JPH0221810B2 - - Google Patents

Info

Publication number
JPH0221810B2
JPH0221810B2 JP63199356A JP19935688A JPH0221810B2 JP H0221810 B2 JPH0221810 B2 JP H0221810B2 JP 63199356 A JP63199356 A JP 63199356A JP 19935688 A JP19935688 A JP 19935688A JP H0221810 B2 JPH0221810 B2 JP H0221810B2
Authority
JP
Japan
Prior art keywords
doppler
ultrasonic
tomographic image
reception
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63199356A
Other languages
Japanese (ja)
Other versions
JPH0221851A (en
Inventor
Koji Tanabe
Tokyoshi Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP19935688A priority Critical patent/JPH0221851A/en
Publication of JPH0221851A publication Critical patent/JPH0221851A/en
Publication of JPH0221810B2 publication Critical patent/JPH0221810B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波装置に関するものであり、特
にドプラ像(血流速分布像)をリアルタイム(極
短時間)で表示する機構を備えた超音波装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic device, and particularly an ultrasonic device equipped with a mechanism for displaying a Doppler image (blood flow velocity distribution image) in real time (very short time). This invention relates to an ultrasonic device.

〔従来技術〕[Prior art]

従来、超音波パルスドプラ技術を用いて、例え
ば血流の速度を測ることが行われている。
Conventionally, ultrasonic pulsed Doppler technology has been used to measure, for example, the velocity of blood flow.

すなわち、単一の振動子を有する探触子によつ
て超音波を皮膚上から被検体内の血管に向けて発
射すると、被検体内の臓器組織からの反射波とと
もに血管内の血球からも反射波が得られる。この
血球からの反射波は、血管内の血液の流れによつ
てその周波数が発射超音波に対して変化してお
り、発射超音波と反射波との周波数の差、すなわ
ち超音波ドプラ偏位周波数fd(fd=f0−f1
2Vcosθ・f1/c、ここで、f0:発射超音波の周波
数、f1:反射波の周波数、c:その媒体内の音
速、V:反射体の運動の速さ、θ:超音波パルス
の方向と反射体の運動方向との間の角度である)
から血流速度を測るというものである。
In other words, when ultrasonic waves are emitted from the skin toward the blood vessels inside the subject using a probe with a single transducer, the waves are reflected from the blood cells in the blood vessels as well as the reflected waves from the organ tissues inside the subject. You get waves. The frequency of the reflected waves from the blood cells changes with respect to the emitted ultrasound due to the flow of blood within the blood vessels, and the difference in frequency between the emitted ultrasound and the reflected wave is the ultrasound Doppler deviation frequency. fd(fd= f0f1 =
2Vcosθ・f 1 /c, where f 0 : Frequency of emitted ultrasonic wave, f 1 : Frequency of reflected wave, c: Sound speed in the medium, V: Speed of movement of reflector, θ: Ultrasonic pulse is the angle between the direction of the reflector and the direction of movement of the reflector)
It measures blood flow velocity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の単一振動子を有する探触子を用いて超音
波ドプラ偏位周波数fdを求めるには、超音波ドプ
ラ周波数の1周期以上の時間超音波ビーム、即ち
探触子の方向を固定しておかねばならない。そし
て血流速分布等を断面上に二次元的に表示するに
は、ドプラサンプルの位置検出機構が必要とな
る。また、探触子のスキヤンに時間がかかるため
生体に応用するには、ECG等のトリガをかけな
ければならない等の問題があつた。したがつて、
血流速分布像を被検体の断面に対応した二次元像
としてリアルタイムで表示するということは不可
能であつた。
In order to obtain the ultrasonic Doppler deflection frequency fd using the above-mentioned probe with a single transducer, fix the direction of the ultrasonic beam, that is, the probe, for one or more periods of the ultrasonic Doppler frequency. I have to take care of it. In order to two-dimensionally display blood flow velocity distribution and the like on a cross section, a Doppler sample position detection mechanism is required. In addition, since it takes time to scan the probe, there are problems such as the need to trigger an ECG or the like in order to apply it to a living body. Therefore,
It has been impossible to display a blood flow velocity distribution image in real time as a two-dimensional image corresponding to a cross section of a subject.

