JPH02218766A - Powder coating composition and coated article using same - Google Patents

Powder coating composition and coated article using same

Info

Publication number
JPH02218766A
JPH02218766A JP3829789A JP3829789A JPH02218766A JP H02218766 A JPH02218766 A JP H02218766A JP 3829789 A JP3829789 A JP 3829789A JP 3829789 A JP3829789 A JP 3829789A JP H02218766 A JPH02218766 A JP H02218766A
Authority
JP
Japan
Prior art keywords
resin
powder coating
acid
polyester resin
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3829789A
Other languages
Japanese (ja)
Inventor
Masaaki Kamimura
上村 正明
Takashi Orito
隆 折戸
Teiitsu Takagi
高木 偵聿
Shinji Sugiura
杉浦 新治
Nobuyuki Nakamura
信之 中村
Teruchika Wataori
綿織 輝親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kansai Paint Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kansai Paint Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3829789A priority Critical patent/JPH02218766A/en
Publication of JPH02218766A publication Critical patent/JPH02218766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide the title composition capable of efficiently coating in a single operation, free from lifting of the coating film therefrom, excellent in the performance of said coating film, for application to microwave oven parts, etc., comprising a polyester resin and a crosslinking agent consisting of blocked polyisocyanate and polyepoxy compound. CONSTITUTION:The objective composition excellent in heat resistance, economy and low environmental pollution, comprising (A) a polyester resin solid at room temperature 30-250 in hydroxyl value and 10-100 in acid value, from a polycarboxylic acid and 5-60 pts.wt., based on 100 pts.wt. of said resin, of a polyhydric alcohol (e.g. trishydroxyethyl isocyanurate) and/or oxyacid. (B) a crosslinking agent consisting of a blocked polyisocyanate solid at room temperature and polyepoxy compound (e.g. triglycidyl isocyanurate and/or alicyclic polyepoxy compound), and, if needed, (C) polysiloxane fine powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塗面外観(平滑性)、塗膜物性が良好で、且つ
特に耐熱性に優れた粉体塗料組成物およびそれを塗装し
た塗装物品に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides powder coating compositions that have good painted surface appearance (smoothness) and physical properties of the coated film, and particularly excellent heat resistance, and coatings made from the powder coating compositions. Regarding goods.

(従来の技術) マグネット用被覆電線、レンジ部品、その他耐熱性の要
求される素材に対して、従来ポリエステル樹脂、イミド
変性樹脂、イミド樹脂、イミドアミド樹脂等を主体樹脂
とする溶剤希釈型塗料が用いられている。
(Conventional technology) Conventionally, solvent-diluted paints based on polyester resin, imide-modified resin, imide resin, imide amide resin, etc. have been used for coated wires for magnets, microwave parts, and other materials that require heat resistance. It is being

しかしながら、これらは、いずれもクレゾール、N−メ
チルピロリドン、ジメチルホルムアマイド等の特殊な溶
剤、しかも公害性や毒性を持っている溶剤を使用する必
要がある。これらは、最近の無公害化、省資源、省エネ
ルギー化の動向に反するものである。且つ、これらの技
術では、期するところの仕上がり性、塗膜性能を得るた
めには、溶剤及び縮合生成物によるワキを避けるため、
数μ〜10μ程度の薄膜塗装・焼付けを繰り返さなくて
はならず、塗装コストがかさんでいた。
However, all of these methods require the use of special solvents such as cresol, N-methylpyrrolidone, and dimethylformamide, which are also polluting and toxic. These are contrary to recent trends toward pollution-free, resource-saving, and energy-saving. In addition, with these techniques, in order to obtain the desired finish and coating performance, it is necessary to avoid scratches caused by solvents and condensation products.
Painting and baking a thin film of several microns to 10 microns had to be repeated, increasing the coating cost.

これら、従来技術では、社会性、生産コストの点からも
不具合が多かった。
These conventional techniques have many problems from the viewpoint of social performance and production costs.

最近になり、これらの不具合点を改良するために、エポ
キシ樹脂による粉体塗装も提唱されている(開示例;米
国特許第1509379号)が、耐熱性の点から未だ十
分な性能は得られていない。
Recently, powder coating using epoxy resin has been proposed in order to improve these problems (disclosed example: US Pat. No. 1,509,379), but sufficient performance has not yet been achieved in terms of heat resistance. do not have.

また、従来技術による高耐熱性溶剤型塗料から溶剤を取
り除いて粉体塗料にする試み等も行われているが、従来
の樹脂系では、ワキが少なく、且つ平滑な塗膜は得られ
ていない。
In addition, attempts have been made to remove the solvent from conventional highly heat-resistant solvent-based paints and create powder paints, but with conventional resin-based paints, it has not been possible to obtain smooth coatings with fewer wrinkles. .

(発明が解決しようとする問題点) 本発明は、下記の問題点を解決せんとするものである。(Problem to be solved by the invention) The present invention aims to solve the following problems.

■ 従来の溶剤型塗料の溶剤による、公害性、毒性、反
省資源性の解消。
■ Eliminate the pollution, toxicity, and resource-related issues caused by the solvents in conventional solvent-based paints.

■ 一般ポリエステル樹脂系粉体塗料で使われている、
高酸価型ポリエステル樹゛脂とトリグリシジルイソシア
ヌレートとの組合せによる塗料の耐熱性の低さの解消。
■ Used in general polyester resin powder coatings,
Eliminating the low heat resistance of paints by combining high acid value polyester resin and triglycidyl isocyanurate.

■ 一般ポリエステル樹脂系粉体塗料で使われている、
ヒドロキシル型ポリエステル樹脂とメラミン、あるいは
ブロックポリイソシアネートとの組合せによる塗料、あ
るいは、スズ、チタン触媒とポリエステル樹脂との組合
せによる股上ツマー縮合系塗料等の焼付は時に発生する
縮合生成物による塗膜のワキの解消。
■ Used in general polyester resin powder coatings,
Baking of paints made from a combination of hydroxyl type polyester resin and melamine or block polyisocyanate, or condensation paints made from a combination of tin or titanium catalyst and polyester resin, can sometimes cause the paint film to smudge due to the condensation products that occur. Elimination of.

■ 樹脂自体の耐熱性が優れているといわれているイミ
ド変性ポリエステル樹脂、イミド樹脂、イミドアミド樹
脂等を利用した粉体塗料の溶融流動性不足による、塗膜
平滑性、塗膜性能の悪さの解消。
■ Eliminate poor coating film smoothness and coating performance due to lack of melt fluidity of powder coatings using imide-modified polyester resins, imide resins, imidoamide resins, etc., which are said to have excellent heat resistance of the resins themselves. .

これら■〜■の従来技術では、経済性、低公害性を備え
た耐熱性、仕上がり性及び塗膜性能の優れた塗装系は得
られなかった。
With these conventional techniques (1) to (2), it has not been possible to obtain a coating system that is economical, low-pollution, and has excellent heat resistance, finish quality, and coating performance.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決した耐熱性、電気絶縁
性、膜強度、塗膜外観に優れた粉体塗料を開発する為に
、鋭意研究した結果、塗膜の耐熱性を上げる為には、主
体樹脂自体の耐熱性を高くするよう考慮すると同時に、
塗料の架橋反応性を十分高めることが非常に重要である
こと、また良好な塗膜外観、塗膜強度、耐熱性を得るた
めには、ある制限された硬化剤の組合せの選択と制限さ
れた硬化剤量が重要であることを突き止めた。即ち、あ
る制限された水酸基量とカルボキシル基量を共に有する
ポリエステル樹脂にブロックポリイソシアネートとポリ
エポキシ化合物を併用して架橋剤とする組合せにより、
問題解決の手段を見いだし、本発明を完成するに至った
(Means for Solving the Problems) The present inventors have conducted extensive research in order to develop a powder coating that solves the above problems and has excellent heat resistance, electrical insulation, film strength, and film appearance. As a result, in order to increase the heat resistance of the coating film, it is necessary to consider increasing the heat resistance of the main resin itself, and at the same time,
It is very important to sufficiently increase the crosslinking reactivity of the paint, and in order to obtain good paint film appearance, film strength, and heat resistance, it is necessary to select a certain limited combination of curing agents and to It was determined that the amount of curing agent is important. That is, by combining a polyester resin having a certain limited amount of hydroxyl groups and a limited amount of carboxyl groups with a block polyisocyanate and a polyepoxy compound as a crosslinking agent,
We found a means to solve the problem and completed the present invention.

