酸二無水物を、その割合
が1:0.975モルになるように混合し、20°Cで
5時間撹拌しながら反応させた。
(Example 3) Purified anhydrous 4,4'-diaminophenyl ether and purified anhydrous pyromellitic dianhydride were mixed at a ratio of 1:0.975 mol, and heated at 20°C. The mixture was reacted with stirring for 5 hours.

このポリアミック酸溶液を用いて、実施例1と全く同じ
方法にてフレキシブル印刷回路用基板を得た。これをエ
ツチングした後のフィルムの寸法変化率は0.17%で
あり、フィルムの引張弾性率は320kg / mm2
、曲げ弾性率は420kg / mm”であった。また
、エツチングでパターン化したフレキシブル印刷回路を
実施例1のプラスチック製支持台の上にのせても、平面
性を失うことなく保持できた。
Using this polyamic acid solution, a flexible printed circuit board was obtained in exactly the same manner as in Example 1. After etching, the dimensional change rate of the film was 0.17%, and the tensile modulus of the film was 320 kg/mm2.
The flexural modulus was 420 kg/mm''.Furthermore, even when the flexible printed circuit patterned by etching was placed on the plastic support base of Example 1, it could be held without losing its flatness.

フィルムの誘電率は3.8、誘電正接は200×10−
4であった。また、実施例1と同じ方法で測定した線路
の誘電体損は0.556B/mであり、アンテナとして
の開口効率は60%であった。
The dielectric constant of the film is 3.8, and the dielectric loss tangent is 200 x 10-
It was 4. Further, the dielectric loss of the line measured by the same method as in Example 1 was 0.556 B/m, and the aperture efficiency as an antenna was 60%.

(比較例1) 実施例1と同様にして、フィルム厚が30μmのフレキ
シブル印刷回路用基板を得た。これをエツチング処理し
た後のフィルムの寸法変化率は0.16%であり、フィ
ルムだけの引張弾性率は300kg/mm2、曲げ弾性
率は400kg / mm2であった。
(Comparative Example 1) In the same manner as in Example 1, a flexible printed circuit board having a film thickness of 30 μm was obtained. The dimensional change rate of the film after etching was 0.16%, the tensile modulus of the film alone was 300 kg/mm2, and the bending modulus was 400 kg/mm2.

また、エツチングでパターン化したフレキシブル印刷回
路を、実施例1の支持台の上にのせても全く平面性を失
うことなく保持でき腰も強かった。
Further, even when the flexible printed circuit patterned by etching was placed on the support base of Example 1, it could be held without losing its flatness at all and was strong.

一方、フィルムの誘電率は3.5、誘電正接は180X
 10−4と実施例1および2と同等な値を得たが、線
路の誘電体損は0.75dB/mと大きく、アンテナの
開口効率も55%と小さかった。
On the other hand, the dielectric constant of the film is 3.5, and the dielectric loss tangent is 180X.
Although values equivalent to 10-4 and Examples 1 and 2 were obtained, the dielectric loss of the line was large at 0.75 dB/m, and the aperture efficiency of the antenna was also small at 55%.

(比較例2) 引張弾性率350kg / mm” 、曲げ弾性率40
0kg/mm”の厚さ20μmのポリエチレンテレフタ
レートのフィルム上に、ボリヱステルウレタン含有のエ
チレングリコールテレフタレートヘースのポリエステル
系接着剤を厚さ3μmで塗布し、銅箔を貼合せた。この
フレキシブル印刷回路用基板をエツチングしたところ、
フィルムの寸法変化率は1.0%となり、外観上も顕著
にしわが生じ、腰が弱かった。また、エツチングでパタ
ーン化したフレキシブル印刷回路を実施例1と同じ台の
上にのせても、枠の間でフィルムがたるみを生じて平面
的な形状を保持できず、アンテナ用のフレキシブル印刷
回路用基板として全く適さなかった。
(Comparative Example 2) Tensile modulus: 350 kg/mm", bending modulus: 40
A polyester adhesive containing polyester urethane and ethylene glycol terephthalate base was applied to a thickness of 3 μm on a 20 μm thick polyethylene terephthalate film of 0 kg/mm”, and a copper foil was attached.This flexible printing After etching the circuit board,
The dimensional change rate of the film was 1.0%, the appearance was noticeably wrinkled, and the film was weak. Furthermore, even if a flexible printed circuit patterned by etching was placed on the same stand as in Example 1, the film would sag between the frames and could not maintain its planar shape. It was completely unsuitable as a substrate.

(比較例3) 比較例2と同し方法で、厚さが40μmのポリエチレン
テレフタレートのシートを用いてフレキシブル印刷回路
用基板を得た。これをエンチングした後のフィルムの寸
法変化率は0.4%であり、外観上少ししわが生じた。
(Comparative Example 3) A flexible printed circuit board was obtained in the same manner as in Comparative Example 2 using a polyethylene terephthalate sheet having a thickness of 40 μm. The dimensional change rate of the film after etching was 0.4%, and there were some wrinkles in appearance.

エツチングでパターン化したフレキシブル印刷回路を実
施例1の台の上にのせたところ、一応手面性を維持して
形状が保持された。しかし、フィルムの誘電率は3゜0
、誘電正接は50X10−’と比較的小さかったが、実
施例1と同し方法で測定した線路の誘電体損は1.1d
B/mと大きく開口効率も53%と小さかつた。
When the flexible printed circuit patterned by etching was placed on the stand of Example 1, it maintained its shape and retained its handleability. However, the dielectric constant of the film is 3°0
, the dielectric loss tangent was relatively small at 50 x 10-', but the dielectric loss of the line measured using the same method as in Example 1 was 1.1 d.
B/m was large, and the aperture efficiency was small at 53%.