本発明は、前記問題点を解消するためになされ
たものである。
The present invention has been made to solve the above problems.

本発明の目的は、リアルタイム二次元断層像と
リアルタイム二次元ドプラ像を重ねて表示するこ
とができる超音波装置を提供することにある。
An object of the present invention is to provide an ultrasound apparatus that can display a real-time two-dimensional tomographic image and a real-time two-dimensional Doppler image in a superimposed manner.

本発明の他の目的は、能率的なスキヤンが可能
であり、かつリアルタイムで被検体の断面に対応
した血流速度の二次元分布像(二次元ドプラ像)
の表示が可能な超音波装置を提供することにあ
る。
Another object of the present invention is to enable efficient scanning and to obtain a two-dimensional distribution image (two-dimensional Doppler image) of blood velocity corresponding to a cross section of a subject in real time.
An object of the present invention is to provide an ultrasonic device capable of displaying.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は以下に記すような技術的手段を備え
た超音波装置によつて達成される。
The above object is achieved by an ultrasound device equipped with the technical means described below.

即ち、本発明の目的は、超音波を送受信する単
一の高速電子スキヤン形探触子と、該探触子によ
り被検体内の心臓又は血管等の血流を有する所定
部位へ1スキヤンに対し一方向当り複数回ずつ超
音波パルスビームを送受波し、その送受信方向を
ずらしながら走査する超音波走査手段と、該超音
波走査手段によつて受信した一方向当り1つずつ
の受信信号から断層像信号を得るとともに、前記
一方向当り複数の受信信号間で送受信の1周期分
の時間を遅延させる遅延回路を用いてドプラ偏位
周波数に対応した位相変化量を検出し被検体内の
各深さにおけるドプラ像信号を得る手段と、各送
受信方向からの前記断層像信号とドプラ像信号と
を記憶する記憶手段と、該記憶手段に記憶された
断層像信号とドプラ像信号とを同時に読み出しリ
アルタイム二次元断層像とこの断層像に対応した
リアルタイム二次元ドプラ像とを重ねて表示させ
る手段とを具備したことを主な特徴とする超音波
装置によつて達成される。
That is, an object of the present invention is to provide a single high-speed electronic scan type probe that transmits and receives ultrasonic waves, and a single high-speed electronic scan type probe that transmits and receives ultrasonic waves, and a single high-speed electronic scan type probe that transmits and receives ultrasonic waves to a predetermined region having blood flow, such as the heart or blood vessels, in a subject per scan. Ultrasonic scanning means that transmits and receives an ultrasonic pulse beam multiple times per direction and scans while shifting the transmission and reception direction; In addition to obtaining an image signal, the amount of phase change corresponding to the Doppler deviation frequency is detected using a delay circuit that delays one cycle of transmission and reception between the plurality of received signals per direction, and the amount of phase change corresponding to the Doppler deviation frequency is detected. a means for obtaining a Doppler image signal in a field; a storage means for storing the tomographic image signal and the Doppler image signal from each transmission/reception direction; and a means for simultaneously reading out the tomographic image signal and the Doppler image signal stored in the storage means in real time. This is achieved by an ultrasound apparatus whose main feature is that it is equipped with means for superimposing and displaying a two-dimensional tomographic image and a real-time two-dimensional Doppler image corresponding to the tomographic image.