すなわち、本発明によれば、ポリカルボン酸、多価アル
コール、好ましくはトリスヒドロキシエチルイソシアヌ
レート、および必要によりそれらの一部に代えて用いら
れるオキシ酸より得られ、樹脂の水酸基価が30〜25
0であって酸価が10〜100である、室温で固体のポ
リエステル樹脂(A)と、室温で固体のブロックポリイ
ソシアネートおよびポリエポキシ化合゛物、好ましくは
トリグリシジルイソシアヌレートおよび/または脂環族
ポリエポキシ化合物よりなる架橋剤(B)とよりなり、
好ましくはさらにポリシロキサン微粉末を配合してなる
ことを特徴とする粉体塗料組成物ならびに該粉体塗料組
成物を塗装した塗装物品が提供される。本発明における
ポリエステル樹脂は一定量の水酸基とカルボキシル基と
を共に有していることが必要であるが、かかるポリエス
テル樹脂の原料としては、ジカルボン酸、ジオール、お
よび3価以上のポリカルボン酸、ポリオール、必要とあ
ればオキシ酸が用いられる。
That is, according to the present invention, the resin is obtained from a polycarboxylic acid, a polyhydric alcohol, preferably trishydroxyethyl isocyanurate, and an oxyacid used in place of a part thereof if necessary, and the hydroxyl value of the resin is 30 to 25.
0 and an acid value of 10 to 100, a polyester resin (A) that is solid at room temperature, and a block polyisocyanate and a polyepoxy compound that are solid at room temperature, preferably triglycidyl isocyanurate and/or alicyclic compound. It consists of a crosslinking agent (B) made of a polyepoxy compound,
A powder coating composition characterized in that it preferably further contains a fine polysiloxane powder, and a coated article coated with the powder coating composition are provided. The polyester resin in the present invention needs to have both a certain amount of hydroxyl groups and carboxyl groups, and raw materials for the polyester resin include dicarboxylic acids, diols, trivalent or higher polycarboxylic acids, and polyols. , an oxyacid is used if necessary.

これらの原料のうち、ジカルボン酸とは、ジカルボン酸
、その無水物、エステル化物を含むものであり、例えば
、テレフタル酸、イソフタル酸、フタル酸、ナフタレン
ジカルボン酸等の芳香族ジカルボン酸及びその無水物、
1,4−シクロヘキサンジカルボン酸、ヘキサヒドロフ
タル酸、テトラヒドロフタル酸等め脂環族ジカルボン酸
及びその無水物、アジピン酸、セバシン酸、ドデカンニ
酸、コハク酸、マレイン酸等の脂肪族ジカルボン酸及び
その無水物、これらジカルボン酸のメチルエステル、エ
チルエステル等のごとき低級アルキルエステルを挙げる
ことが出来る。
Among these raw materials, dicarboxylic acids include dicarboxylic acids, their anhydrides, and esterified products, such as aromatic dicarboxylic acids and their anhydrides such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid. ,
Alicyclic dicarboxylic acids and their anhydrides such as 1,4-cyclohexanedicarboxylic acid, hexahydrophthalic acid, and tetrahydrophthalic acid; aliphatic dicarboxylic acids and their anhydrides such as adipic acid, sebacic acid, dodecanoic acid, succinic acid, and maleic acid; Examples include anhydrides, and lower alkyl esters such as methyl esters and ethyl esters of these dicarboxylic acids.

また、ジオールとしては、エチレングリコール、L2−
プロパンジオール、1.3−プロパンジオール、1.4
−ブタンジオール、1.5−ベンタンジオール、1.6
−ヘキサンジオール、ジエチレングリコール、トリエチ
レングリコール、テトラエチレングリコール、ジプロピ
レングリコール、ネオペンチルグリコール、ヒドロキシ
ピバリン酸−ネオベンチルグリコールエステル、1.4
−シクロヘキサンジメタツール、トリシクロデカンジメ
タツール、ビスフェノールA、水添ビスフェノールA等
を挙げることが出来る。
In addition, as the diol, ethylene glycol, L2-
Propanediol, 1.3-propanediol, 1.4
-butanediol, 1.5-bentanediol, 1.6
-Hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, neopentyl glycol, hydroxypivalic acid - neobentyl glycol ester, 1.4
-Cyclohexane dimetatool, tricyclodecane dimetatool, bisphenol A, hydrogenated bisphenol A, etc. can be mentioned.

また、3価以上のカルボン酸とはカルボン酸及びその無
水物を含むものであり、例えば、トリメ’J−/ト酸、
無水トリメリット酸、ピロメリット酸、無水ピロメリッ
ト酸、トリメシン酸等がある。
In addition, trivalent or higher carboxylic acids include carboxylic acids and their anhydrides, such as trime'J-/toic acid,
There are trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, trimesic acid, etc.

また、3価以上のポリオールとしては、例えば、トリス
ヒドロキシエチルイソシアヌレート、グリセリン、ペン
タエリスリトール、トリメチロールプロパン、トリメチ
ロールエタン・、マンニット等が挙げられる。
Further, examples of the trivalent or higher polyol include trishydroxyethyl isocyanurate, glycerin, pentaerythritol, trimethylolpropane, trimethylolethane, mannitol, and the like.

かかる原料の他、場合によっては、ジカルボン酸やジオ
ールの代りに、オキシ酸(低級アルキルエステルを含む
)を50モル%以下代替しても優れた樹脂を得ることが
出来る。このオキシ酸としては、例えば、パラオキシ安
息香酸、1.2−ヒドロキシステアリン酸及びそれらの
メチルエステル、エチルエステルの如き低級アルキルエ
ステルを挙げることが出来る。
In addition to such raw materials, in some cases, an excellent resin can be obtained by substituting 50 mol% or less of oxyacid (including lower alkyl ester) in place of dicarboxylic acid or diol. Examples of the oxyacid include paraoxybenzoic acid, 1,2-hydroxystearic acid, and lower alkyl esters thereof such as methyl ester and ethyl ester.

これらの原料を用いたポリエステル樹脂は、従来公知の
製造方法によって製造することが出来る。
Polyester resins using these raw materials can be manufactured by conventionally known manufacturing methods.