(発明の効果) このように本発明によれば、機械的ないし物理的特性に
すぐれたフィルムを選択することによりフィルムの厚さ
を極めて薄くすることができ、従来のものに比較して電
気特性そのものは限ずしも優れているとはいえないフィ
ルムでも誘電体損が小さく、効率の大きな平面アンテナ
を実現することが可能である。
(Effects of the Invention) According to the present invention, the thickness of the film can be made extremely thin by selecting a film with excellent mechanical or physical properties, and the electrical properties can be reduced compared to conventional ones. Even if the film itself is not necessarily superior, it is possible to realize a planar antenna with low dielectric loss and high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の平面アンテナ用のフレキシブル印刷回
路用基板の断面図、第2図は平面アンテナの代表的な構
成を示した図、第3図は平面アンテナ用のフレキシブル
印刷回路のパターンの一例を示した図で、(a)は放射
回路パターン、(blは給電回路パターンである。 第4図は従来の平面アンテナ用のフレキシブル印刷回路
用基板の断面図で、第5図は従来の平面アンテナ用のフ
レキシブル印刷回路用基板のうち、給電部に於ける電気
力線の分布をあられす図である。
Fig. 1 is a sectional view of a flexible printed circuit board for a planar antenna according to the present invention, Fig. 2 is a diagram showing a typical configuration of a planar antenna, and Fig. 3 is a diagram of a pattern of a flexible printed circuit for a planar antenna. In the figure showing an example, (a) is a radiation circuit pattern, (bl is a feeding circuit pattern). Fig. 4 is a cross-sectional view of a flexible printed circuit board for a conventional planar antenna, and Fig. 5 is a sectional view of a conventional flexible printed circuit board. FIG. 3 is a diagram showing the distribution of electric lines of force in a power feeding section of a flexible printed circuit board for a planar antenna.

Claims (1)

【特許請求の範囲】[Claims] (1)合成樹脂製フィルムに貼合せられた導体箔をエッ
チング処理して形成された、放射部および給電部のパタ
ーン回路より基本的に構成される平面アンテナにおいて
、少なくとも給電部に相当するパターン回路を保持する
前記フィルムは、厚さが4〜20μm、引張弾性率20
0kg/mm^2以上、曲げ弾性率300kg/mm^
2以上で、かつ接着剤を使用することなく直接パターン
回路用導体箔に貼合せられており、エッチング処理後の
寸法変化率が0.2%以下であることを特徴とする平面
アンテナ。
(1) In a planar antenna that basically consists of a pattern circuit of a radiation part and a power feeding part, which is formed by etching a conductive foil laminated to a synthetic resin film, the pattern circuit corresponds to at least the power feeding part. The film has a thickness of 4 to 20 μm and a tensile modulus of 20
0kg/mm^2 or more, bending elastic modulus 300kg/mm^
2 or more, the antenna is bonded directly to a conductor foil for a patterned circuit without using an adhesive, and has a dimensional change rate of 0.2% or less after etching treatment.
JP3939389A 1989-02-21 1989-02-21 Plane antenna Pending JPH02219304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3939389A JPH02219304A (en) 1989-02-21 1989-02-21 Plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3939389A JPH02219304A (en) 1989-02-21 1989-02-21 Plane antenna

Publications (1)

Publication Number Publication Date
JPH02219304A true JPH02219304A (en) 1990-08-31

Family

ID=12551755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3939389A Pending JPH02219304A (en) 1989-02-21 1989-02-21 Plane antenna

Country Status (1)

Country Link
JP (1) JPH02219304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154307A (en) * 1990-10-18 1992-05-27 Yagi Antenna Co Ltd Plane antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154307A (en) * 1990-10-18 1992-05-27 Yagi Antenna Co Ltd Plane antenna

Similar Documents

Publication Publication Date Title
US6281842B1 (en) Conductive circuit device and method
EP0335337A2 (en) Flexible base materials for printed circuits
JPH01103006A (en) Plane antenna
JPH0983104A (en) Circuit board with built-in coil
US6203918B1 (en) Laminate for HDD suspension and its manufacture
JPH1075053A (en) Method for manufacturing flexible metal foil laminated board
JPH02219304A (en) Plane antenna
US20020080072A1 (en) Flat antenna apparatus
JPH0888448A (en) Flexible printed circuit board
CN108539392A (en) antenna and preparation method thereof
JPH02226802A (en) Plane antenna
JPH0858020A (en) Flexible copper clad laminated film and production thereof
CN110783685B (en) Millimeter wave antenna and millimeter wave antenna process design
JPH02250404A (en) Plane antenna
US20100149050A1 (en) Antenna Device and a Portable Radio Communication Device Comprising Such An Antenna Device
JPH07126585A (en) Cover lay film
CN211702533U (en) Rigid-flexible circuit board
JP6748338B1 (en) Flat antenna board
JPH0638563B2 (en) Planar antenna
KR102068725B1 (en) Replacement tape antenna for fpcb antenna with adjustable dielectric constant
JPH1075088A (en) Manufacture of electromagnetic interference suppression sheet
WO2021131149A1 (en) Rfid tag roll
KR20180010520A (en) Flexible Flat Cable for shielding of electromagnetic wave
JPS6346804A (en) Manufacture of planar antenna
US20210233876A1 (en) Module and electronic apparatus