〔作用〕[Effect]

前記目的達成のための手段によれば、高速電子
スキヤン形探触子より超音波パルスビームを1方
向に対し複数回送波し各送波毎に反射信号を受信
し、その反射信号の1つにより断層像データを、
そして各反射信号間で被検体内の血流からのドプ
ラ偏位周波数に対応する位相変化量を検出しつ
つ、超音波の送受波方向を順次ずらしながらスキ
ヤンすることにより、各送受波方向の断層像デー
タとドプラ信号データとをほぼリアルタイムで得
ることができる。そして、これらのデータを記憶
手段に記憶して、同時に読み出すことで被検体の
断面に対応した二次元断層像と二次元ドプラ像
(二次元血流速分布像)をほぼリアルタイムで重
ねて表示することができる。そして、二次元ドプ
ラ像及び二次元断層像を重ね合せて表示すること
により、異常血流の発生部を容易にかつ正確に把
握することができるので、診断上極めて有効であ
る。
According to the means for achieving the above object, an ultrasonic pulse beam is transmitted multiple times in one direction from a high-speed electronic scan type probe, a reflected signal is received for each transmitted wave, and one of the reflected signals tomographic data,
Then, while detecting the amount of phase change corresponding to the Doppler deviation frequency from the blood flow within the subject between each reflected signal, scanning is performed while sequentially shifting the ultrasound transmission and reception directions. Image data and Doppler signal data can be obtained almost in real time. Then, by storing these data in a storage means and reading them out simultaneously, a two-dimensional tomographic image corresponding to the cross section of the subject and a two-dimensional Doppler image (two-dimensional blood flow velocity distribution image) are superimposed and displayed in almost real time. be able to. By superimposing and displaying the two-dimensional Doppler image and the two-dimensional tomographic image, the location where abnormal blood flow occurs can be easily and accurately identified, which is extremely effective for diagnosis.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の好ましい実施例の超音波装置を
図面を用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic device according to a preferred embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例の超音波装置の概
略構成を説明するためのブロツク構成図である。
FIG. 1 is a block configuration diagram for explaining the schematic configuration of an ultrasonic device according to an embodiment of the present invention.

第1図において、1は高速電子スキヤンが可能
な探触子で好ましくは電子セクタ形の探触子、2
は電子スイツチ回路であり、高速に振動子の送受
信の切り換えを行つて高速スキヤンを行うための
ものである。3は送受信回路、4は遅延回路であ
り、受信された信号を整相するためのものであ
る。5は位相合成アンプ、6は検波回路、7は前
記電子スイツチ回路2、遅延回路4及びCRT表
示装置15の掃引信号の制御を行う制御回路、8
は遅延回路であり、ドプラ像(血流速分布像)を
検出するために位相合成アンプ5の出力信号に対
し超音波の打ち出し一周期分の時間の遅延をかけ
るためのものである。9は90度移相回路であり、
前記位相合成アンプ5の出力を90度位相をずらす
ためのものである。
In FIG. 1, 1 is a probe capable of high-speed electron scanning, preferably an electron sector type probe; 2
is an electronic switch circuit that performs high-speed scanning by switching the transducer between transmission and reception at high speed. 3 is a transmitting/receiving circuit, and 4 is a delay circuit for phasing the received signal. 5 is a phase synthesis amplifier; 6 is a detection circuit; 7 is a control circuit for controlling the sweep signals of the electronic switch circuit 2, the delay circuit 4, and the CRT display device 15;
is a delay circuit, which is used to delay the output signal of the phase synthesis amplifier 5 by one cycle of ultrasonic wave launch in order to detect a Doppler image (blood flow velocity distribution image). 9 is a 90 degree phase shift circuit;
This is for shifting the phase of the output of the phase synthesis amplifier 5 by 90 degrees.