この樹脂は水酸基価30〜250及び酸価IO〜100
の両方を有していることが必要である。このうち、水酸
基価は多価アルコール成分/ポリカルボン酸成分比、及
び3価以上のポリオール成分の量を調整するごとによっ
て達成することが出来る。この時、3価以上のポリオー
ル成分としてトリスヒドロキシイソシアヌレートを樹脂
中5〜60重量%になるように用いると、特に耐熱性に
優れた粉体塗料用樹脂を得ることが出来る。また、酸価
はポリエステル縮合反応を高酸価の状態で停止させて、
未反応カルボン酸によって与える方法、またはポリエス
テル縮合反応を樹脂の酸価15以下まで進めた後、生成
樹脂の水酸基に150〜190℃で無水ポリカルボン酸
をハーフエステル化付加して与える方法のいずれかを選
ぶことが出来る。より好ましくは、後者のハーフエステ
ル化付加方法による方が、塗膜仕上がり性能上好ましい
。ハーフエステル化付加法による場合、付加するポリカ
ルボン酸無水物は、前記ポリエステル樹脂の原料として
用いるカルボン酸無水物の中から自由に選ぶことが出来
る。その中でも、無水トリメリット酸や無水フタル酸が
好適である。
This resin has a hydroxyl value of 30 to 250 and an acid value of IO to 100.
It is necessary to have both. Among these, the hydroxyl value can be achieved by adjusting the polyhydric alcohol component/polycarboxylic acid component ratio and the amount of the trivalent or higher polyol component. At this time, if trishydroxyisocyanurate is used as a trivalent or higher polyol component in an amount of 5 to 60% by weight in the resin, a powder coating resin particularly excellent in heat resistance can be obtained. In addition, the acid value is determined by stopping the polyester condensation reaction at a high acid value,
Either a method of providing with unreacted carboxylic acid, or a method of providing by half-esterifying polycarboxylic acid anhydride at 150 to 190°C to the hydroxyl groups of the resulting resin after the polyester condensation reaction has proceeded to the acid value of the resin of 15 or less. You can choose. More preferably, the latter half-esterification addition method is preferred in terms of coating film finishing performance. In the case of the half-esterification addition method, the polycarboxylic anhydride to be added can be freely selected from among the carboxylic anhydrides used as raw materials for the polyester resin. Among them, trimellitic anhydride and phthalic anhydride are preferred.

かかるポリエステルポリオールの縮合反応には、公知の
エステル化若しくは、エステル交換触媒を用いることが
出来る。かかる触媒としては、錫、亜鉛、鉛、マンガン
、マグネシウム等の金属の酸化物、ハロゲン化物、酢酸
塩等、およびパラトルエンスルホン酸、チタン酸エステ
ル等を挙げることが出来る。それらの添加量は、系全体
の0.01〜0.5重量%が好ましい。この様にして製
造されるポリエステル樹脂は、前記のように、水酸基価
30〜250および、酸価10〜100の両方を有する
ことが必要である。水酸基価30未満、及び/または、
酸価10未満では架橋反応性が低いため、得られた塗膜
の塗膜強度、耐熱性が低く、好ましくない、一方、水酸
基価が250より大きい場合は、樹脂合成の際に樹脂の
ゲル化が起こったり、樹脂が合成できたとしても、粉体
塗料の吸湿性が高くなりすぎ、粉体塗料が粉体流動性を
失って塗装に適さなくなる。また、酸価が100より大
きい場合は、樹脂合成の際に、樹脂のゲル化が起こった
り、ゲル化を起こさな(とも、粉体塗料に供した時に、
粉体塗料の溶融流動性が低下して、満足な塗膜が得られ
なくなる。
Known esterification or transesterification catalysts can be used in the condensation reaction of polyester polyols. Examples of such catalysts include metal oxides, halides, acetates, etc. of tin, zinc, lead, manganese, magnesium, etc., and para-toluenesulfonic acid, titanate esters, etc. The amount of these added is preferably 0.01 to 0.5% by weight of the entire system. The polyester resin produced in this manner needs to have both a hydroxyl value of 30 to 250 and an acid value of 10 to 100, as described above. Hydroxyl value less than 30, and/or
If the acid value is less than 10, the crosslinking reactivity is low, so the strength and heat resistance of the resulting coating film will be low, which is undesirable. On the other hand, if the hydroxyl value is more than 250, the resin may gel during resin synthesis. Even if resin can be synthesized, the hygroscopicity of the powder coating becomes too high and the powder coating loses powder fluidity, making it unsuitable for painting. In addition, if the acid value is greater than 100, gelation of the resin may occur during resin synthesis, or gelation may not occur (also, when applied to powder coating).
The melt fluidity of the powder coating decreases, making it impossible to obtain a satisfactory coating.

次に、該ポリエステル樹脂と組み合わせて用いる架橋剤
について説明する0本発明においては、架橋剤として、
互いに異種であるブロックポリイソシアネートとポリエ
ポキシ化合物とを併用することが大きな特徴になってい
る。このことにより、ブロックポリイソシアネート単独
ではブロック剤の揮散による塗膜のワキ発生の問題を、
またポリエステル化合物単独では、十分な架橋性が得ら
れず、得られる塗膜が耐熱用途には不適切であったりす
る問題をそれぞれ解決できることを見いだし、本発明に
至った。
Next, the crosslinking agent used in combination with the polyester resin will be explained. In the present invention, as the crosslinking agent,
A major feature is that a block polyisocyanate and a polyepoxy compound, which are different from each other, are used together. This eliminates the problem of flaking of the paint film caused by volatilization of the blocking agent when using blocked polyisocyanate alone.
Furthermore, the inventors have discovered that using a polyester compound alone can solve the problems that sufficient crosslinking properties cannot be obtained and the resulting coating film is unsuitable for heat-resistant applications, leading to the present invention.

この時使用するブロックポリイソシアネートは室温で固
体のものが用いられる。例えば、芳香族、脂肪族、芳香
脂肪族のジイソシアネートと低分子活性水素化合物を反
応させて得たポリイソシアネートをブロック剤と反応さ
せ、マスキングすることにより容易に製造される。かか
るジイソシアネートの具体例としては、トリレンジイソ
シアネート(TDI)、4,4′−ジフェニルメタンイ
ソシアネート(MDI) 、キシリレンジイソシアネー
) (XDI)、ヘキサメチレンジイソシアネート(H
MDり、4.4′−メチレンビス(シクロヘキシルイソ
シアネート)(H1!MDI) 、メチルシクロヘキサ
ンジイソシアネート(HTDI) 、ビス(イソシアネ
ートメチル)シクロヘキサン(H6XDI)、イソホロ
ンジイソシアネート(IPDI) 、l−リメチルへキ
サメチレンジイソシアネート(TMDI)、ダイマー酸
ジイソシアネート(DDり、リジンジイソシアネート(
LDr)などが挙げられる。
The block polyisocyanate used at this time is solid at room temperature. For example, it is easily produced by reacting a polyisocyanate obtained by reacting an aromatic, aliphatic, or araliphatic diisocyanate with a low-molecular active hydrogen compound and masking it with a blocking agent. Specific examples of such diisocyanates include tolylene diisocyanate (TDI), 4,4'-diphenylmethane isocyanate (MDI), xylylene diisocyanate (XDI), and hexamethylene diisocyanate (H
MD, 4,4'-methylenebis(cyclohexyl isocyanate) (H1!MDI), methylcyclohexane diisocyanate (HTDI), bis(isocyanatemethyl)cyclohexane (H6XDI), isophorone diisocyanate (IPDI), l-lymethylhexamethylene diisocyanate ( TMDI), dimer acid diisocyanate (DD), lysine diisocyanate (
LDr), etc.