10A,10Bはリミツトアンプ、11は位相
検波回路、12は低帯域通過フイルタ、13は断
層像データとドプラ像データとをメモリ14へ入
力するための像データ入力切換器であり、A接点
側は断層像データ、B接点側がドプラ像データを
それぞれメモリ14へ入力する。メモリ14は、
前記低帯域通過フイルタ12の出力信号又は検波
回路6の出力信号を記憶するためのものである。
15はCRT表示装置であり、このCRT表示装置
15の水平(X)及び垂直(Y)の掃引信号は超
音波パルスのビーム方向と同じ方向になるように
前記制御回路7から出力される。16は前記像デ
ータ入力切換器13の切換制御及びメモリ14の
書き込み、読み出し制御を行う制御回路である。
10A and 10B are limit amplifiers, 11 is a phase detection circuit, 12 is a low band pass filter, 13 is an image data input switch for inputting tomographic image data and Doppler image data to the memory 14, and the A contact side is a tomographic The image data and the B contact side input Doppler image data to the memory 14, respectively. The memory 14 is
This is for storing the output signal of the low band pass filter 12 or the output signal of the detection circuit 6.
15 is a CRT display device, and the horizontal (X) and vertical (Y) sweep signals of this CRT display device 15 are outputted from the control circuit 7 so as to be in the same direction as the beam direction of the ultrasonic pulse. A control circuit 16 controls switching of the image data input switch 13 and controls writing and reading of the memory 14.

第2図は、本実施例の受信信号の位相変化量検
出動作を説明するための波形図である。
FIG. 2 is a waveform diagram for explaining the phase change amount detection operation of the received signal in this embodiment.

第2図において、aは位相合成アンプ5の出力
信号であり、n回目の超音波パルスの送受信時の
固定物体の受信信号(エコー信号)イと移動物体
の受信信号(エコー信号)ロが位相合成されたも
のである。
In Fig. 2, a is the output signal of the phase synthesis amplifier 5, and the received signal (echo signal) A of the fixed object and the received signal (echo signal) B of the moving object at the time of transmission and reception of the n-th ultrasonic pulse are in phase. It is a synthetic product.

bは遅延回路8の出力信号であり、n−1回目
の超音波パルスの送受信時の固定物体の受信信号
(エコー信号)イと移動物体の受信信号(エコー
信号)ロが位相合成されたものである。
b is the output signal of the delay circuit 8, which is obtained by phase-synthesizing the received signal (echo signal) A of the fixed object and the received signal (echo signal) B of the moving object at the time of transmitting and receiving the n-1th ultrasonic pulse. It is.

cは90度移相回路9の出力信号であり、前記信
号ロより90度位相をずらしたものである。
C is the output signal of the 90 degree phase shift circuit 9, which is shifted in phase by 90 degrees from the signal b.

d,eはそれぞれリミツトアンプ10A,10
Bの出力信号、fは位相検波回路11の出力信
号、gは低帯域通過フイルタ12の出力信号であ
る。
d and e are limit amplifiers 10A and 10A, respectively.
B is the output signal, f is the output signal of the phase detection circuit 11, and g is the output signal of the low band pass filter 12.

次に、本実施例の超音波装置の動作を説明す
る。
Next, the operation of the ultrasonic device of this embodiment will be explained.

第1図において、制御回路7からフオーカスデ
ータ及び超音波パルスビームの偏向データと共に
打ち出しクロツクが出力され、その内容に従つて
探触子1から打ち出される超音波の打ち出し信号
に、遅延回路4で所定種類の遅延がかけられる。
例えば、10チヤンネルであれば10通りの遅延、32
チヤンネルであれば32通りの遅延がかけられる。
これらの遅延がかけられた打ち出し信号によつて
送受信回路3から高電圧パルスが出力され、探触
子1の所定の素子に印加され、所定の方向へ超音
波パルスビームがn回ずつ送波される。
In FIG. 1, a launch clock is output from the control circuit 7 along with focus data and ultrasonic pulse beam deflection data, and a delay circuit 4 is applied to the launch clock of the ultrasonic wave launched from the probe 1 according to the contents. A predetermined type of delay is applied.
For example, if there are 10 channels, there will be 10 delays, 32
If it is a channel, 32 different delays can be applied.
A high voltage pulse is output from the transmitter/receiver circuit 3 based on these delayed launch signals, and is applied to a predetermined element of the probe 1, and an ultrasonic pulse beam is transmitted n times in a predetermined direction. Ru.