また、低分子活性水素化合物の具体例としては、水、エ
チレングリコール、プロピレングリコール、トリメチロ
ールプロパン、グリセリン、ソルビトール、エチレンジ
アミン、エタノールアミン、ジェタノールアミン、ヘキ
サメチレンジアミン等が挙げられる。更に、イソシアヌ
レート、ウレチジオン、ヒドロキシル基を含有する低分
子ポリエステル、ポリカプロラクトン等もかかる低分子
水素化合物の具体例として挙げられる。
Further, specific examples of low-molecular active hydrogen compounds include water, ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, ethanolamine, jetanolamine, hexamethylenediamine, and the like. Furthermore, isocyanurate, uretidione, low molecular weight polyester containing a hydroxyl group, polycaprolactone, etc. are also mentioned as specific examples of such low molecular hydrogen compounds.

また、ブロック剤の具体例としては、メタノール、エタ
ノール、ベンジルアルコール等のアルコール類、フェノ
ニル、クレゾール等のフェノール類、カプロラクタム、
ブチロラクタム等のラクタム類、シクロヘキサノン、オ
キシム、メチルエチルケトオキシム等のオキシム類が挙
げられる。
Specific examples of blocking agents include alcohols such as methanol, ethanol, benzyl alcohol, phenols such as phenonyl and cresol, caprolactam,
Examples include lactams such as butyrolactam, oximes such as cyclohexanone, oxime, and methyl ethyl ketoxime.

さらには、塗料化に使われる主体樹脂の一部に上記の活
性水素化合物やブロック剤でハーフブロック化したイソ
シアネート化合物を付加させて内部硬化剤として使用す
ることもできる。
Furthermore, it is also possible to add the above-mentioned active hydrogen compound or an isocyanate compound half-blocked with a blocking agent to a part of the main resin used for making the paint and use it as an internal curing agent.

これらブロックイソシアネートはその軟化温度が10℃
〜120℃であることが好ましい。軟化温度が10℃未
満になると粉体塗料組成物が室温〜40℃の環境で固ま
ってしまったり、米粒状の塊が出来て、粉体塗料として
の用に供し得なくなる。また、その軟化温度が120℃
を越えると、粉体塗料を製造する際、ブロックイソシア
ネートを塗料中に均質に分散することがむつかしく、得
られた塗膜の平滑性、塗膜強度、耐湿性等の性能が損な
われる。
These blocked isocyanates have a softening temperature of 10°C.
It is preferable that it is -120 degreeC. If the softening temperature is less than 10°C, the powder coating composition will solidify in an environment of room temperature to 40°C, or grain-like lumps will form, making it unusable as a powder coating. In addition, its softening temperature is 120℃
If it exceeds this amount, it will be difficult to homogeneously disperse the blocked isocyanate in the paint when producing a powder paint, and the resulting paint film will have poor performance such as smoothness, film strength, and moisture resistance.

これらブロックポリイソシアネートは、主体樹脂ポリエ
ステルの水酸基に対してイソシアネート基が0.05〜
1.5当量となるごとく配合するのが好ましく、イソシ
アネート基が0.05当量未満の場合、塗料の硬化度が
不足し、密゛着性、塗膜硬度、耐薬品性等の塗膜性能が
劣る。一方、1.5当量を越えると、塗膜が脆くなり、
しかも、過剰のイソシアネート化合物の影響で、耐熱性
、耐薬品性、耐湿性等が劣るともに、ブロックポリイソ
シアネート自身が高価なため、コスト的にも不利となる
These block polyisocyanates have an isocyanate group ratio of 0.05 to 0.05 to hydroxyl groups of the main resin polyester.
It is preferable to mix the isocyanate groups in an amount of 1.5 equivalents. If the isocyanate group is less than 0.05 equivalents, the degree of curing of the paint will be insufficient and the film performance such as adhesion, film hardness, and chemical resistance will deteriorate. Inferior. On the other hand, if it exceeds 1.5 equivalents, the coating film becomes brittle,
Furthermore, due to the influence of the excess isocyanate compound, heat resistance, chemical resistance, moisture resistance, etc. are inferior, and since the block polyisocyanate itself is expensive, it is also disadvantageous in terms of cost.

粉体塗料組成物には、必要に応じ、反応促進触媒を使用
することが出来る。この反応促進触媒としては、公知の
ブロックイソシアネート解離触媒が用いられる。例えば
、N、N、N  ’、N’−テトラメチルエチレンジア
ミン、トリメチレンジアミン等のアミン類、ジブチルチ
ンオキサイド、ジブチルチンラウレート、ジブチルチン
マレエート、テトラブチル−1,3−ジアセトジスタノ
キサン、スタナスジラウレート、スタナスジアセテート
、トリフェニル錫クロライド等で代表される錫化合物や
オクテン酸亜鉛で代表される有機酸金属塩等が挙げられ
る。これらは、1種類、あるいは2種類以上の混合物で
使″用される。その使用量は、主体ポリエステル樹脂1
00重量部に対し、0.01〜10重量部である。(以
後、部でもって重量部を表わす)。
A reaction promoting catalyst can be used in the powder coating composition, if necessary. As this reaction promoting catalyst, a known block isocyanate dissociation catalyst is used. For example, amines such as N, N, N', N'-tetramethylethylenediamine, trimethylenediamine, dibutyltin oxide, dibutyltin laurate, dibutyltin maleate, tetrabutyl-1,3-diacetodistanoxane, Examples include tin compounds represented by stannath dilaurate, stannath diacetate, triphenyltin chloride, and organic acid metal salts represented by zinc octenoate. These are used singly or as a mixture of two or more types.
0.01 to 10 parts by weight. (Hereinafter, parts will be expressed as parts by weight).

又、架橋剤として用いられるポリエポキシ化合物とは1
分子当りエポキシ基を2個以上有する化合物でビスフェ
ノールA系エポキシ樹脂、ノボラック系エポキシ樹脂、
脂環族系エポキシ樹脂、その他の通常市販のポリエポキ
シ化合物を用いることが出来、具体的には、エピコー)
1001、エビコー)1004、エピコート1007、
エピコート1009 (いずれもシェル社製のビスフェ
ノールA系エポキシ樹脂;商品名)、08M438(ダ
ウケルミカル社のノラック系エポキシ樹脂;商品名)、
アラルダイ)CYI75(チバ社の脂環族系エポキシ樹
脂;商品名)、トリグリシジルイソシアヌレート、およ
びその誘導体、変性エポキシ化合物、具体例としてEH
P3150(ダイセル社;商品名)等が挙げられる。こ
れらはそれぞれ単独で、あるいは2種類以上の混合物と
して用いることができる。
Also, what is the polyepoxy compound used as a crosslinking agent?
Compounds having two or more epoxy groups per molecule, such as bisphenol A epoxy resins, novolac epoxy resins,
Alicyclic epoxy resins and other commonly commercially available polyepoxy compounds can be used; specifically, Epicor)
1001, Epicor) 1004, Epicort 1007,
Epicoat 1009 (bisphenol A epoxy resin manufactured by Shell; trade name), 08M438 (Nolac epoxy resin manufactured by Dow Chemical; trade name),
Araldai) CYI75 (Ciba's alicyclic epoxy resin; trade name), triglycidyl isocyanurate, and its derivatives, modified epoxy compounds, specific examples include EH
Examples include P3150 (Daicel Corporation; trade name). Each of these can be used alone or as a mixture of two or more.

これらのポリエポキシ化合物の中でトリグリシジルイソ
シアヌレート(TGICとして略称する)、あるいは脂
環族固形エポキシ樹脂を使用した場合は特に耐熱性の優
れた粉体塗料組成物が得られる。
Among these polyepoxy compounds, when triglycidyl isocyanurate (abbreviated as TGIC) or alicyclic solid epoxy resin is used, a powder coating composition with particularly excellent heat resistance can be obtained.

これらポリエポキシ化合物はポリエステル樹脂のカルボ
キシル基に対してエポキシ基が0.2〜2.5当量とな
る如く配合することが好ましい。エポキシ基が0.2当
量未満では得られた硬化塗膜の架橋密度が不足し、十分
な塗膜性能が得られない。
These polyepoxy compounds are preferably blended so that the amount of epoxy groups is 0.2 to 2.5 equivalents to the carboxyl groups of the polyester resin. If the amount of epoxy group is less than 0.2 equivalent, the crosslinking density of the resulting cured coating film will be insufficient, and sufficient coating performance will not be obtained.

一方2.5当量を越えると、塗料の貯蔵中に反応が進み
、長期の貯蔵後に塗料として供し得なくなったり、過剰
の硬化剤が可塑剤的に働き、耐湿性、耐熱性等の性能が
低下する。
On the other hand, if the amount exceeds 2.5 equivalents, the reaction will proceed during storage of the paint, making it impossible to use it as a paint after long-term storage, or the excess curing agent will act as a plasticizer, reducing performance such as moisture resistance and heat resistance. do.

粉体塗料組成物には、必要に応じ、反応促進剤を用いる
ことが出来る。この反応促進剤としてはエポキシ基とカ
ルボキシル基の開環付加反応を促進する公知の触媒が使
用できる。例えば、テトラエチルアンモニウムブロマイ
ド等の4級アンモニウム塩、パラトルエンスルホン酸、
リン酸等の酸およびその塩、″ブロックポリイソシアネ
ートの解離反応促進触媒として先に挙げた錫化合物等が
使用できる。その使用量は主体樹脂と硬化剤を合わせた
固形分100部に対し、0.01〜10部程度が好まし
い。
A reaction accelerator can be used in the powder coating composition, if necessary. As this reaction promoter, a known catalyst that promotes the ring-opening addition reaction between an epoxy group and a carboxyl group can be used. For example, quaternary ammonium salts such as tetraethylammonium bromide, para-toluenesulfonic acid,
Acids such as phosphoric acid and their salts, and the tin compounds listed above as catalysts for promoting the dissociation reaction of block polyisocyanates can be used.The amount used is 0 to 100 parts of the solid content of the main resin and curing agent. About .01 to 10 parts is preferable.

本発明における粉体塗料組成物には、主体樹脂のポリエ
ステル樹脂、および架橋剤のブロックポリイソシアネー
トおよびポリエポキシ化合物好ましくはトリグリシジル
イソシアヌレート以外に更にポリシロキサン微粉末を配
合することが出来る。
In addition to the polyester resin as the main resin and the blocked polyisocyanate and polyepoxy compound, preferably triglycidyl isocyanurate, as the crosslinking agent, the powder coating composition of the present invention may further contain fine polysiloxane powder.

ポリシロキサン微粉末を配合することにより、得られた
塗膜の耐熱性が向上すると同時に耐ワキ性を改善し、塗
装時の作業管理を容易にすることが出来る。かかるポリ
シロキサン微粉末は、有機シロキサン化合物から合成さ
れる固形樹脂で、真球状に合成されたものや、固形樹脂
を粉砕して粒度を調整したものが使われる。塗膜の耐熱
性やワキに有効に作用させるには、0.3〜30μの平
均粒度のものが好ましい。これらの有機ポリシロキサン
漱粒子は市販品をそのまま使用することができ、具体、
的にはトーレフィルRシリーズ、トーレフィルEシリー
ズ(以上トーレシリコーン■;商品名)等が挙げられる
By blending polysiloxane fine powder, the heat resistance of the obtained coating film is improved, and at the same time, the scuffing resistance is improved, and work management during painting can be facilitated. Such fine polysiloxane powder is a solid resin synthesized from an organic siloxane compound, and either one synthesized into a true spherical shape or one prepared by pulverizing a solid resin to adjust the particle size is used. In order to effectively affect the heat resistance and underarm properties of the coating film, it is preferable to use particles with an average particle size of 0.3 to 30 μm. These organopolysiloxane grains can be used as commercially available products.
Examples include the Torefill R series and the Torefill E series (hereinafter referred to as Tore Silicone ■; trade name).

ポリシロキサン微粉末は主体樹脂のポリエステルと架橋
剤のブロックポリイソシアネートおよびポリエポキシ化
合物好ましくはトリグリシジルイソシアヌレートとを合
わせて10,0部にたいして、0〜60部の範囲で使用
することが好ましい。60部を越える使用では、得られ
た塗膜の強度が劣り、また、塗膜の平滑性を損ない、塗
膜としての供し得なくなる。
The polysiloxane fine powder is preferably used in an amount of 0 to 60 parts per 10.0 parts of the total of the main resin polyester, the crosslinking agent block polyisocyanate, and the polyepoxy compound, preferably triglycidyl isocyanurate. If more than 60 parts are used, the strength of the resulting coating film will be poor and the smoothness of the coating film will be impaired, making it impossible to use it as a coating film.

本発明の粉体塗料組成物を塗装した塗装物品として、例
えば、電子レンジ部品、給湯器、ス)−ブ、電磁コイル
、被覆電線、耐圧素子なとがあげられ、特に耐熱被覆電
線等の耐熱性、絶縁性が求められるものなどが好適であ
る。
Coated articles coated with the powder coating composition of the present invention include, for example, microwave oven parts, water heaters, tubes, electromagnetic coils, coated electric wires, pressure-resistant elements, and in particular heat-resistant coated electric wires and the like. Materials that require good properties and insulation properties are suitable.

(実施例) 以下、製造例、実施例および比較例により本発明をさら
に具体的に説明する。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Production Examples, Examples, and Comparative Examples.

製造例1 〔ポリエステル樹脂■の製造〕 精留塔を備えた4つ口の5リツトルのセパラブルフラス
コにネオペンチルグリコール637 g。
Production Example 1 [Production of polyester resin (■)] 637 g of neopentyl glycol was placed in a 4-neck, 5-liter separable flask equipped with a rectification column.

エチレングリコール151g、トリスヒドロキシエチル
イソシアヌレート950g、イソフタル酸806g、テ
レフタル酸806gをいれエステル化触媒としてモノブ
チルハイドロオキシスズオキサイド3.3gを加え、1
60℃まで加熱した。
151 g of ethylene glycol, 950 g of trishydroxyethyl isocyanurate, 806 g of isophthalic acid, and 806 g of terephthalic acid were added, and 3.3 g of monobutyl hydroxytin oxide was added as an esterification catalyst.
It was heated to 60°C.

160℃到達後3.5時間かけて240℃まで昇温する
。更に240℃で1時間撹拌を続けた後、170℃まで
冷却した。この時の樹脂酸価は6であった。170℃に
なったところでトリメリット酸281gとトルエン65
gとを加えて、170℃で撹拌を続けながら3時間保っ
た。その後、減圧によりトルエンを留去除去した。得ら
れたポリエステル樹脂■は、THEICを29重量%含
有し、その酸価は44、水酸基価は109.50%シク
ロヘキサノン溶液のガードナー粘度はXであった。
After reaching 160°C, the temperature is increased to 240°C over 3.5 hours. After further stirring at 240°C for 1 hour, the mixture was cooled to 170°C. The resin acid value at this time was 6. When the temperature reached 170℃, 281g of trimellitic acid and 65g of toluene were added.
g and was kept at 170° C. for 3 hours while stirring. Thereafter, toluene was distilled off under reduced pressure. The obtained polyester resin (1) contained 29% by weight of THEIC, had an acid value of 44, a hydroxyl value of 109.50%, and a Gardner viscosity of the cyclohexanone solution of X.