探触子1から打ち出された超音波ビームの各反
射信号は、送受信回路3により増幅され、遅延回
路4でその位相がそろえられ、位相合成アンプ5
で合成され、検波回路6で検波され断層像信号と
して出力され、像データ入力切換器13のA接点
を介してメモリ14へ入力される。一方位相合成
アンプ5の出力信号aは、第2図に示されるよう
に、血流速分布を検出するために遅延回路8で超
音波の打ち出し一周期分の時間の遅延がかけら
れ、リミツトアンプ10Aに入力される。そして
前記位相合成アンプ5の出力信号aは、90度移相
回路9で90度位相がずらされ、リミツトアンプ1
0Bに入力される。このとき、遅延回路8の出力
信号bはn−1回目の受信信号であり、90度移相
回路9の出力信号cはn回目の受信信号であるた
め、前記各リミツトアンプ10A,10Bの出力
信号d,eは、位相検波回路11において、位相
差に応じたパルス幅となり、低帯域通過フイルタ
12の出力電圧信号gの大きさが位相差、即ち反
射体(血流)の移動速さを示すことが可能であ
る。したがつて、前記受信信号の位相変化の大き
さをドプラ周波数の大きさとして検出し、その位
相変化量を検出するために、本実施例では基準と
なる1回目の超音波パルスの送信時の反射信号と
変化量を持つた2回目の超音波パルスの送信時の
反射信号が得られるように、超音波ビームの送
信・受信を同一方向で複数回、具体的には2回行
う。このようにして、同一方向で超音波ビームの
送信・受信を2回行うことによりその方向の血流
速を検出し、順次制御回路7の制御で超音波ビー
ムの送受信方向を切り換えてスキヤンする(高速
電子スキヤン)ことにより、極めて短時間に二次
元断層像と二次元ドプラ像が得られる。
Each reflected signal of the ultrasonic beam emitted from the probe 1 is amplified by the transmitter/receiver circuit 3, its phase is aligned in the delay circuit 4, and the phase synthesis amplifier 5
are synthesized, detected by the detection circuit 6, outputted as a tomographic image signal, and inputted to the memory 14 via the A contact of the image data input switch 13. On the other hand, as shown in FIG. 2, the output signal a of the phase synthesis amplifier 5 is delayed by one cycle of ultrasonic wave launch in a delay circuit 8 in order to detect the blood flow velocity distribution, and then outputted by the limit amplifier 10A. is input. The output signal a of the phase synthesis amplifier 5 is shifted in phase by 90 degrees by a 90 degree phase shift circuit 9, and then outputted from the limit amplifier 1.
Input to 0B. At this time, the output signal b of the delay circuit 8 is the n-1th received signal, and the output signal c of the 90 degree phase shift circuit 9 is the nth received signal, so the output signal of each limit amplifier 10A, 10B is In the phase detection circuit 11, d and e become pulse widths according to the phase difference, and the magnitude of the output voltage signal g of the low bandpass filter 12 indicates the phase difference, that is, the moving speed of the reflector (blood flow). Is possible. Therefore, in order to detect the magnitude of the phase change of the received signal as the magnitude of the Doppler frequency, and to detect the amount of the phase change, in this embodiment, the time of transmitting the first ultrasonic pulse, which is the reference, is The ultrasonic beam is transmitted and received in the same direction a plurality of times, specifically twice, so that a reflected signal at the time of the second ultrasonic pulse transmission having the same amount of variation as the reflected signal is obtained. In this way, by transmitting and receiving an ultrasound beam twice in the same direction, the blood flow velocity in that direction is detected, and the direction of transmission and reception of the ultrasound beam is sequentially switched under the control of the control circuit 7 to perform scanning ( By using high-speed electronic scanning, two-dimensional tomographic images and two-dimensional Doppler images can be obtained in an extremely short time.