(THEIC= I−リスヒドロキシエチルイソシアヌ
レート) 製造例2 〔ポリエステル樹脂■の製造〕 製造例1と同様にしてネオペンチルグリコール160g
、エチレングリコール377g、)リスヒドロキシエチ
ルイソシアヌレ−1−1983g。
(THEIC = I-lishydroxyethyl isocyanurate) Production Example 2 [Production of polyester resin ■] 160 g of neopentyl glycol in the same manner as Production Example 1
, 377 g of ethylene glycol,) 1983 g of 1-1-lishydroxyethyl isocyanurate.

イソフタル酸378 g、テレフタル酸1513g。378 g of isophthalic acid, 1513 g of terephthalic acid.

モノブチルハイドロキシスズオキサイド4.0gを加え
、160℃に加熱した。更に、3.5時間かけて240
℃にまで昇温し、240℃に30分保持した後、170
℃まで冷却した。この時の樹脂酸価は6.5であった。
4.0 g of monobutyl hydroxytin oxide was added and heated to 160°C. In addition, it took 3.5 hours to complete 240
℃ and held at 240℃ for 30 minutes, then heated to 170℃.
Cooled to ℃. The resin acid value at this time was 6.5.

170℃で無水トリメリット酸294gとトルエン85
gとを加えて、170〜180℃の温度で撹拌しながら
、保持した。その後、トルエンを減圧によって除去し、
ポリエステル樹脂■を得た。この樹脂はTHEICを4
6.2重量%含有し、その酸価は40、水酸基価は17
8.50%シクロヘキサノン溶液のガードナー粘度はZ
、であった。
294 g of trimellitic anhydride and 85 g of toluene at 170°C
g and was maintained at a temperature of 170 to 180° C. with stirring. The toluene was then removed by vacuum;
A polyester resin ■ was obtained. This resin has THEIC of 4
Contains 6.2% by weight, its acid value is 40, and its hydroxyl value is 17.
8. The Gardner viscosity of a 50% cyclohexanone solution is Z
,Met.

製造例3 〔ポリエステル樹脂■の製造〕 製造例1および2と同様な方法で、エチレングリコール
425 g、ネオペンチルグリコール630g1グリセ
リン394 g1イソフタル酸853 g。
Production Example 3 [Production of Polyester Resin (1)] In the same manner as in Production Examples 1 and 2, 425 g of ethylene glycol, 630 g of neopentyl glycol, 394 g of glycerin, and 853 g of isophthalic acid were prepared.

テレフタル酸1422g、モノヒドロキシスズオキサイ
ド3.5g、無水トリメリット酸204gから酸価50
、水酸基価156のポリエステル樹脂■を合成した。
Acid value 50 from terephthalic acid 1422g, monohydroxytin oxide 3.5g, trimellitic anhydride 204g
, a polyester resin (2) having a hydroxyl value of 156 was synthesized.

製造例4 〔ポリエステル樹脂■の製造〕 製造例1および2と同様な方法でエチレングリコール4
15 g、ネオペンチルグリコール781g、 THE
IC194g、イソフタル酸1111 g 、テレフタ
ル酸1111 g 、モノヒドロキシスズオキサイド3
.5gから酸価20のポリエステル樹脂を合成し、これ
に更に、無水トリメリット酸371gをハーフエステル
付加して、THE!ICを5.5重量%含有した、酸価
80、水酸基価29のポリエステル樹脂■を合成した。
Production Example 4 [Production of polyester resin ■] Ethylene glycol 4 was prepared in the same manner as Production Examples 1 and 2.
15 g, neopentyl glycol 781 g, THE
IC194g, isophthalic acid 1111g, terephthalic acid 1111g, monohydroxytin oxide 3
.. A polyester resin with an acid value of 20 was synthesized from 5 g, and 371 g of trimellitic anhydride was added as a half ester, and THE! A polyester resin (2) containing 5.5% by weight of IC and having an acid value of 80 and a hydroxyl value of 29 was synthesized.

製造例5 〔ポリエステル樹脂■の製造〕 製造例1および2と同様な方法でエチレングリコール3
15g、ネオペンチルグリコール381g1 トリスヒ
ドロキシエチルイソシアヌレート1514g、テレフタ
ル酸1444g、イソフタル酸842g、モノブチルハ
イドロキシスズ3.3gを160℃から240℃で反応
させた。160℃に冷却したところで無水トリメリット
酸を105g添加し、そのまま160℃で1時間半反応
を続けた後、冷却してポリエステル樹脂■を得た。得ら
れた樹脂の酸価は15、水酸基価は92であった。50
%シクロヘキサノン溶液のガードナー粘度はZ、であっ
た、 TII[!ICの含有量は36.9重量%であっ
た。
Production Example 5 [Production of polyester resin ■] Ethylene glycol 3 was prepared in the same manner as Production Examples 1 and 2.
15 g, 381 g of neopentyl glycol, 1514 g of trishydroxyethyl isocyanurate, 1444 g of terephthalic acid, 842 g of isophthalic acid, and 3.3 g of monobutyl hydroxytin were reacted at 160°C to 240°C. After cooling to 160°C, 105 g of trimellitic anhydride was added, and the reaction was continued at 160°C for 1.5 hours, and then cooled to obtain polyester resin (2). The resulting resin had an acid value of 15 and a hydroxyl value of 92. 50
% Gardner viscosity of the cyclohexanone solution was Z, TII[! The IC content was 36.9% by weight.

実施例1 製造例1で得られたポリエステル樹脂0100部に対し
て、ブロックポリイソシアネート025部、エポキシ化
合物■7部、有機ポリシロキサンゲル粒子05部、ベン
ガラ顔料を20部、塗面調整剤(A)0.2部、塗面調
整剤(B)2部、スズ系触媒0.05部を通常のトライ
ブレンド装置で充分混合撹拌する。得られた混合物を通
常の溶融混合押しだし機(例えば、ブス社PR−46)
を使い80℃〜125℃で混合し冷却した。混合された
塊状、あるいはペレット状物を粗粉砕、微粉砕した後、
200メツシユ(74μm)の篩分は装置で粗粒分を取
り除いて実施例1の粉体塗料組成物を得た。この粉体塗
料は、40℃10日間の貯蔵試験後、プロフキング等の
形状変化もなく、40℃30日間の貯蔵後、溶融流展性
(焼付は塗膜の仕上がり性)の変化も見られなかった。
Example 1 To 100 parts of the polyester resin obtained in Production Example 1, 025 parts of blocked polyisocyanate, 7 parts of epoxy compound, 05 parts of organic polysiloxane gel particles, 20 parts of red iron pigment, and a coating surface conditioner (A ), 2 parts of coating surface conditioner (B), and 0.05 part of tin-based catalyst are sufficiently mixed and stirred using a normal tri-blend device. The resulting mixture is passed through a conventional melt mixing extruder (for example, Busu PR-46).
The mixture was mixed at 80° C. to 125° C. and cooled. After coarsely or finely pulverizing the mixed lumps or pellets,
The powder coating composition of Example 1 was obtained by removing coarse particles from the 200 mesh (74 μm) sieve using a device. This powder coating exhibited no shape changes such as profking after a 10-day storage test at 40°C, and no change in melt flowability (baking is the finish of the paint film) was observed after storage at 40°C for 30 days. There wasn't.

この粉体塗料を静電粉体塗装装置で、1fl厚の脱脂さ
れた鋼板に塗装し、雰囲気温度300℃の焼付は炉で4
分間焼き付けて実施例1の硬化塗膜を得た。この被塗物
は、10〜70μmでワキ、ピンホールのない、平滑な
仕上がり性をもち、充分な塗膜強度、耐湿性、及び耐熱
軟化温度300℃のものであった。
This powder coating was applied to a 1 fl thick degreased steel plate using an electrostatic powder coating device, and baked in a furnace at an ambient temperature of 300°C for 4 hours.
The cured coating of Example 1 was obtained by baking for a minute. This coated object had a smooth finish with a diameter of 10 to 70 μm, no wrinkles or pinholes, sufficient coating strength, moisture resistance, and heat-resistant softening temperature of 300°C.

実施例2〜5および比較例1〜5 表−1の比率で与えられる混合組成物を実施例1と同様
の方法で粉体塗料組成物を得、実施例1と同様な方法で
粉体静電塗装を施し、表−2の焼付は条件でそれぞれの
実施例および比較例の被塗物を得た。それぞれの塗料お
よび塗膜の性状は、表−2の通りであった。
Examples 2 to 5 and Comparative Examples 1 to 5 Powder coating compositions were obtained using the mixed compositions given in the ratios in Table 1 in the same manner as in Example 1, and powder coating compositions were obtained in the same manner as in Example 1. Electrocoating was applied, and coated objects of each Example and Comparative Example were obtained under the baking conditions shown in Table 2. The properties of each paint and coating film were as shown in Table-2.

:ポリ ポリ ポリ ポリ ポリ エステル樹脂■=製造例1による エステル樹脂■=製造例2による エステル樹脂■=製造例3による エステル樹脂■=製造例4による エステル樹脂■=製造例5による A : NC010HB :  C−C/C0OHポリ
エポキシ化合物■=P↑810 (チバ・ガイギー社製、TGIC) ポリエポキシ化合物■= E)lP3150(ダイセル
工業社製脂環式固形ポリエポキシ化合物) ポリシロキサン■=トルバース120 (東芝シリコーン社製、ポリシロキサンゲル微粒子2μ
) ポリシロキサン■=トルバース240 (東芝シリコーン社製、ポリシロキサンゲル微粒子4μ
) ブロックポリイソシアネート■= 81530(Hul
ls社製;軟化点−85℃) ブロックポリイソシアネート■−PW4403N(武田
薬′品工業社製;軟化点=70℃)塗面調整剤A=モダ
フロー (モンサント社製、ハジキ防止剤) 塗面調整剤B=ベンゾイン スズ系硬化促進剤=フォーメートTK−1(武田薬品工
業社製;有機錫化合物) チタン白=CR85(石原産業社製、白色顔料) ベンガラ−ベンガラKNO−W  (戸田色素社製)実
施例6〜7 実施例1の粉体塗料組成物(実施例6)および実施例2
の粉体塗料組成物(実施例7)をそれぞれ用いて、厚さ
2111、幅8鶴の平角軟銅線上に静電流動浸漬塗装を
行い、次いで炉温450℃の焼付は炉で硬化させて10
p、mの膜厚を有する絶縁電線を得た。
: Polypolypolypolyester resin ■ = Ester resin according to Production Example 1 ■ = Ester resin according to Production Example 2 ■ = Ester resin according to Production Example 3 ■ = Ester resin according to Production Example 4 ■ = A according to Production Example 5 : NC010HB : C-C /C0OH polyepoxy compound ■=P↑810 (manufactured by Ciba Geigy, TGIC) Polyepoxy compound ■= E)lP3150 (alicyclic solid polyepoxy compound manufactured by Daicel Industries, Ltd.) Polysiloxane ■=Tolvers 120 (Toshiba Silicone, Inc.) manufactured by Polysiloxane Gel Fine Particles 2μ
) Polysiloxane ■ = Torvaas 240 (manufactured by Toshiba Silicone Co., Ltd., polysiloxane gel fine particles 4μ
) Block polyisocyanate ■ = 81530 (Hul
(Manufactured by LS; Softening point: -85°C) Block polyisocyanate ■-PW4403N (Manufactured by Takeda Pharmaceutical Co., Ltd.; Softening point = 70°C) Paint surface conditioner A = Modaflow (Manufactured by Monsanto, anti-cissing agent) Paint surface adjustment Agent B = benzoin tin curing accelerator = Formate TK-1 (manufactured by Takeda Pharmaceutical Co., Ltd.; organic tin compound) Titanium white = CR85 (manufactured by Ishihara Sangyo Co., Ltd., white pigment) Red red iron - Red red iron KNO-W (manufactured by Toda Shiroki Co., Ltd.) ) Examples 6-7 Powder coating composition of Example 1 (Example 6) and Example 2
Using each of the powder coating compositions (Example 7), electrostatic dynamic dip coating was carried out on a rectangular annealed copper wire with a thickness of 2111 mm and a width of 8 mm.
Insulated wires having film thicknesses of p and m were obtained.

比較例6 比較例1の粉体塗料組成物を用いて、実施例6と同様の
条件で、同じ70μmの膜厚を有する絶縁電線を得た。
Comparative Example 6 Using the powder coating composition of Comparative Example 1 and under the same conditions as in Example 6, an insulated wire having the same film thickness of 70 μm was obtained.

実施例6、実施例7および比較例6で得られた絶縁電線
の特性を表−3に示す。尚、試験方法は、LIS−(1
:3003に基づいて行った。
Table 3 shows the characteristics of the insulated wires obtained in Example 6, Example 7, and Comparative Example 6. The test method is LIS-(1
:3003.

(発明の効果) 本発明に例えば、第1にF種、8種絶縁被覆電線その他
耐熱性が要求される素材の塗装に対して、従来の溶剤型
塗料では規定の膜厚に塗装するためには4〜6回の塗り
重ねが必要であったが、本発明の粉体塗料組成物を使用
することにより、1回の塗装で生産効率よく、低コスト
で塗装できるようになった。第2に、従来の溶剤型塗装
ラインの設備は防爆型のものが必要であったが、本発明
の粉体塗料組成物の使用によってこれらが不要になり、
設備コストの低減が図れる。第3に、従来の溶剤型塗料
を本発明の粉体塗料組成物を用いる粉体塗料に置き換え
ることにより、公害性の高い溶剤の大気中への放散がな
くなり、社会的寄与も大きい。
(Effects of the Invention) For example, the present invention has the following advantages: Firstly, when painting Class F, Class 8 insulated wires, and other materials that require heat resistance, conventional solvent-based paints are difficult to coat to a specified film thickness. However, by using the powder coating composition of the present invention, it has become possible to perform coating with high production efficiency and at low cost in one coating. Second, conventional solvent-based coating line equipment required explosion-proof equipment, but with the use of the powder coating composition of the present invention, these are no longer necessary.
Equipment costs can be reduced. Thirdly, by replacing conventional solvent-based paints with powder paints using the powder paint composition of the present invention, the emission of highly polluting solvents into the atmosphere is eliminated, making a large social contribution.

本発明によれば、第4に、一般ポリエステル樹脂系粉体
塗料で使われている、高酸価型ポリエステル樹脂とトリ
グリシジルイソシアヌレートとの組合せによる塗料の耐
熱性の低さが解消される。
According to the present invention, fourthly, the low heat resistance of the paint due to the combination of a high acid value type polyester resin and triglycidyl isocyanurate, which is used in general polyester resin powder paints, is solved.