そして、前記像データ入力切換器13をA接点
側に接続すれば断層像データが、B接点側に接続
すればドプラ像データがそれぞれメモリ14に記
憶される。前記入力切換器13の切換制御及びメ
モリ14の書き込み、読み出しの制御は制御回路
16によつて行う。例えば、前記受信動作におい
て、n−1回の受信信号に対しては入力切換器を
A接点側へ、n回目の受信信号に対してはB接点
側に接続する。これによつて二次元断層像データ
と二次元ドプラ像データがほぼリアルタイムで取
り込める。そして、二次元断層像及び二次元ドプ
ラ像を同時に重ねて表示するには、メモリ14に
断層像用とドプラ像用の二組のメモリを設け、そ
の内容を同時に読み出して、表示装置に表示すれ
ばよい。
When the image data input switch 13 is connected to the A contact side, tomographic image data is stored in the memory 14, and when it is connected to the B contact side, Doppler image data is stored in the memory 14. Switching control of the input switch 13 and control of writing and reading of the memory 14 are performed by a control circuit 16. For example, in the receiving operation, the input switch is connected to the A contact side for the n-1 received signal, and to the B contact side for the nth received signal. This allows two-dimensional tomographic image data and two-dimensional Doppler image data to be captured almost in real time. In order to simultaneously display the two-dimensional tomographic image and the two-dimensional Doppler image in an overlapping manner, the memory 14 should be provided with two sets of memories, one for the tomographic image and one for the Doppler image, and the contents should be simultaneously read out and displayed on the display device. Bye.

以上の説明からわかるように、本実施例によれ
ば、超音波ビームの送信・受信を同一方向で複数
回行う手段と、超音波ビームの走査及び偏向を高
速スキヤン装置で行う手段と、打ち出された超音
波ビームの被検体内の各深さにおけるドプラ偏位
周波数に比例した位相変化量を検出する手段を備
えたことにより、リアルタイムの二次元ドプラ像
が得られるので、診断上極めて有効である。
As can be seen from the above description, according to this embodiment, a means for transmitting and receiving an ultrasonic beam multiple times in the same direction, a means for scanning and deflecting an ultrasonic beam using a high-speed scanning device, and The system is equipped with means to detect the amount of phase change proportional to the Doppler deviation frequency of the ultrasonic beam at each depth within the subject, making it possible to obtain a real-time two-dimensional Doppler image, which is extremely effective for diagnosis. .

例えば、従来のECGトリガ法ではラスタ数100
本、超音波パルス繰り返し時間200μsecでドプラ
像を得ようとすれば、1心拍の周期を1secとして
100secかかるが、本実施例によれば、200μsec×
2×100=40msecで得ることができるので1sec当
り約20〜25フレームの画像表示が可能である。ま
た、高速電子スキヤナ等の高速電子スキヤン装置
を用いているので能率的にスキヤンができる。
For example, with traditional ECG triggering methods, the number of rasters is 100.
In this book, if you want to obtain a Doppler image with an ultrasound pulse repetition time of 200μsec, the period of one heartbeat is assumed to be 1sec.
It takes 100sec, but according to this example, it takes 200μsec×
Since the image can be obtained in 2×100=40 msec, it is possible to display images at approximately 20 to 25 frames per 1 sec. Furthermore, since a high-speed electronic scanning device such as a high-speed electronic scanner is used, scanning can be performed efficiently.

また、前記位相変化量を格納しておくメモリ及
び断層像を格納しておくメモリを備え、前記手段
によつて得られたリアルタイム二次元断層像とリ
アルタイム二次元ドプラ像を重ね合せて表示する
ことにより、異常血流の発生部を容易にかつ正確
に把握することができるので、診断上極めて有効
である。
Further, a memory for storing the amount of phase change and a memory for storing the tomographic image are provided, and the real-time two-dimensional tomographic image obtained by the above-mentioned means and the real-time two-dimensional Doppler image are superimposed and displayed. This makes it possible to easily and accurately identify the location where abnormal blood flow occurs, which is extremely effective for diagnosis.