本発明によれば、第5に、一般ポリエステル樹脂系粉体
塗料で使われている、ヒドロキシル型ポリエステル樹脂
とメラミン、あるいはブロックポリイソシアネートとの
組合せによる塗料、あるいは、スズ、チタン触媒とポリ
エステル樹脂との組合せによる脱モノマー縮合系塗料等
の焼付は時に発生する縮合生成物による塗膜のワキが解
消される。
According to the present invention, fifthly, a paint made of a combination of a hydroxyl type polyester resin and melamine or a block polyisocyanate, which is used in a general polyester resin powder paint, or a paint made of a combination of a tin or titanium catalyst and a polyester resin. The combination of the above and the like eliminates the smearing of the paint film caused by the condensation products that sometimes occurs when using paints based on demonomer condensation.

本発明によれば、第6に、樹脂自体の耐熱性が優れてい
るといわれているイミド変性ポリエステル樹脂、イミド
樹脂、イミドアミド樹脂等を利用した粉体塗料の溶融流
展性不足による、塗膜平滑性、塗膜性能の悪さが解消さ
れる。
According to the present invention, sixthly, the coating film is caused by insufficient melt flowability of powder coatings using imide-modified polyester resins, imide resins, imidoamide resins, etc., which are said to have excellent heat resistance. Eliminates poor smoothness and coating performance.

したがって本発明によれば、従来技術では得られなかっ
た、経済性および低公害性を備え、かつ耐熱性、仕上が
り性および塗膜性能の優れた塗装系が得られる。
Therefore, according to the present invention, it is possible to obtain a coating system that is economical, has low pollution properties, and has excellent heat resistance, finish quality, and coating performance, which could not be obtained with the prior art.

本発明によれば、さらに本発明の粉体塗料組成物を塗装
した、電子レンジ部品、耐圧素子、電磁コイルなどの塗
装物品が提供される。
According to the present invention, coated articles such as microwave oven parts, pressure-resistant elements, and electromagnetic coils are further provided, which are coated with the powder coating composition of the present invention.

手続補正書 平成元年3月29日Procedural amendment March 29, 1989

Claims (1)

【特許請求の範囲】 1、ポリカルボン酸、多価アルコール、および必要によ
りそれらの一部に代えて用いられるオキシ酸より得られ
、樹脂の水酸基価が30〜250であって酸価が10〜
100である、室温で固体のポリエステル樹脂(A)と
、室温で固体のブロックポリイソシアネートおよびポリ
エポキシ化合物よりなる架橋剤(B)とよりなることを
特徴とする粉体塗料組成物。 2、該ポリエステル樹脂(A)の固形分100重量部当
り多価アルコール成分としてトリスヒドロキシエチルイ
ソシアヌレートを5〜60重量部含有することを特徴と
する請求項1記載の粉体塗料組成物。 3、該ポリエポキシ化合物がトリグリシジルイソシアヌ
レート及び/又は脂環族ポリエポキシ化合物であること
を特徴とする請求項1又は2記載の粉体塗料組成物。 4、ポリシロキサン微粉末をさらに配合してなることを
特徴とする請求項1、2又は3記載の粉体塗料組成物。 5、請求項1ないし4のいずれか1項に記載の粉体塗料
組成物を塗装した塗装物品。
[Scope of Claims] 1. Obtained from polycarboxylic acid, polyhydric alcohol, and oxyacid used in place of some of them if necessary, and the resin has a hydroxyl value of 30 to 250 and an acid value of 10 to 250.
100, a polyester resin (A) that is solid at room temperature, and a crosslinking agent (B) that is composed of a block polyisocyanate and a polyepoxy compound that are solid at room temperature. 2. The powder coating composition according to claim 1, which contains 5 to 60 parts by weight of trishydroxyethyl isocyanurate as a polyhydric alcohol component per 100 parts by weight of the solid content of the polyester resin (A). 3. The powder coating composition according to claim 1 or 2, wherein the polyepoxy compound is triglycidyl isocyanurate and/or an alicyclic polyepoxy compound. 4. The powder coating composition according to claim 1, 2 or 3, further comprising a polysiloxane fine powder. 5. A coated article coated with the powder coating composition according to any one of claims 1 to 4.
JP3829789A 1989-02-20 1989-02-20 Powder coating composition and coated article using same Pending JPH02218766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3829789A JPH02218766A (en) 1989-02-20 1989-02-20 Powder coating composition and coated article using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3829789A JPH02218766A (en) 1989-02-20 1989-02-20 Powder coating composition and coated article using same

Publications (1)

Publication Number Publication Date
JPH02218766A true JPH02218766A (en) 1990-08-31

Family

ID=12521373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3829789A Pending JPH02218766A (en) 1989-02-20 1989-02-20 Powder coating composition and coated article using same

Country Status (1)

Country Link
JP (1) JPH02218766A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192613A (en) * 2000-01-14 2001-07-17 Kansai Paint Co Ltd Isocyanate-curing type polyester-based powder coating
US6391970B1 (en) * 1997-04-24 2002-05-21 Basf Corporation Clearcoat binder of polyepoxide, polyacid and polyisocyanate
JP2003082279A (en) * 2001-09-12 2003-03-19 Shinto Paint Co Ltd Powder coating composition
JP2003532358A (en) * 2000-04-19 2003-10-28 ゼネラル・エレクトリック・カンパニイ Powder coated generator field coil and related methods
JP2010001342A (en) * 2008-06-19 2010-01-07 Shin-Etsu Chemical Co Ltd Organic resin powder coating composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391970B1 (en) * 1997-04-24 2002-05-21 Basf Corporation Clearcoat binder of polyepoxide, polyacid and polyisocyanate
JP2001192613A (en) * 2000-01-14 2001-07-17 Kansai Paint Co Ltd Isocyanate-curing type polyester-based powder coating
JP2003532358A (en) * 2000-04-19 2003-10-28 ゼネラル・エレクトリック・カンパニイ Powder coated generator field coil and related methods
JP2003082279A (en) * 2001-09-12 2003-03-19 Shinto Paint Co Ltd Powder coating composition
JP2010001342A (en) * 2008-06-19 2010-01-07 Shin-Etsu Chemical Co Ltd Organic resin powder coating composition

Similar Documents

Publication Publication Date Title
EP0389926B1 (en) Powder paint and a polyester resin for powder paint
JPH04103678A (en) Powder coating composition
JP2003504452A (en) Thermosetting compositions for powder coatings
US4424239A (en) Liquid coating composition for metal surfaces, and a process for coating them with such a coating composition
EP0573687B1 (en) Resin composition for powder coatins
MX2007008800A (en) Thermosetting powder paint composition and polyester resin that can be used for the production thereof.
US6313234B1 (en) Coating system settable by heat
WO2001094439A1 (en) Hot melt coating composition
US6613840B2 (en) Resin composition for powder coating, powder coating, and coated article therewith
JPS5825364A (en) Powder paint for protection film by epsilon- caprolactam block isocyanate
CA2196741C (en) Matt polyurethane powder coatings and their use for coating heat resistant substrates
CN110418825B (en) Powder coating composition and coated article
JPH09157588A (en) Curing agent for urethane coating material and polyester/urethane coating material
JPH04503827A (en) Powder coating composition
JPH02218766A (en) Powder coating composition and coated article using same
EP0561543B1 (en) Degassing agents for powder coating compositions based on polyester
EP0706545B1 (en) Thermosetting coating compositions
JP3246941B2 (en) Paint for automotive plastic parts
JP3259150B2 (en) Resin composition for powder coating
JPH1088034A (en) Powder coating composition and article coated therewith
JPH08143790A (en) Resin composition for powder coating
JPS6230119A (en) Resin composition for topcoating compound
JP2848530B2 (en) Resin composition for paint
JPH0439325A (en) Polyester resin composition and powder-coating composition
JPS6119660B2 (en)