本実施例はリアルタイム二次元断層像及びリア
ルタイム二次元ドプラ像に関するものとして説明
したが、本発明はこの実施例に限定されることな
く、流体の検査等における断層像及び流速分布像
を表示する検査手段にも適用できることは言うま
でもない。
Although this embodiment has been described as relating to a real-time two-dimensional tomographic image and a real-time two-dimensional Doppler image, the present invention is not limited to this embodiment. Needless to say, it can also be applied to means.

そして、本実施例では、超音波ビームを一方向
当り複数回送受波するとともに順次その送受波方
向をずらしてスキヤンする方法で説明したが、本
発明はこのような方法に限定されることなく、前
述の従来技術で述べた発射超音波と反射波との周
波数の差からドプラ偏位周波数を求め送受信方向
を順次ずらしてスキヤンする方法を用いても良い
ことは明らかであろう。
In this embodiment, a method has been described in which an ultrasonic beam is transmitted and received multiple times in one direction and scanned by sequentially shifting the transmission and reception direction, but the present invention is not limited to such a method. It is obvious that the method described in the prior art described above, in which the Doppler deviation frequency is determined from the difference in frequency between the emitted ultrasonic wave and the reflected wave, and scanning is performed by sequentially shifting the transmission and reception directions, may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、リアル
タイムの二次元ドプラ像が得られるので、診断上
極めて有効である。また、リアルタイム二次元断
層像とリアルタイム二次元ドプラ像を重ね合わせ
て表示することにより、異常血流の発生部を容易
にかつ正確に把握することができるので、診断上
極めて有効である。
As explained above, according to the present invention, a real-time two-dimensional Doppler image can be obtained, which is extremely effective for diagnosis. Furthermore, by superimposing and displaying a real-time two-dimensional tomographic image and a real-time two-dimensional Doppler image, it is possible to easily and accurately grasp the location where abnormal blood flow occurs, which is extremely effective for diagnosis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の超音波装置の概
略構成を説明するためのブロツク構成図、第2図
は、本実施例の受信信号の位相変化量検出動作を
説明するための波形図である。 図中、1……探触子、2……電子スイツチ回
路、3……送受信回路、4,8……遅延回路、5
……位相合成アンプ、6……検波回路、7,16
……制御回路、9……90度移相回路、10A,1
0B……リミツトアンプ、11……位相検波回
路、12……低帯域通過フイルタ、13……像デ
ータ入力切換器、14……メモリ、15……
CRT表示装置である。
FIG. 1 is a block configuration diagram for explaining the schematic configuration of an ultrasonic device according to an embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the phase change amount detection operation of a received signal according to the present embodiment. It is a diagram. In the figure, 1... Probe, 2... Electronic switch circuit, 3... Transmission/reception circuit, 4, 8... Delay circuit, 5
...Phase synthesis amplifier, 6...Detection circuit, 7,16
...Control circuit, 9...90 degree phase shift circuit, 10A, 1
0B... Limit amplifier, 11... Phase detection circuit, 12... Low band pass filter, 13... Image data input switch, 14... Memory, 15...
It is a CRT display device.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波を送受信する単一の高速電子スキヤン
形探触子と、該探触子により被検体内の心臓又は
血管等の血流を有する所定部位へ1スキヤンに対
し一方向当り複数回ずつ超音波パルスビームを送
受波し、その送受信方向をずらしながら走査する
超音波走査手段と、該超音波走査手段によつて受
信した一方向当り1つずつの受信信号から断層像
信号を得るとともに、前記一方向当り複数の受信
信号間で送受信の1周期分の時間を遅延させる遅
延回路を用いてドプラ偏位周波数に対応した位相
変化量を検出し被検体内の各深さにおけるドプラ
像信号を得る手段と、各送受信方向からの前記断
層像信号とドプラ像信号とを記憶する記憶手段
と、該記憶手段に記憶された断層像信号とドプラ
像信号とを同時に読み出しリアルタイム二次元断
層像とこの断層像に対応したリアルタイム二次元
ドプラ像とを重ねて表示させる手段とを具備した
ことを特徴とする超音波装置。
1 A single high-speed electronic scan type probe that transmits and receives ultrasonic waves, and a single high-speed electronic scan probe that transmits and receives ultrasonic waves to a predetermined region with blood flow, such as the heart or blood vessels within the subject, multiple times per direction per scan. an ultrasonic scanning means for transmitting and receiving a sonic pulse beam and scanning while shifting the direction of transmission and reception, and obtaining a tomographic image signal from one reception signal per direction received by the ultrasonic scanning means; Using a delay circuit that delays one period of transmission and reception between multiple received signals per direction, the amount of phase change corresponding to the Doppler deviation frequency is detected to obtain Doppler image signals at each depth within the subject. storage means for storing the tomographic image signal and Doppler image signal from each transmission/reception direction; and a storage means for simultaneously reading out the tomographic image signal and Doppler image signal stored in the storage means to produce a real-time two-dimensional tomographic image and this tomographic image. An ultrasonic device characterized by comprising means for superimposing and displaying a real-time two-dimensional Doppler image corresponding to the image.
JP19935688A 1988-08-10 1988-08-10 Ultrasonic device Granted JPH0221851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19935688A JPH0221851A (en) 1988-08-10 1988-08-10 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19935688A JPH0221851A (en) 1988-08-10 1988-08-10 Ultrasonic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8486180A Division JPS5711640A (en) 1980-06-23 1980-06-23 Ultrasonic device

Publications (2)

Publication Number Publication Date
JPH0221851A JPH0221851A (en) 1990-01-24
JPH0221810B2 true JPH0221810B2 (en) 1990-05-16

Family

ID=16406400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19935688A Granted JPH0221851A (en) 1988-08-10 1988-08-10 Ultrasonic device

Country Status (1)

Country Link
JP (1) JPH0221851A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM424694A0 (en) * 1994-03-04 1994-03-31 Commonwealth Scientific And Industrial Research Organisation Display of vessels encoded by features of flow measured by ultrasound
JP2003340652A (en) 2002-05-20 2003-12-02 Mitsubishi Electric Corp Electric discharge machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554941A (en) * 1978-10-20 1980-04-22 Tokyo Shibaura Electric Co Ultrasoniccwave disgnosis device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554941A (en) * 1978-10-20 1980-04-22 Tokyo Shibaura Electric Co Ultrasoniccwave disgnosis device

Also Published As

Publication number Publication date
JPH0221851A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
CA1238405A (en) Curvilinear array ultrasonic scanner
US5230340A (en) Ultrasound imaging system with improved dynamic focusing
US5349960A (en) Ultrasonic diagnosis apparatus
KR100749973B1 (en) Prf adjustment method and apparatus, and ultrasonic wave imaging apparatus
US4409982A (en) Ultrasonic step scanning utilizing curvilinear transducer array
JPH02211136A (en) Dual mode supersonic imaging device
JPS59149132A (en) Ultrasonic diagnostic apparatus
JPH0614932B2 (en) Ultrasonic diagnostic equipment
JPS63317141A (en) Ultrasonic diagnostic apparatus
US5144954A (en) Ultrasonic diagnosing apparatus
US4744367A (en) Apparatus for measuring blood flow speed using an ultrasonic beam
JPH08628A (en) Ultrasonic diagnostic device
JPH0790026B2 (en) Ultrasonic diagnostic equipment
US5476098A (en) Partially coherent imaging for large-aperture phased arrays
JPH0258B2 (en)
JP3180958B2 (en) Ultrasound diagnostic equipment
JPH0221810B2 (en)
JPS6357061B2 (en)
JPH08117227A (en) Ultrasonic diagnostic device
JPH02147052A (en) Electronic scanning type ultrasonic diagnosing device
JP3263125B2 (en) Ultrasound diagnostic equipment
JPH0127742B2 (en)
JP2763140B2 (en) Ultrasound diagnostic equipment
JPH0288047A (en) Electronic scanning type ultrasonic tomography device
JPS62231631A (en) Ultrasonic diagnostic apparatus